首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: According to recent reports, the synovial membrane may contain mesenchymal stem cells with the potential to differentiate into chondrocytes under appropriate conditions. In order to assess the usefulness of synovium-derived progenitor cells for the purposes of cartilage tissue engineering, we explored their requirements for the expression of chondrocyte-specific genes after expansion in vitro. DESIGN: Mesenchymal progenitor cells were isolated from the synovial membranes of bovine shoulder joints and expanded in two-dimensions on plastic surfaces. They were then seeded either as micromass cultures or as single cells within alginate gels, which were cultured in serum-free medium. Under these three-dimensional conditions, chondrogenesis is known to be supported and maintained. Cell cultures were exposed either to bone morphogenetic protein-2 (BMP-2) or to isoforms of transforming growth factor-beta (TGF-beta). The levels of mRNA for Sox9, collagen types I and II and aggrecan were determined by RT-PCR. RESULTS: When transferred to alginate gel cultures, the fibroblast-like synovial cells assumed a rounded form. BMP-2, but not isoforms of TGF-beta, stimulated, in a dose-dependent manner, the production of messenger RNAs (mRNAs) for Sox9, type II collagen and aggrecan. Under optimal conditions, the expression levels of cartilage-specific genes were comparable to those within cultured articular cartilage chondrocytes. However, in contrast to cultured articular cartilage chondrocytes, synovial cells exposed to BMP-2 continued to express the mRNA for alpha1(I) collagen. CONCLUSIONS: This study demonstrates that bovine synovium-derived mesenchymal progenitor cells can be induced to express chondrocyte-specific genes. However, the differentiation process is not complete under the chosen conditions. The stimulation conditions required for full transformation must now be delineated.  相似文献   

2.
BACKGROUND: Autologous chondrocyte transplantation (ACT) has had reasonable success for repairing small articular cartilage defects. A limiting factor for ACT is, however, the in vitro cultivation of chondrocytes because it leads to dedifferentiation. Therefore, the goal of this work was to optimize the monolayer culture of chondrocytes in vitro. MATERIAL AND METHOD: Human articular chondrocytes were plated on either collagen type II or untreated surfaces. The cells were evaluated morphologically and with immunoblotting. RESULTS: On collagen type II surfaces, a stable chondrogenic phenotype, expression of beta1-integrin, and a significant activation of phosphorylated intracellular proteins and the adaptor protein Shc could be observed up to day 20 in culture. Treatment with beta1 integrin antibody led to a loss of cell adhesion (82%). The results indicate that on collagen type II, beta1-integrin receptors are activated. Through the activation of Shc, these stimulate the Ras-MAPK pathway, which stabilizes the chondrogenic phenotype. CONCLUSION: Our results provide a practical and low-cost solution for improved long-term chondrocyte cultivation, thus providing a new perspective for using ACT on larger or arthrotic cartilage defects.  相似文献   

3.
Chondrocytes are known to dedifferentiate when cultured in monolayer culture, which may compromise the efficacy of cartilage repair systems in which cells are expanded by repeat passage in monolayer prior to implantation. We tested the hypothesis that repeat passage in alginate beads can provide sufficient expansion of cells, while producing cells with enhanced chondrocytic phenotype. Bovine articular chondrocytes were seeded in 2% alginate beads or in monolayer. 4 passages at 7-day intervals were performed. Values of 9.1 days for monolayer expansion and 12.5 days for alginate expansion were estimated for a 10-fold increase in cell number. For assessment of chondrocytic and fibroblastic phenotype, expanded cells were seeded in alginate beads or on glass coverslips and cultured for 7 days. On subsequent seeding in alginate, cells which had previously been subcultured in alginate showed higher levels of both DNA and GAG synthesis than cells passaged in monolayer. Furthermore, the alginate-passaged cells retained a chondrocytic phenotype, indicated by synthesis of type II collagen and chondroitin-6-sulphate, while cells passaged in monolayer synthesised type I collagen, indicating a fibroblastic phenotype. In conclusion, expansion of cells for autologous cartilage repair systems, using subculture within alginate beads, provides a potentially attractive alternative to monolayer expansion.  相似文献   

4.
Chondrocytes are known to dedifferentiate when cultured in monolayer culture, which may compromise the efficacy of cartilage repair systems in which cells are expanded by repeat passage in monolayer prior to implantation. We tested the hypothesis that repeat passage in alginate beads can provide sufficient expansion of cells, while producing cells with enhanced chondrocytic phenotype. Bovine articular chondrocytes were seeded in 2% alginate beads or in monolayer. 4 passages at 7-day intervals were performed. Values of 9.1 days for monolayer expansion and 12.5 days for alginate expansion were estimated for a 10-fold increase in cell number. For assessment of chondrocytic and fibroblastic phenotype, expanded cells were seeded in alginate beads or on glass coverslips and cultured for 7 days. On subsequent seeding in alginate, cells which had previously been subcultured in alginate showed higher levels of both DNA and GAG synthesis than cells passaged in monolayer. Furthermore, the alginate-passaged cells retained a chondrocytic phenotype, indicated by synthesis of type II collagen and chondroitin-6-sulphate, while cells passaged in monolayer synthesised type I collagen, indicating a fibroblastic phenotype. In conclusion, expansion of cells for autologous cartilage repair systems, using subculture within alginate beads, provides a potentially attractive alternative to monolayer expansion.  相似文献   

5.
Chondrocytes are known to dedifferentiate when cultured in monolayer culture, which may compromise the efficacy of cartilage repair systems in which cells are expanded by repeat passage in monolayer prior to implantation. We tested the hypothesis that repeat passage in alginate beads can provide sufficient expansion of cells, while producing cells with enhanced chondrocytic phenotype. Bovine articular chondrocytes were seeded in 2% alginate beads or in monolayer. 4 passages at 7-day intervals were performed. Values of 9.1 days for monolayer expansion and 12.5 days for alginate expansion were estimated for a 10-fold increase in cell number. For assessment of chondrocytic and fibroblastic phenotype, expanded cells were seeded in alginate beads or on glass coverslips and cultured for 7 days. On subsequent seeding in alginate, cells which had previously been subcultured in alginate showed higher levels of both DNA and GAG synthesis than cells passaged in monolayer. Furthermore, the alginate-passaged cells retained a chondrocytic phenotype, indicated by synthesis of type II collagen and chondroitin-6-sulphate, while cells passaged inmonolayer synthesised type I collagen, indicating a fibroblastic phenotype. In conclusion, expansion of cells for autologous cartilage repair systems, using subculture within alginate beads, provides a potentially attractive alternative to monolayer expansion.  相似文献   

6.
Chondrogenic potential of human synovial mesenchymal stem cells in alginate   总被引:1,自引:0,他引:1  
OBJECTIVE: In a recent study, we demonstrated that mesenchymal stem cells (MSCs) derived from the synovial membranes of bovine shoulder joints could differentiate into chondrocytes when cultured in alginate. The purpose of the present study was to establish the conditions under which synovial MSCs derived from aging human donors can be induced to undergo chondrogenic differentiation using the same alginate system. METHODS: MSCs were obtained by digesting the knee-joint synovial membranes of osteoarthritic human donors (aged 59-76 years), and expanded in monolayer cultures. The cells were then seeded at a numerical density of 4x10(6)/ml within discs of 2% alginate, which were cultured in serum-containing or serum-free medium (the latter being supplemented with 1% insulin, transferrin, selenium (ITS). The chondrogenic differentiation capacity of the cells was tested by exposing them to the morphogens transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, insulin-like growth factor-1 (IGF-1), bone morphogenetic protein-2 (BMP-2) and BMP-7, as well as to the synthetic glucocorticoid dexamethasone. The relative mRNA levels of collagen types I and II, of aggrecan and of Sox9 were determined quantitatively by the real-time polymerase chain reaction (PCR). The extracellular deposition of proteoglycans was evaluated histologically after staining with Toluidine Blue, and that of type-II collagen by immunohistochemistry. RESULTS: BMP-2 induced the chondrogenic differentiation of human synovial MSCs in a dose-dependent manner. The response elicited by BMP-7 was comparable. Both of these agents were more potent than TGF-beta1. A higher level of BMP-2-induced chondrogenic differentiation was achieved in the absence than in the presence of serum. In the presence of dexamethasone, the BMP-2-induced expression of mRNAs for aggrecan and type-II collagen was suppressed; the weaker TGF-beta1-induced expression of these chondrogenic markers was not obviously affected. CONCLUSIONS: We have demonstrated that synovial MSCs derived from the knee joints of aging human donors possess chondrogenic potential. Under serum-free culturing conditions and in the absence of dexamethasone, BMP-2 and BMP-7 were the most potent inducers of this transformation process.  相似文献   

7.
Background and purpose Three-dimensionally (3D-) embedded chondrocytes have been suggested to maintain the chondrocytic phenotype. Furthermore, mechanical stress and growth factors have been found to be capable of enhancing cell proliferation and ECM synthesis. We investigated the effect of mechanical loading and growth factors on reactivation of the 3D-embedded chondrocytes.Methods Freshly isolated chondrocytes from rat articular cartilage were grown in monolayer cultures and then in collagen gel. Real-time RT-PCR and histological analysis for aggrecan and type II and type I collagen was performed to evaluate their chondrocytic activity. Then, the 3D-embedded chondrocytes were cultured under either mechanical loading alone or in combination with growth factor. The dynamic compression (5% compression, 0.33 Hz) was loaded for 4 durations: 0, 10, 60, and 120 min/day. The growth factor administered was either basic fibroblast growth factor (bFGF) or bone morphogenetic protein-2 (BMP-2).Results Mechanical loading statistically significantly reactivated the aggrecan and type II collagen expression with loading of 60 min/day as compared to the other durations. The presence of BMP-2 and bFGF clearly enhanced the aggrecan and type II collagen expression of 3D-embedded chondrocytes. Unlike previous reports using monolayer chondrocytes, however, BMP-2 or bFGF did not augment the chondrocytic phenotype when applied together with mechanical loading.Interpretation Dynamic compression effectively reactivated the dedifferentiated chondrocytes in 3D culture. However, the growth factors did not play any synergistic role when applied with dynamic compressive loading, suggesting that growth factors should be administered at different time points during regeneration of the transplantation-ready cartilage.  相似文献   

8.
《Acta orthopaedica》2013,84(6):724-733
Background and purpose Three-dimensionally (3D-) embedded chondrocytes have been suggested to maintain the chondrocytic phenotype. Furthermore, mechanical stress and growth factors have been found to be capable of enhancing cell proliferation and ECM synthesis. We investigated the effect of mechanical loading and growth factors on reactivation of the 3D-embedded chondrocytes.

Methods Freshly isolated chondrocytes from rat articular cartilage were grown in monolayer cultures and then in collagen gel. Real-time RT-PCR and histological analysis for aggrecan and type II and type I collagen was performed to evaluate their chondrocytic activity. Then, the 3D-embedded chondrocytes were cultured under either mechanical loading alone or in combination with growth factor. The dynamic compression (5% compression, 0.33 Hz) was loaded for 4 durations: 0, 10, 60, and 120 min/day. The growth factor administered was either basic fibroblast growth factor (bFGF) or bone morphogenetic protein-2 (BMP-2).

Results Mechanical loading statistically significantly reactivated the aggrecan and type II collagen expression with loading of 60 min/day as compared to the other durations. The presence of BMP-2 and bFGF clearly enhanced the aggrecan and type II collagen expression of 3D-embedded chondrocytes. Unlike previous reports using monolayer chondrocytes, however, BMP-2 or bFGF did not augment the chondrocytic phenotype when applied together with mechanical loading.

Interpretation Dynamic compression effectively reactivated the dedifferentiated chondrocytes in 3D culture. However, the growth factors did not play any synergistic role when applied with dynamic compressive loading, suggesting that growth factors should be administered at different time points during regeneration of the transplantation-ready cartilage.  相似文献   

9.
BACKGROUND: After serial passages in monolayer, chondrocytes dedifferentiate into a fibroblast-like phenotype. Our objective was to determine if culture in alginate affects the phenotype of dedifferentiated human nasal septal chondrocytes. STUDY DESIGN: Human nasal septal chondrocytes were seeded at low density and passaged in monolayer culture. At passages (P) 1, 2, and 3 a portion of cells were cultured in alginate. Collagen, glycosaminoglycan (GAG), and DNA production were assessed. RESULTS: Chondrocytes in alginate proliferated less yet produced higher levels of GAG and collagen than those in monolayer culture. Alginate encapsulated P1 chondrocytes stained strongly for GAG and collagen type II, and minimally for collagen type I. Monolayer cells at P0 and P1 stained positively for collagen type II. All monolayer passages stained positive for collagen type I with minimal GAG staining. CONCLUSIONS: Compared with monolayer culture, alginate stimulates deposition of GAG and collagen type II, and supports the chondrocyte phenotype through P1, but does not promote redifferentiation.  相似文献   

10.
Autologous chondrocyte implantation (ACI) relies on the implantation of in vitro expanded cells. The aim was to study the dedifferentiation of human articular chondrocytes under different cultivating conditions [days 0–10 in the primary culture (P0); passages in a monolayer from P0 to P3; monolayer vs. alginate and monolayer vs. alginate/agarose hydrogels] using real‐time PCR analysis. The relative gene expressions for collagen type I and II, aggrecan and versican were quantified and the corresponding differentiation indexes (Col2/Col1, Agr/Ver) were calculated. The values of both differentiation indexes decreased exponentially with time in the P0 monolayer culture, and continued with a significant decrease over the subsequent monolayer passages. On the contrary, the chondrocytes seeded in either of the hydrogels significantly increased the indexes compared to their parallel monolayer cultures. These results indicate that alginate and alginate/agarose hydrogels offer an appropriate environment for human articular chondrocytes to redifferentiate after being expanded in vitro. Therefore the three‐dimensional (3D) hydrogel chondrocyte cultures present not only surgical, but also biological advantage over the classic suspension–periosteum chondrocyte implantation. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:847–853, 2008  相似文献   

11.
12.
13.
OBJECTIVE: To determine the influence of low oxygen tension on the redifferentiation and matrix production of dedifferentiated articular chondrocytes in monolayer and alginate bead culture. METHODS: Bovine articular chondrocytes were isolated enzymatically. After multiplication and dedifferentiation in a 2-week monolayer culture under 21% oxygen, the cells were subcultured in monolayer or alginate bead culture and subjected to 21% or 5% O(2)for 2 or 3 weeks in order to redifferentiate. Controls consisted of primary cultures in alginate. Matrix production was monitored immunocytochemically [collagen types I, II, IX, and GAGs (keratan sulfate, chondroitin-4- and -6-sulfate)] and collagen type II additionally assayed by Western blotting. Biosynthetic activity was measured by [(3)H]-proline incorporation and cell-viability by the trypan blue exclusion method. RESULTS: The cell number increased more than four-fold during dedifferentiation. Collagen type II was not produced by dedifferentiated chondrocytes under 5% or 21% oxygen in the monolayers or under 21% in alginate. However, dedifferentiated cells in alginate subjected to 5% oxygen exhibited a strong collagen type II expression indicating a redifferentiation. Additionally, collagen type IX and GAGs were also higher and [(3)H]-proline incorporation increased significantly. Primary cultures in alginate displayed a stronger collagen type II expression under 5% but no significant differences for other extracellular matrix components, or [(3)H]-proline incorporation. Viability was approximately 90% for all alginate cultures. CONCLUSION: A combination of alginate and high oxygen tension might not be suitable for redifferentiation or culturing of dedifferentiated chondrocytes. However, low oxygen tension promotes or induces a redifferentiation of dedifferentiated cells in alginate, stimulates their biosynthetic activity, and increases collagen type II production in primary alginate cultures.  相似文献   

14.
OBJECTIVE: If dedifferentiated chondrocytes could be induced to redifferentiate in vitro, then we might thereby be furnished with a population of phenotypically stable cells for autologous implantation in reconstructive surgery. We therefore investigated the redifferentiation capabilities of chondrocytes which, having migrated from alginate beads to form a monolayer, were subsequently passaged. We also characterized the molecular traits of irreversibly dedifferentiated cells. METHODS: Human chondrocytes that had migrated from alginate beads to form a monolayer (passage 1) were passaged seven times (passages 2-8). Cells from each passage were then recultivated in alginate beads. We assessed the synthesis of type-II collagen, cartilage-specific proteoglycans, adhesion molecules (integrins), signaling proteins (Src-homology collagen [Shc] and extracellular-signal-regulated kinase [Erk]) and the apoptosis marker 'activated' caspase-3 in monolayer or secondary alginate cultures. RESULTS: The synthesis of cartilage-specific type-II collagen, alpha 3-integrin, Shc and activated Erk1/2 decreased rapidly after four passages in monolayer culture. Up to passage 4, cells redifferentiated in alginate culture. However, between passages 5 and 8, cells began to produce activated caspase-3; these cells not only failed to redifferentiate when recultivated in alginate, but underwent apoptosis. CONCLUSION: We conclude that the loss of chondrogenic potential by chondrocytes maintained in monolayer culture is associated with a decrease in the synthesis of cartilage markers and with a suppressed activation of key signaling proteins in the Ras-mitogen-activated protein kinase pathway (Shc and Erk1/2). These events lead to apoptosis. A decrease in Shc/Erk expression/interaction could serve as a recognition marker for irreversibly dedifferentiated chondrocytes in tissue engineering.  相似文献   

15.
Domm C  Fay J  Schünke M  Kurz B 《Der Orthop?de》2000,29(2):91-99
One of the goals in the field of tissue engineering is the development of artificial cartilage for the treatment of cartilage defects. Therefore autologous chondrocytes are seeded on different artificial matrices to test their possible use as implants (resorption, antigenicity, toxicity and their integration in the tissue). One of the main problems in these experiments is that usually the amount of available chondrocytes is too low for treating large-scale defects or for comparing different matrices. An in-vitro-multiplication of the cells is needed which causes the chondrocytes to dedifferentiate and become fibroblast-like. Therefore parameters which induce a redifferentiation are of great interest. The objective of this study was to determine the influence of intermittent hydrostatic pressure and low oxygen partial pressure on the redifferentiation of dedifferentiated bovine articular chondrocytes in monolayer and three-dimensional alginate bead culture. The redifferentiation process was monitored by immunocytochemical detection of newly synthesized collagen type II. The viability of the cells was determined by the trypanblue exclusion test. The chondrocytes were dedifferentiated by a two week culture in plastic flasks with an oxygen level of 20%. After this they were subcultured in monolayer or three-dimensional alginate culture and subjected to three different stimuli for three weeks in order to redifferentiate: 1.) 20% O2 (= 20.26 kPa PO2) + 5% CO2 + 75% N2; 2.) 5% O2 (= 5.07 kPa PO2) + 5% CO2 + 90% N2; 3.) 5% O2 (= 5.07 kPa PO2) + 5% CO2 + 90% N2 + 8 h/d of intermittent hydrostatic pressure (frequency: 3 bar absolute for 30 min and 1 bar absolute for 2 min). In the monolayer there was no detectable collagen type II found by immunocytochemistry under either of the three culture conditions. Therefore a redifferentiation of dedifferentiated chondrocytes was not possible in monolayer cultures with the tested parameters. In the three-dimensional alginate culture there was no immunocytochemical staining of collagen type II found in the beads cultured with 20% oxygen. With 5% oxygen we found a strong collagen type II-production by chondrocytes throughout the whole bead. The intermittent hydrostatic pressure combined with 5% oxygen lead to a decreased collagen type II-production compared to cells subjected to 5% oxygen only. Also chondrocytes closer to the edge of these beads were more often immunopositive and seemed to produce more immunoreactive collagen type II. The viability of the chondrocytes in the alginate culture was close to 90% after three weeks. Our experiments showed that oxygen partial pressure is an important parameter in the cultivation of articular chondrocytes. Reduced partial oxygen pressure promoted or induced the redifferentiation of dedifferentiated chondrocytes in alginate culture.  相似文献   

16.
OBJECTIVE: To compare the chondrogenic and proliferative effects of pooled human serum (HS) and fetal bovine serum (FBS) on tissue-engineered human nasal septal chondrocytes. STUDY DESIGN AND SETTING: Human chondrocytes were expanded for one passage in monolayer in medium supplemented with 10% FBS, 2% HS, 10% HS, or 20% HS. Cells were then suspended in alginate beads for 3D culture for 2 weeks with 10% FBS, 2% HS, 10% HS, or 20% HS. RESULTS: Monolayer cell yields were greater with HS than FBS. In alginate, cellular proliferation, glycosaminoglycan production per cell, and type II collagen were significantly higher with 10% HS compared to 10% FBS controls. CONCLUSION: HS results in increased proliferation and production of cartilaginous extracellular matrix by tissue-engineered human nasal septal chondrocytes, compared to FBS controls. SIGNIFICANCE: Culture with human serum may facilitate creation of neocartilage constructs that more closely resemble native tissue.  相似文献   

17.
Lee HJ  Choi BH  Min BH  Son YS  Park SR 《Artificial organs》2006,30(9):707-715
Mesenchymal stem cells (MSCs) are regarded as a potential autologous source for cartilage repair, because they can differentiate into chondrocytes by transforming growth factor-beta (TGF-beta) treatment under the 3-dimensional (3-D) culture condition. However, more efficient and versatile methods for chondrogenic differentiation of MSCs are still in demand for its clinical application. Recently, low-intensity ultrasound (LIUS) was shown to enhance fracture healing in vitro and induce chondrogenesis of MSCs in vitro. In this study, we investigated the effects of LIUS on the chondrogenesis of rabbit MSCs (rMSCs) in a 3-D alginate culture and on the maintenance of chondrogenic phenotypes after replating them on a monolayer culture. The LIUS treatment of rMSCs increased: (i) the matrix formation; (ii) the expression of chondrogenic markers such as collagen type II, aggrecan, and Sox-9; (iii) the expression of tissue inhibitor of metalloprotease-2 implicated in the integrity of cartilage matrix; and (iv) the capacity to maintain the chondrogenic phenotypes in a monolayer culture. Notably, LIUS effects were clearly shown even without TGF-beta treatment. These results suggest that LIUS treatment could be an efficient and cost-effective method to induce chondrogenic differentiation of MSCs in vitro for cartilage tissue engineering.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号