首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IGF-I regulates cell growth, differentiation, and survival in many cultured nerve cell lines. The present study was undertaken in the human neuroblastoma cell line, SH-SY5Y, to elucidate whether there are differences in the IGF-dependent signal transduction pathways that stimulate proliferation compared to those that induce differentiation. Quiescent SH-SY5Y cells were treated with IGF-I in the presence or absence of PD98059 (an inhibitor of MEK, a MAP kinase kinase) or LY294002 (an inhibitor of PI 3-kinase). Cell growth was assessed by measuring [3H]thymidine incorporation into DNA and cell number. Cell differentiation was assessed by measuring mRNA levels of NPY and neurite outgrowth. IGF-I both induced cell proliferation and differentiation. It stimulated tyrosine phosphorylation of the type I IGF receptor (IGF-IR) beta-subunit, IRS-I, IRS-2, and Shc, and these changes were associated with activation of Erk and Akt. PD98059 inhibited activation of Erk and LY294002 repressed activation of Akt in response to IGF-I, but did not affect tyrosine phosphorylation of the IGF-IR, IRS-1, IRS-2, or Shc. Each PD98059 and LY294002 inhibited IGF-I-dependent cell proliferation in a concentration-dependent manner. In contrast, each of these inhibitors only partially depressed NPY gene expression induced by IGF-I and slightly inhibited IGF-I-mediated neurite outgrowth; however, when both PD98059 and LY294002 were present, IGF-I-dependent NPY gene expression and neurite outgrowth were abolished completely. These results suggest that in these nerve cells, 1) the IGF-I signals through the MAP kinase pathway and PI-3 kinase pathway are independently essential to induce IGF-I-dependent growth, and 2) alternate activation of the MAP kinase pathway and PI 3-kinase pathway is sufficient for the cells to undergo IGF-I-dependent differentiation.  相似文献   

2.
BACKGROUND: Ethanol inhibits insulin-like growth factor-I receptor (IGF-IR) activation. However, the potency of ethanol for inhibition of the IGF-IR and other receptor tyrosine kinases varies considerably among different cell types. We investigated the effect of ethanol on IGF-I signaling in several neuronal cell types. METHODS: IGF-I signaling was examined in SH-SY5Y neuroblastoma cells, primary cultured rat cerebellar granule neurons, and rat NG-108 neuroblastoma x glioma hybrids. The tyrosine phosphorylation of IGF-IR, IRS-2, Shc, and p42/p44 MAP kinase (MAPK), and the association of Grb-2 with Shc, were examined by immunoprecipitations and Western blotting. RESULTS: IGF-I-mediated tyrosine phosphorylation of MAPK was inhibited by ethanol in all cell lines. IGF-IR autophosphorylation was markedly inhibited by ethanol in SH-SY5Y cells, was only mildly inhibited in cerebellar granule neurons, and was unaffected in rat NG-108 cells. In vitro tyrosine autophosphorylation of immunopurified IGF-IR obtained from all cell lines was inhibited by ethanol. There was also differential ethanol sensitivity of IRS-2 and Shc phosphorylation, and the association of Shc with IRS-2, among the different cell types. CONCLUSIONS: The findings demonstrate that IGF-I-mediated MAPK activation is a sensitive target of ethanol in diverse neuronal cell types. The data are consistent with ethanol-induced inhibition of IGF-IR activity, although the extent of IGF-IR tyrosine autophosphorylation per se is a poor marker of the inhibitory action of ethanol on this receptor. Furthermore, despite uniform inhibition of MAPK in the different neuronal cell types, tyrosine phosphorylation of proximal mediators of the IGF-IR are differentially inhibited by ethanol.  相似文献   

3.
We studied the biological properties of insulin receptors (IRs) and insulin-like growth factor-I (IGF-I) receptors in cultured fibroblasts from a patient with leprechaunism (leprechaun Par-1). Patient cells displayed normal insulin binding capacity and affinity. Basal in vivo auto phosphorylation and in vitro exogenous kinase activity of patient IRs were elevated twofold to threefold compared with control receptors, and insulin had no further effect on these processes. Moreover, patient IRs were unable to promote the stimulation of metabolic and mitogenic pathways. IR substrate-1 (IRS-1) and mitogen-activated protein (MAP) kinase tyrosine phosphorylation and glycogen and DNA synthesis were not increased in the basal state in patient fibroblasts and were also insensitive to the stimulatory effect of insulin. As for IGF-I, although binding and receptor kinase activity were normal, the ability to stimulate glycogen and DNA synthesis was altered in patient cells. Two mutant alleles of the IR gene were detected by denaturing gradient gel electrophoresis (DGGE) and direct sequencing. The maternal allele contained a point mutation in exon 18 encoding the tryptophan-for-arginine substitution at position 1092, and the paternal allele had a point mutation in exon 20 substituting lysine for glutamic acid at codon 1179. Thereby, leprechaun Par-1 was a compound heterozygote for two missense mutations located in the IR β-subunit. The present investigation provides the first evidence that leprechaunism can be causally related to structural alterations in the tyrosine kinase domain of the IR. These alterations result in severe impairment of insulin and IGF-I action.  相似文献   

4.
Biedi C  Panetta D  Segat D  Cordera R  Maggi D 《Endocrinology》2003,144(12):5497-5503
Caveolae are lipid raft microdomains that regulate endocytosis and signal transduction. IGF-I receptor (IGF-IR) localizes in caveolae and tyrosine phosphorylates caveolin 1, supporting a role for these subcellular regions in the compartmentalization of IGF-I signaling. Src homology 2/alpha-collagen related protein (Shc) is the main mediator of IGF-I mitogenic action, coupling IGF-IR phosphorylation to Ras-MAPK activation. Here we show that IGF-I induces Shc tyrosine phosphorylation in the caveolae with a time course significantly different from that observed in the nonraft cellular fractions. In the same time, IGF-I recruits growth factor receptor bound protein 2 (Grb2) to caveolae and activates p42/p44 MAPKs in these microdomains. Src family kinases regulate IGF-I action through an Shc-dependent mechanism. In R-IGF-IRWT cells, IGF-I causes Fyn enrichment in the caveolae with a time course consistent with Shc phosphorylation and Grb2 recruitment in these regions. Finally, we have observed that after IGF-I stimulation, IGF-IR and Fyn colocalize in lipid raft caveolin 1-enriched microdomains. As insulin and IGF-I share common substrates, the effect of insulin on these cellular processes was measured. Here we show that insulin also induces Shc phosphorylation and Grb2 recruitment to caveolae, but with a significantly different time course compared with IGF-I. Our results suggest that 1) IGF-I causes the colocalization of signaling proteins in caveolae through a phosphorylation-regulated mechanism; and 2) the time course of phosphorylation and recruitment of substrates in caveolae by insulin receptor and IGF-IR could determine the specific actions of these receptors.  相似文献   

5.
We report here that antiinsulin receptor (anti-IR) autoantibodies (AIRs) from a newly diagnosed patient with type B syndrome of insulin resistance induced cellular resistance not only to insulin but also to insulin-like growth factor I (IGF-I) for the stimulation of phosphatidylinositol 3-kinase and mitogen-activated protein kinase activities and of glycogen and DNA syntheses. The molecular mechanisms of this dual resistance were investigated. Patient AIRs bound the IR at the insulin-binding site and caused insulin resistance at the IR level by inducing a 50% decrease in cell surface IRs and a severe defect in the tyrosine kinase activity of the residual IRs, manifested by a loss of insulin-stimulated IR autophosphorylation and IR substrate-1 (IRS-1)/IRS-2 phosphorylation. In contrast, cell resistance to IGF-I occurred at a step distal to IGF-I receptors (IGF-IRs), as AIRs altered neither IGF-I binding nor IGF-I-induced IGF-IR autophosphorylation, but inhibited the ability of IGF-IRs to mediate tyrosine phosphorylation of IRS-1 and IRS-2 in response to IGF-I. Coimmunoprecipitation assays showed that in AIR-treated cells, IRs, but not IGF-IRs, were constitutively associated with IRS-1 and IRS-2, strongly suggesting that AIR-desensitized IRs impeded IGF-I action by sequestering IRS-1 and IRS-2. Accordingly, AIRs had no effect on the stimulation of mitogen-activated protein kinase activity or DNA synthesis by vanadyl sulfate, FCS, epidermal growth factor, or platelet-derived growth factor, all of which activate signaling pathways independent of IRS-1/IRS-2. Thus, AIRs induced cell resistance to both insulin and IGF-I through a novel mechanism involving a constitutive and stable association of IRS-1 and IRS-2 with the IR.  相似文献   

6.
Caveolin (Cav)-1, the major caveolar protein, directly interacts with IGF-I receptor (IGF-IR) and its intracellular substrates. To determine the role of Cav-1 in IGF-IR signaling, we transfected H9C2 cells with small interfering RNA specific for Cav-1-siRNA. The selective down-regulation of Cav-1 (90%) was associated with a smaller reduction of Cav-2, whereas Cav-3 expression was unaffected. A significant reduction of IGF-IR tyrosine phosphorylation in Cav-1-siRNA H9C2 cells was found compared with H9C2 control cells (Ctr-siRNA). The reduced IGF-IR autophosphorylation resulted in a decrease of insulin receptor substrate-1, Shc, and Akt activation. In addition, in Cav-1-siRNA H9C2 cells, IGF-I did not prevent apoptosis, suggesting that Cav-1 is required to mediate the antiapoptotic effect of IGF-I in cardiomyoblasts. The down-regulation of Cav-1 decreased IGF-IR activation and affected the ability of IGF-I to prevent apoptosis after serum withdrawal also in human umbilical vein endothelial cells. These results demonstrate that: 1) Cav-1 down-regulation negatively affects IGF-IR tyrosine phosphorylation; 2) this effect causes a reduced activation of insulin receptor substrate-1, Shc, and Akt; and 3) Cav-1 is involved in IGF-IR antiapoptotic signaling after serum deprivation.  相似文献   

7.
Maile LA  Clemmons DR 《Endocrinology》2002,143(11):4259-4264
The alphaVbeta3 integrin is an important determinant of IGF-I-stimulated receptor phosphorylation and biological actions. Blocking ligand occupancy of alphaVbeta3 with the distintegrin echistatin reduces IGF-I-stimulated receptor phosphorylation, and it inhibits cellular migration and DNA synthesis responses to IGF-I. We have shown that recruitment of the tyrosine phosphatase Src-homology 2-containing phosphotyrosine phosphatase-2 (SHP-2) to the IGF-I receptor (IGF-IR) is an important determinant of the duration of IGF-IR phosphorylation. These studies were undertaken to determine whether an alteration in the recruitment of SHP-2 to the receptor in the presence of echistatin could account for the decrease in receptor phosphorylation. Following an overnight exposure of smooth muscle cell cultures to echistatin, the addition of IGF-I was accompanied by rapid dephosphorylation of IGF-IR compared with cells exposed to media alone. This was associated with an increase in the rate of SHP-2 recruitment to the IGF-IR. In cells expressing a catalytically inactive form of SHP-2, prior exposure to echistatin had no effect on the rate of receptor dephosphorylation. In contrast to the usual physiologic situation in which following IGF-I exposure SHP-2 is recruited to IGF-IR via SHP-2 substrate-1 (SHPS-1) in the presence of echistatin, SHPS-1 was not used for SHP-2 recruitment. Our findings show that IRS-1 may substitute for SHPS-1 under these conditions. These results demonstrate that the activation state of alphaVbeta3 is an important regulator of the duration of IGF-IR phosphorylation and subsequent downstream signaling and that this regulation is mediated through changes in the subcellular localization of SHP-2.  相似文献   

8.
We compared insulin and IGF effects in adipocytes expressing IR (insulin receptors), and preadipocytes expressing IR and IGF-IR (IGF-I receptors). Treatment of adipocytes with insulin, IGF-II or IGF-I resulted in phosphorylation of IR. Order of potency was insulin>IGF-II>IGF-I. In preadipocytes IR, IGF-IR and insulin/IGF-I hybrid receptors (HR) were detected. Treatment of preadipocytes with IGF-I and IGF-II 10(-8)M resulted in activation of IGF-IR and IR whereas insulin was more potent in activating IR, with no effect on IGF-IR. In adipocytes glucose transport was 100-fold more sensitive to insulin than to IGFs and the maximal effect was higher with insulin. In preadipocytes glucose accumulation and DNA synthesis was equally sensitive to insulin and IGFs but the maximal effect was higher with IGF-I. In conclusion, insulin and IGF-I activate their cognate receptors and IGF-I also HR. IGF-II activates IR, IGF-IR and HR. Insulin and IGF-I are partial agonists to each other's receptors.  相似文献   

9.
Sakai K  Clemmons DR 《Endocrinology》2003,144(6):2388-2395
IGF-I stimulates insulin-like actions directly through its receptor, and it also enhances sensitivity to insulin-mediated effects in vivo. These studies were undertaken to analyze the role of IGF-I, insulin, and insulin/IGF-I hybrid receptors (HRs) in mediating IGF-I and insulin signaling in cells that had been made insulin-resistant by treatment with glucosamine. Human HepG2 cells, which express IGF-I receptors, insulin receptors (IRs), and IGF-I/insulin HRs, were exposed to 20 mM glucosamine; and the effects of IGF-I and insulin in stimulating glycogen synthesis were determined. An overnight exposure to glucosamine markedly attenuated the effects of insulin and IGF-I in stimulating glycogen synthesis. To determine which receptors were mediating this effect, the ability of insulin and IGF-I to stimulate phosphorylation of their respective receptors was analyzed. An 18-h exposure to glucosamine (20 mM) caused a 75% reduction in the ability of IGF-I to phosphorylate its receptor but no change in receptor abundance. Glucosamine also caused a major reduction in insulin-stimulated receptor phosphorylation, although, unlike IGF-I, there was also a 50% reduction in IR abundance. Exposure to glucosamine also resulted in a reduction in the ability of IGF-I or insulin to stimulate phosphorylation of insulin IGF-I/HRs. The combination of insulin plus IGF-I was a more potent stimulus of HR phosphorylation than either agent alone, and this combination was also more potent in partially reversing the inhibitory effect of glucosamine. Taken together, these findings indicate that glucosamine induces a loss of sensitivity to stimulation of insulin, IGF-I, or HR tyrosine kinase activity by insulin or IGF-I. Although insulin is able to partially reverse the effect of glucosamine on IR phosphorylation, it has a very minimal effect on glucosamine-induced inhibition of HR phosphorylation. However, the combination of IGF-I and insulin induces a major increase in HR phosphorylation, even in the presence of glucosamine, suggesting that it is improving the sensitivity of the HR to insulin activation.  相似文献   

10.
The role of the insulin receptor tyrosine kinase (protein-tyrosine kinase, EC 2.7.1.112) in various rapid insulin effects was studied by injecting four different cell types (by osmotic lysis of pinocytotic vesicles) with a monoclonal antibody that specifically inhibits the kinase activity of the insulin receptor and the closely related receptor for insulin-like growth factor (IGF)-I. Injection of this inhibitory antibody resulted in a decreased ability of insulin to stimulate the uptake of 2-deoxyglucose in Chinese hamster ovary cells and freshly isolated rat adipocytes, ribosomal protein S6 phosphorylation in CHO cells, and glycogen synthesis in the human hepatoma cell line HepG2. The ability of insulin, IGF-I, and IGF-II to stimulate glucose uptake in TA1 mouse adipocytes was also inhibited. Studies with CHO cells demonstrated that these effects of the inhibitory antibody were specific, since there was no change in phorbol ester-stimulated glucose uptake and injection of a noninhibiting antibody to the kinase had no effect on insulin action. These studies indicate that the tyrosine kinase activity of the insulin receptor is important in mediating several rapid insulin effects in a variety of different cell types.  相似文献   

11.
The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an “unregulated” mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance.  相似文献   

12.
Summary Saturated fatty acids cause insulin resistance but the underlying molecular mechanism is still unknown. We examined the effect of saturated non-esterified fatty acids on insulin binding and action in transfected Rat-1 fibroblasts, which over-expressed human insulin receptors. Incubation with 1.0 mmol/l palmitate for 1–4 h did not affect insulin binding, insulin receptor autophosphorylation, insulin-stimulated tyrosine kinase activity toward poly(Glu4:Tyr1), pp185 and Shc phosphorylation and PI3-kinase activity in these cells. However, the dose response curve of insulin-stimulated glucose transport was right-shifted. Palmitate inhibited the maximally insulin-stimulated mitogen activated protein (MAP) kinase activity toward synthetic peptide to 7 % that of control. The palmitate treatment influenced neither cytosolic protein kinase A activity nor cAMP levels. These results suggested that 1) palmitate did not inhibit the early steps of insulin action from insulin binding to pp185 or Shc phosphorylation but inhibited insulin-stimulated MAP kinase, and that 2) palmitate decreased insulin sensitivity as manifested by inhibited insulin-stimulated glucose uptake. In conclusion, the mechanism of saturated non-esterified fatty acid induced insulin resistance in glucose uptake may reside at post PI3-kinase or Shc steps, including the level of MAP kinase activation. [Diabetologia (1997) 40: 894–901] Received: 15 January 1997 and in revised form: 9 April 1997  相似文献   

13.
AIMS/HYPOTHESIS: We examined the properties of a mutant insulin receptor (IR) with an Arg(252) to Cys (IR(R252C)) substitution in the alpha-subunit originally identified in a patient with extreme insulin resistance and acanthosis nigricans. METHODS: We studied IR cell biology and signalling pathways in Chinese Hamster Ovary cells overexpressing this IR(R252C). RESULTS: Our investigation showed an impairment in insulin binding to IR(R252C) related mostly to a reduced affinity of the receptor for insulin and to a reduced rate of IR(R252C) maturation; an inhibition of IR(R252C)-mediated endocytosis resulting in a decreased insulin degradation and insulin-induced receptor down-regulation; a maintenance of IR(R252C) on microvilli even in the presence of insulin; a similar autophosphorylation of mutant IR(R252C) followed by IRS 1/IRS 2 phosphorylation, p85 association with IRS 1 and IRS 2 and Akt phosphorylation similar to those observed in cells expressing wild type IR (IRwt); and finally, a reduced insulin-induced Shc phosphorylation accompanied by decreased ERK1/2 phosphorylation and activity and of thymidine incorporation into DNA in cells expressing IR(R252C) as compared to cells expressing IRwt. CONCLUSION/INTERPRETATION: These observations suggest that: parameters other than tyrosine kinase activation participate in or control the first steps of IR internalisation or both; IR-mediated IRS 1/2 phosphorylation can be achieved from the cell surface and microvilli in particular; Shc phosphorylation and its subsequent signalling pathway might require IR internalisation; defective IR endocytosis correlates with an enhancement of some biological responses to insulin and attenuation of others.  相似文献   

14.
It has been shown that insulin-like growth factor-I (IGF-I) stimulates the activity of alkaline phosphatase, a marker of mature osteoblast phenotype, in osteoblasts. In the present study, we investigated the involvement of the mitogen-activated protein (MAP) kinase superfamily in the IGF-I-stimulated alkaline phosphatase activity in osteoblast-like MC3T3-E1 cells. IGF-I-stimulated alkaline phosphatase activity dose dependently in the range between 1 nM and 0.1 microM. IGF-I induced the phosphorylation of p44/p42 MAP kinase and p38 MAP kinase but not stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). PD98059 and U0126, specific inhibitors of the upstream kinase that activates p44/p42 MAP kinase, significantly suppressed the IGF-I-induced alkaline phosphatase activity. On the contrary, SB203580 and PD169316, specific inhibitors of p38 MAP kinase, failed to affect the activity induced by IGF-I. Specific inhibitors for phosphatidylinositol 3-kinase (PI3K)/Akt pathway (LY294002 and wortmannin) also had no significant effect on IGF-I-induced p44/p42 MAP kinase phosphorylation. The phosphorylation of p44/p42 MAP kinase induced by IGF-I was reduced by U0126. These results strongly suggest that p44/p42 MAP kinase among the MAP kinase superfamily plays a role in the IGF-I-stimulated alkaline phosphatase activity in osteoblast-like MC3T3-E1 cells.  相似文献   

15.
CONTEXT: Signaling via the IGF-I receptor (IGF-IR) is crucial for normal prenatal and postnatal growth. The heterozygous IGF-IR mutation Arg59Ter resulted in reduced IGF-IR expression and represents haploinsufficiency of the human IGF1R gene. OBJECTIVE: We studied clinical and in vitro aspects of a human IGF1R gene dosage effect. We provide detailed clinical data on the two half-brothers and their mother with the Arg59Ter mutation. Arg59Ter and control fibroblasts were examined for functionality of IGF-I and insulin-stimulated receptor phosphorylation and signal transduction. RESULTS: The two brothers presented with primary microcephaly, mild mental retardation, and intrauterine as well as postnatal growth deficits. After GH therapy (30 microg/kg.d) for 24 months, the growth deficit in the propositus decreased by +1.0 sd. There was no clinical evidence for impaired glucose tolerance or hypoglycemia in all Arg59Ter subjects. In vitro, IGF-IR-deficient Arg59Ter cells expressed less IGF-IR and unchanged insulin receptor (IR) protein. Receptor autophosphorylation and phosphorylation of downstream protein kinase B/Akt exhibited resistance to IGF-I but showed an augmented response to insulin in Arg59Ter cells. Decreased IGF-IR content was accompanied by a reduction of IGF-IR/IR receptor hybrids, and therefore, increased levels of IR/IR homodimers probably explain increased insulin-stimulated receptor autophosphorylation and Akt phosphorylation. CONCLUSIONS: In vivo and in vitro IGF-I resistance in Arg59Ter subjects and fibroblasts indicates a human IGF1R gene dosage effect involving not only the IGF-IR, but also IGF-IR/IR hybrids. The abundance of both the IGF-IR protein and IGF-IR/IR hybrid receptors may have an impact on human growth, organ function, and glucose metabolism.  相似文献   

16.
Chinese hamster ovary transfectants that express insulin receptors in which tyrosine residues 1162 and 1163 were replaced by phenylalanine exhibit a total inhibition of the insulin-mediated tyrosine kinase activity toward exogenous substrates [histone, casein, and poly(Glu/Tyr)]; this latter activity is associated with total inhibition of the hypersensitivity reported for insulin in promoting 2-deoxyglucose uptake. We now present evidence that the twin tyrosines also control the insulin-mediated stimulation of glycogen synthesis. Surprisingly, this type of Chinese hamster ovary transfectant is as hypersensitive to insulin for its mitogenic effect as are Chinese hamster ovary cells expressing many intact insulin receptors. Such data suggest that (i) the insulin mitogenic effect routes through a different pathway than insulin uses to activate the transport and metabolism of glucose and (ii) the mitogenic effect of insulin is not controlled by the twin tyrosines. At the molecular level, the solubilized mutated receptor has no insulin-dependent tyrosine kinase activity, whereas this receptor displays measurable insulin-stimulated phosphorylation of its beta subunit in 32P-labeled cells. We therefore propose that the autocatalytic phosphorylating activity of the receptor reports a cryptic tyrosine kinase activity that cannot be visualized by the use of classical exogenous substrates.  相似文献   

17.
To examine the functional role of Shc tyrosine phosphorylation in IGF-1 signaling, wild-type (WT)-Shc and Y239,240,317F (3F)-Shc were transiently transfected into L6 myoblasts. IGF-1 signaling was compared among the transfected cells. IGF-1-induced tyrosine phosphorylation of Shc and its subsequent association with Grb2 were increased in WT-Shc cells, whereas they were decreased in 3F-Shc cells compared with those in parental L6 cells. Consistent with their changes, IGF-1-induced MAPK activation and thymidine incorporation were enhanced in WT-Shc cells, whereas they were again decreased in 3F-Shc cells. It is possible that Shc and insulin receptor substrate (IRS)-1 can interact competitively, via their phosphotyrosine binding (PTB) domains, with the activated IGF-1 receptor. In this regard, IGF-1-induced tyrosine phosphorylation of IRS-1 was decreased by overexpressing both WT-Shc and 3F-Shc cells. Consistent with the decrease, IGF-1-induced IRS-1 association with the p85 subunit of PI3K and activation of PI3K and Akt were reduced in both WT-Shc and 3F-Shc cells. As a result, IGF-1-induced glycogen synthesis was also decreased in both cells. Furthermore, expression of Shc PTB domain alone inhibited IGF-1 stimulation of Akt and glycogen synthesis. These results indicate that tyrosine phosphorylation of Shc is important for IGF-1 stimulation of MAPK leading to mitogenesis and that Shc, via its PTB domain, negatively regulates IGF-1-induced glycogen synthesis by competing with IRS-1, which is not relevant to Shc tyrosine phosphorylation.  相似文献   

18.
Aurintricarboxylic acid (ATA), an endonuclease inhibitor, prevents the death of a variety of cell types in culture. Previously we have shown that ATA, similar to insulin-like growth factor I (IGF-I), protected MCF-7 cells against apoptotic death induced by the protein synthesis inhibitor cycloheximide. Here we show that ATA and a polysulfonated aromatic compound, Evans blue (EB), similar to IGF-I, promote survival and increase proliferation of MCF-7 cells in serum-free culture medium. This may suggest a common signaling pathway shared by the aromatic polyanions and IGF-I. Therefore, the ability of these aromatic compounds to activate the signal transduction pathway of IGF-I was examined. We found that ATA and EB mimicked the IGF-I effect on tyrosine phosphorylation of the IGF-I receptor (IGF-IR) and its major substrates, insulin receptor substrate-1 (IRS-1) and IRS-2; induced the association of these substrates with phosphatidylinositol 3-kinase and Grb2; and activated Akt kinase and p42/p44 mitogen-activated protein kinases. ATA and EB competed for IGF-I binding to the IGF-IR. ATA was found to be selective for the IGF-IR, whereas EB also activated the insulin receptor. Upon fractionation of commercial ATA by size exclusion chromatography, we found that fractions that enhanced the intensity of tyrosyl-phosphorylated IRS-1/IRS-2 also increased the survival of MCF-7 cells in the presence of cycloheximide, whereas fractions devoid of IRS phosphorylation activity had no survival ability. Taken together, these results suggest that the survival/proliferation-promoting effects of ATA and EB in MCF-7 cells are transduced via the IGF-IR signaling pathway.  相似文献   

19.
20.
A common alternative therapy for benign prostatic hyperplasia (BPH) is the extract from the fruit of saw palmetto (SPE). BPH is caused by nonmalignant growth of epithelial and stromal elements of the prostate. IGF action is important for prostate growth and development, and changes in the IGF system have been documented in BPH tissues. The main signaling pathways activated by the binding of IGF-I to the IGF-I receptor (IGF-IR) are the ERK arm of the MAPK cascade and the phosphoinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) cascade. We tested the hypothesis that SPE suppresses growth and induces apoptosis in the P69 prostate epithelial cell line by inhibiting IGF-I signaling. Treatment with 150 microg/ml SPE for 24 h decreased IGF-I-induced proliferation of P69 cells and induced cleavage of the enzyme poly(ADP-ribose)polymerase (PARP), an index of apoptosis. Treatment of serum-starved P69 cells with 150 microg/ml SPE for 6 h reduced IGF-I-induced phosphorylation of Akt (assessed by Western blot) and Akt activity (assessed by an Akt kinase assay). Western blot analysis showed that SPE reduced IGF-I-induced phosphorylation of the adapter protein insulin receptor substrate-1 and decreased downstream effects of Akt activation, including increased cyclin D1 levels and phosphorylation of glycogen synthase kinase-3 and p70(s6k). There was no effect on IGF-I-induced phosphorylation of MAPK, IGF-IR, or Shc. Treatment of starved cells with SPE alone induced phosphorylation the proapoptotic protein JNK. SPE treatment may relieve symptoms of BPH, in part, by inhibiting specific components of the IGF-I signaling pathway and inducing JNK activation, thus mediating antiproliferative and proapoptotic effects on prostate epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号