首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously identified immunocytochemical evidence of nitrative and oxidative injury in premyelinating oligodendrocytes in periventricular leukomalacia (PVL). Here, we tested the hypothesis that free radical injury occurs in the overlying cerebral cortex and subplate neurons in PVL. We immunostained for nitrotyrosine, malondialdehyde, and hydroxynonenal adducts and scored neuron staining density in PVL (n = 11) and non-PVL (n = 15) cases (postconceptional ages from 34 to 109 weeks). Analysis of covariance controlled for age. Mean malondialdehyde scores in PVL cases were increased over controls (p = 0.005). Hydroxynonenal scores increased with age only in PVL cases (diagnosis vs age interaction; p = 0.024). Nitrotyrosine scores were not significantly increased. In 11 PVL and 23 control cases between 20 and 183 postconceptional weeks, cells morphologically consistent with subplate and Cajal-Retzius neurons showed qualitatively increased free radical modification in PVL over control cases with statistically significant odds ratios for hydroxynonenal and nitrotyrosine in both subplate neurons and Cajal-Retzius cells. Glial fibrillary acidic protein and CD68 scores for reactive astrocytes and microglia, respectively, were not significantly increased, suggesting a minimal inflammatory response. Thus, oxidative/nitrative damage to cortical and "pioneer" neurons, although mild overall, may contribute to cortical volume loss and cognitive/behavioral impairment in survivors of prematurity.  相似文献   

2.
The cellular physiology of the primary somatosensory cortex was studied in postnatal day (P) 0 to P5 rats using whole-cell patch-clamp recordings. Visually identified Cajal-Retzius, subplate, bifurcated pyramidal, and immature, putatively migrating neurons showed resting membrane potentials between -44 and -50 mV and TTX-sensitive action potentials. Immature pyramidal neurons with the smallest surface area ( approximately 1,600 microm(2)) revealed the largest input resistance ( approximately 1.8 GOmega), and subplate cells with the largest surface area ( approximately 6,200 microm(2)) showed an input resistance of approximately 1 GOmega. Ontogenetically older Cajal-Retzius and subplate cells revealed shorter and larger action potentials compared to bifurcated and immature pyramidal neurons. Whereas Cajal-Retzius and subplate cells responded to injection of depolarizing current pulses with a repetitive nonadapting and fast spiking firing pattern, immature pyramidal neurons showed strong adaptation. Subplate cells revealed the fastest action potentials, largest sodium current amplitude (-714 pA), and highest sodium current density (-38 microA/cm(2)), enabling these cells to transmit afferent activity faithfully to postsynaptic neurons. Whereas all cell types expressed a high-voltage-activated (HVA) calcium current, none of them showed a significant low-voltage-activated calcium current. The largest peak (-25.5 microA/cm(2)) and steady-state (-7.6 microA/cm(2)) HVA calcium current density could be observed in immature presumed migrating neurons. In contrast, Cajal-Retzius and subplate neurons showed a significantly lower peak (-4.9 microA/cm(2)) and steady-state (<-3.3 microA/cm(2)) HVA calcium current density. Whereas a large HVA calcium current may promote neuronal migration of immature neurons, low intracellular calcium levels may provoke apoptosis in Cajal-Retzius and subplate cells.  相似文献   

3.
The murine subplate contains some of the earliest generated populations of neurons in the cerebral cortex, which play an important role in the maturation of cortical inhibition. Here we present multiple lines of evidence, that the subplate itself is only very sparsely populated with GABAergic neurons at postnatal day (P)8. We used three different transgenic mouse lines, each of which labels a subset of GABAergic, ganglionic eminence derived neurons. Dlx5/6-eGFP labels the most neurons in cortex (on average 11% of NEUN+ cells across all layers at P8) whereas CGE-derived Lhx6-Cre::Dlx1-Venusfl cells are the sparsest (2% of NEUN+ cells across all layers at P8). There is significant variability in the layer distribution of labeled interneurons, with Dlx5/6-eGFP and Lhx6-Cre::R26R-YFP being expressed most abundantly in Layer 5, whereas CGE-derived Lhx6-Cre::Dlx1-Venusfl cells are least abundant in that layer. All three lines label at most 3% of NEUN+ neurons in the subplate, in contrast to L5, in which up to 30% of neurons are GFP+ in Dlx5/6-eGFP. We assessed all three GABAergic populations for expression of the subplate neuron marker connective tissue growth factor (CTGF). CTGF labels up to two-thirds of NEUN+ cells in the subplate, but was never found to colocalize with labeled GABAergic neurons in any of the three transgenic strains. Despite the GABAergic neuronal population in the subplate being sparse, long-distance axonal connection tracing with carbocyanine dyes revealed that some Gad65-GFP+ subplate cells form long-range axonal projections to the internal capsule or callosum.  相似文献   

4.
The subplate zone is a transient cytoarchitectonic compartment of the fetal telencephalic wall and contains a population of subplate neurons which are the main neurons of the fetal neocortex and play a key role in normal development of cerebral cortical structure and connectivity. While the subplate zone disappears during the perinatal and early postnatal period, numerous subplate neurons survive and remain embedded in the superficial (gyral) white matter of adolescent and adult brain as so-called interstitial neurons. In both fetal and adult brain, subplate/interstitial neurons belong to two major classes of cortical cells: (a) projection (glutamatergic) neurons and (b) local circuit (GABAergic) interneurons. As interstitial neurons remain strategically positioned at the cortical/white matter interface through which various cortical afferent systems enter the deep cortical layers, they probably serve as auxiliary interneurons involved in differential “gating” of cortical input systems.It is widely accepted that prenatal lesions which alter the number of surviving subplate neurons (i.e., the number of interstitial neurons) and/or the nature of their involvement in cortical circuitry represent an important causal factor in pathogenesis of at least some types of schizophrenia - e.g., in the subgroup of patients with cognitive impairment and deficits of frontal lobe functions. The abnormal functioning of cortical circuitry in schizophrenia becomes manifest during the adolescence, when there is an increased demand for proper functioning of the prefrontal cortex.In this review, we describe developmental history of subplate zone, subplate neurons and surviving interstitial neurons, as well as presumed consequences of the increased number of GABAergic interstitial neurons in the prefrontal cortex. We propose that the increased number of GABAergic interstitial neurons leads to the increased inhibition of prefrontal cortical neurons. This inhibitory action of GABAergic interstitial neurons is facilitated by their strategic position at the cortical/white matter interface where limbic and modulatory afferent pathways enter the prefrontal cortex. Thus, enlarged population of inhibitory interstitial neurons (even if they represent a minor fraction of total neuron number, as in the cerebral cortex itself) may alter the differential “gating” of limbic and modulatory inputs (as well as other cortical and subcortical inputs) and cause a functional disconnectivity between the prefrontal and limbic cortex in the adolescent brain. In conclusion, fetal subplate neurons and surviving postnatal interstitial neurons are important modulators of cortical functions in both normal and schizophrenic cerebral cortex.  相似文献   

5.
The neurons in the cortical white matter (WM neurons) originate from the first set of postmitotic neurons that migrates from the ventricular zone. In particular, they arise in the subplate that contains the earliest cells generated in the telencephalon, prior to the appearance of neurons in gray matter cortical layers. These cortical WM neurons are very numerous during development, when they are thought to participate in transient synaptic networks, although many of these cells later die, and relatively few cells survive as WM neurons in the adult. We used light and electron microscopy to analyze the distribution and density of WM neurons in various areas of the adult human cerebral cortex. Furthermore, we examined the perisomatic innervation of these neurons and estimated the density of synapses in the white matter. Finally, we examined the distribution and neurochemical nature of interneurons that putatively innervate the somata of WM neurons. From the data obtained, we can draw three main conclusions: first, the density of WM neurons varies depending on the cortical areas; second, calretinin-immunoreactive neurons represent the major subpopulation of GABAergic WM neurons; and, third, the somata of WM neurons are surrounded by both glutamatergic and GABAergic axon terminals, although only symmetric axosomatic synapses were found. By contrast, both symmetric and asymmetric axodendritic synapses were observed in the neuropil. We discuss the possible functional implications of these findings in terms of cortical circuits.  相似文献   

6.
Immunocytochemical techniques were used to characterize the neuronal populations in the hippocampal subplate and marginal zone from embryonic day 13 (E13) to postnatal day 5 (P5). Sections were processed for the visualization of microtubule-associated protein 2 (MAP2) and other antigens such as neurotransmitters, neuropeptides, calcium-binding proteins and a synaptic antigen (Mab SMI81). At E13–E14, only the ventricular zone and the primitive plexiform layer were recognized. Some cells in the later stratum displayed MAP2-, γ-aminobutyric acid (GABA)-and calretinin immunoreactivities. From E15 onwards, the hippocampal and dentate plates became visible. Neurons in the plexiform layers were immunoreactive at E15–E16, whereas the hippocampal and dentate plates showed immunostaining two or three days later. Between E15 and E19 the following populations were distinguished in the plexiform layers: the subventricular zone displayed small neurons that reacted with MAP2 and GABA antibodies; the subplate (prospective stratum oriens) was poorly populated by MAP2- and GABA-positive cells; the inner marginal zone (future stratum radiatum) was heavily populated by multipolar GABAergic cells; the outer marginal zone (stratum lacunosum-moleculare) displayed horizontal neurons that showed glutamate- and calretinin immunoreactivities, their morphology being reminiscent of neocortical Cajal-Retzius cells. Thus, each plexiform layer was populated by a characteristic neuronal population whose distribution did not overlap. Similar segregated neuronal populations were also found in the developing dentate gyrus. At perintal stages, small numbers of neurons in the plexiform layers began to express calbindin D-28K and neuropeptides. During early postnatal stages, neurons in the subplate and inner marginal zones were transformed into resident cells of the stratum oriens and radiatum, respectively. In contrast, calretinin-positive neurons in the stratum lacunosum-moleculare disappeared at postnatal stages. At E15–E19, SMI81-immunoreactive fibers were observed in the developing white matter, subplate and outer marginal zone, which suggests that these layers are sites of early synaptogenesis. At PO-P5, SMI81 immunoreactivity became homogeneously distributed within the hippocampal layers. The present results show that neurons in the hippocampal subplate and marginal zones have a more precocious morphological and neurochemical differentiation than the neurons residing in the principal cell layers. It is suggested that these early maturing neurons may have a role in the targeting of hippocampal afferents, as subplate cells do in the developing neocortex. © 1994 Wiley-Liss, Inc.  相似文献   

7.
Protein tyrosine phosphatase zeta (PTPzeta)/RPTPbeta is a chondroitin sulfate proteoglycan predominantly expressed in the brain. In this study, we examined immunohistochemical localisation of PTPzeta in the mouse telencephalon from embryonic day 9.5 (E9.5) to E15.5. During E10.5-E12.5, immunoreactivities for PTPzeta are specifically observed on the tangentially aligned neurons at the preplate (PP) of the neocortex, as well as on the neurons at the mantle layer (ML) of the ganglionic eminences (GEs). Likewise, neurons immunoreactive for CR50, a marker for Cajal-Retzius neurons, are aligned from the ML of the ganglionic eminences to the PP of the neocortex and co-express PTPzeta. During E13.5-E15.5, PTPzeta-positive neurons are present at the subplate (SP) as well as at the marginal zone (MZ) of the neocortex. These results indicate that PTPzeta is a useful marker for early-generated neocortical neurons in mice: Cajal-Retzius neurons as well as the subplate neurons.  相似文献   

8.
Development of layer I and the subplate in the rat neocortex   总被引:9,自引:0,他引:9  
Development of layer I and the subplate of the rat neocortex was examined with [3H]thymidine autoradiography. The experimental animals used for neurogenesis were the offspring of pregnant females injected with [3H]thymidine on 2 consecutive days: Embryonic Day (E) 13-E14, E14-E15, . . . E21-E22, respectively. On Postnatal Day 5, the proportion of layer I and subplate cells originating during 24-h periods were quantified at three anteroposterior levels. Presumptive Cajal-Retzius cells (large horizontal cells) are generated mainly on E14 and subplate cells on E14 and E15 ("outside-in" gradient). Both populations are generated earlier than cells in the cortical plate, which has an "inside-out" gradient. The subplate also has a ventrolateral/older to dorsomedial/younger neurogenetic gradient. The small- to medium-sized horizontal cells in layer I have an extensive period of neurogenesis with an "outside-in" gradient. To study morphogenesis, pregnant females were given single injections of [3H]-thymidine during gestation and embryos were removed in successive 24-h intervals (sequential-survival). On E15 and E16, cells accumulate outside the neuroepithelium in the primordial plexiform layer with older presumptive Cajal-Retzius cells superficial and younger presumptive subplate cells deep. The Cajal-Retzius cells permanently settle superficially among a first system of extracellular channels that appears on E14. Before reaching their final settling sites, subplate cells form the incipient cortical plate in the ventrolateral neocortex on E16. On E17, a seocnd system of extracellular channels appears below the cortical plate. On E18 and E19, subplate cells leave the cortical plate and permanently settle among the deep extracellular channels in a separate layer.  相似文献   

9.
The subplate and marginal zone are prominent transient zones of the developing cerebral wall and contain a variety of neuropeptide Y-immunoreactive (NPY-ir) cells. This study investigates morphological maturation as well as regression and/or transformation of NPY-ir neurons in the transient compartments and the cortical plate of the human frontal cortex. The most prominent NPY-ir neuronal population is that of NPY-ir subplate neurons. They exhibited features of all subplate neuronal types reported in Golgi-impregnated sections, with the exception of the pyramidal type. The NPY-ir subplate neurons were the largest of all NPY-ir neurons, but their size regressed rather sharply between 1 month after birth and 2 years. In the NPY-ir subplate neurons and in the NPY-ir Cajal-Retzius cells of the marginal zone, signs of degeneration were observed between 36 postovulatory weeks and about 9 months after birth. Only a few subpial granular layer cells were NPY positive, and they exhibited degeneration-like features, such as cytoplasmic vacuolization, as early as 23 postovulatory weeks. However, NPY-ir neurons continued to be present in the adult counterparts of the subplate and marginal zone, i.e., gyral white matter and layer I, respectively. Across cortical layers II-VI, NPY-ir neurons had the hallmarks of all aspinous short-axon types, with the exception of the neurogliaform and the chandelier neuronal types. Some signs of degeneration were also observed among a few cortical NPY-ir neurons around birth. Unlike the NPY-ir subplate neurons, the general development of cortical NPY-ir neurons did not show an obvious decline in neuronal size and was similar to the pattern in Golgi-staining. J. Comp. Neurol. 379:523–540, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
We used a monoclonal antibody to study the immunocytochemical distribution of microtubule-associated protein 2 (MAP 2) in human fetal neocortex between the ages of 16 and 22 weeks gestation. The staining pattern was lamina-specific. Neuronal somata and dendrites in all cortical layers and in the intermediate zone were labelled. Cajal-Retzius cells of layer I, large pyramidal neurons in the inner cortical plate and neurons in the subplate were most strongly immunoreactive. Separate from the underlying cortical plate a thin sheet of small neurons in the inner marginal zone was highlighted by MAP 2 immunoreactivity. The morphologic diversity, density and regional distribution of the interstitial neurons in the subplate was emphasized by MAP 2 staining. In general, the intensity of MAP 2 immunoreactivity in cell somata and dendrites correlated with the degree of neuronal differentiation but the pattern of intracellular staining also varied as a function of laminar position, and presumably cell type.  相似文献   

11.
The connections of local circuit neurons immunoreactive for calcium-binding protein calretinin (CR-ir) were studied in area 17 of the macaque monkey visual cortex. Most CR-ir neurons were located in layers 2 and 3A. They were polymorphic and included bitufted, multipolar, pyramid-shaped neurons with smooth dendrites and Cajal-Retzius cells. The majority of CR-ir neurons were γ-aminobutyric acid (GABA)-immunopositive (approximately 90%), and comprised about 14% of the total GABAergic neuron population. The axons of CR-ir cells had local arbors within layers 1–3, but the major trunks descended to deep layers 5 and 6 where they formed dense terminal fields within narrow columns (100–150 μm). This specific innervation of layers 5 and 6 appeared as a distinct feature of area 17 as it was not seen in the adjacent area 18. CR-ir boutons (n = 168) were GABA-ir (95%) and formed symmetric synapses. In layers 1–3, the majority of postsynaptic targets (n = 64) were GABAergic local circuit neurons [postsynaptic target distribution: GABA-positive dendrites (67%) and somata (14%), and GABA-negative dendrites (13%) and spines (6%)]. In deep layers, the most synapses (80%; n = 187) were formed with pyramidal cells where they provided a basket-type innervation [postsynaptic target distribution: GABA-positive dendrites (19%) and somata (1%), and GABA-negative dendrites (50%), spines (20%) and somata (10%)]. Unlike other GABAergic neurons, which innervate mainly pyramidal neurons, the CR-ir subpopulation only has pyramids as a preferred target in the deep layers (layers 5 and 6); however, in the superficial layers of the area 17, they selectively form synapses mainly with other GABAergic cells. Thus, the CR-ir neurons appear to have a dual function of disinhibiting superficial layer neurons and inhibiting pyramidal output neurons in the deep layers. J. Comp. Neurol. 379:113-132, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Among the first postmitotic cells of the cerebral cortex is a special population located below the cortical plate: the subplate neurons. These neurons reach a high degree of morphological maturity during fetal life, well before the neurons of the cortical layers have matured, yet nearly all of these cells die after birth in the cat. Subplate neurons are also known to receive synaptic contacts. Here we have investigated whether these contacts are functional by making intracellular recordings from subplate neurons in cortical slices maintained in vitro. Subplate neurons were identified based on their location and morphology by injecting them with biocytin following the intracellular recordings. At all ages studied between embryonic day 50 and postnatal day 9, electrical stimulation of the optic radiations elicited EPSPs and synaptic and antidromic spikes in subplate neurons, indicating that some of the synapses seen at the ultrastructural level are indeed capable of synaptic transmission. The spiking patterns of 39 morphologically identified subplate neurons were examined by injecting depolarizing current, which revealed that a large majority gave only a single spike or a brief train of spikes in response to maintained depolarization, in contrast to the regular spiking pattern found in many neurons of adult cortex. Biocytin injections into subplate neurons revealed that they are a morphologically heterogeneous population with respect to their dendritic branching patterns; roughly half were inverted pyramids, the classic subplate neuron morphology. The axonal processes of subplate neurons were remarkable in that many not only arborized within the subplate, but also entered the cortical plate and terminated in the marginal zone. At early postnatal ages, these axons also gave off collaterals within cortical layer 4. The results of this study indicate that subplate neurons participate in synaptic microcircuits during development. While the presynaptic identity of the input to subplate neurons is not known conclusively, it is likely that geniculocortical axons, which wait in close proximity to subplate neurons, contribute significantly. The pattern of axonal branching of subplate neurons also implies that information conferred to subplate neurons may be relayed, in turn, to the neurons of cortical layer 4. Finally with the death of subplate neurons, the geniculocortical axons leave the subplate and invade the cortical plate to innervate directly the neurons of layer 4. Thus, subplate neurons may function as a crucial, but transient synaptic link between waiting geniculocortical axons and their ultimate target cells in the cortex.  相似文献   

13.
Mammalian cortical development is preceded by the elaboration of a transient preplate, which is split into a superficial marginal zone and a deep subplate after the arrival of the cortical plate. There has been some controversy in the evolutionary interpretation of this transient structure, as some propose it to represent the ancestral cortex or pallium of non-mammals, while others consider it to be a phylogenetic novelty. The preplate and its derivatives contain components derived by both tangential and radial migration. Tangentially migrating elements include pioneer neurons and interneurons, both of subpallial origin, and Cajal-Retzius cells, mostly of pallial origin. Pioneer neurons were probably present in the ancestors of mammals, but may have changed their original superficial position to one below the developing cortex, thus attracting thalamic afferents in the subcortical white matter, and making them penetrate the cortex radially. In mammals, Cajal-Retzius cells appear to have increased both in number and on their level of reelin expression, perhaps in the context of controlling the final stages of migration in a radially expanding neoocortex. Radial-migrating cells are partly represented by the pyramidal-like cells of the subplate. These neurons resemble the excitatory elements of the adult reptilian cortex, but is not clear whether they are their true homologues. One possibility is that these cells appeared by virtue of a heterochronic process in which the earliest radial elements of the cortical plate began to be produced at progressively earlier developmental stages. Thus, we conclude that the mammalian preplate and its derivatives contain both ancestral and derived elements, all of which have been modified in the course of mammalian evolution to support an increasingly complex cortical plate development.  相似文献   

14.
Golgi-Stensaas and rapid-Golgi staining techniques are used to study neuronal differentiation in the developing human prefrontal cortex in fetuses, premature infants, and full-term newborns from 10.5 to 40 weeks of gestation. Horizontal neurons (Cajal-Retzius neurons) above the cortical plate (in the marginal zone) and randomly oriented neurons below the cortical plate (in the primordial subplate) are more differentiated than the immature bipolar cortical plate neurons in the 10.5-week fetus. During 13.5-15 weeks of gestation the fetal subplate zone can be clearly distinguished-between the cortical plate and the intermediate zone. This subplate zone contains more mature neurons than the cortical plate, especially polymorphous neurons. The basic features of the apical and basal dendrites of pyramidal neurons develop between 17 and 25 weeks of gestation, before the thalamocortical fibres invade the cortical plate. Intensive differentiation of the subplate neurons occurs in this period, when various types of afferent fibres reside in the subplate zone. At least five neuronal types can be distinguished in the subplate, i.e., polymorphous, fusiform, multipolar, normal, and inverted pyramidal neurons. The ingrowth of afferent fibres into the cortical plate between 26 and 34 weeks of gestation coincides with intensive dendritic differentiation and the appearance of spines on dendrites of the prospective layer III and V pyramidal neurons as well as with the differentiation of the double bouquet interneurons in the prospective supragranular layers and layer IV. Multipolar nonpyramidal neurons with the dendritic features of basket neurons are observed between 32 and 34 weeks of gestation in future layer V. They are less differentiated than the double bouquet neurons. The neurons of the subplate zone continue their dendritic differentiation after 26/27 weeks of gestation and are still observed in the full-term newborn. The axonal pattern of the subplate neurons suggests a possible functional role for them as either interneurons or projection neurons.  相似文献   

15.
Reelin is an extracellular matrix glycoprotein expressed in different nerve cell populations in the developing, early postnatal and adult central nervous system. During histogenesis of the neocortex and hippocampus, reelin is present in Cajal-Retzius cells and other early neurons and contributes to correct layering of these regions. During early postnatal life, pioneer neurons disappear and reelin expression establishes in a subpopulation of cortical and hippocampal GABAergic interneurons, where it is maintained throughout adult life. We studied the developmental distribution pattern of reelin in dissociated cultures obtained from the early postnatal hippocampus to verify whether or not such a maturation phenomenon is maintained in vitro. Reelin is expressed both in Cajal-Retzius cells and multipolar and pyramidal neurons in younger cultures. The density of reelin-positive Cajal-Retzius cells dropped drastically by about 84% in 4-week-old cultures. Multipolar and pyramidal neurons containing reelin represented 12% of the total cell population in younger cultures and decreased by about 25% after 3 to 4 weeks of cultivation. Their density was significantly lower in cultures of the same age treated with glutamate receptor antagonists. These reelin-positive multipolar and pyramidal neurons were heterogeneous, including a larger amount of non-GABAergic, and 30-40% of GABAergic neurons. Cells double labeled for reelin and the GABA synthesizing enzyme glutamic acid decarboxylase represented about 4% of the total neuron population in culture and their density remained constant with age. It is thus possible that the decrease in the total reelin population may selectively be of importance to the larger non-GABAergic fraction of reelin cells. This study shows that reelin-expressing neurons are maintained in dissociated cultures of the neonatal hippocampus and their distribution and age-dependent changes in density resemble those of the early postnatal hippocampus in vivo.  相似文献   

16.
17.
18.
The cerebellar and vestibular nuclei consist of a heterogeneous group of inhibitory and excitatory neurons. A major proportion of the inhibitory neurons provides a GABAergic feedback to the inferior olive, while the excitatory neurons exert more direct effects on motor control via non-olivary structures. At present it is not clear whether Purkinje cells innervate all types of neurons in the cerebellar and vestibular nuclei or whether an individual Purkinje cell axon can innervate different types of neurons. In the present study, we studied the postsynaptic targets of Purkinje cell axons in the rat using a combination of pre-embedding immunolabelling of the Purkinje cell terminals by L7, a Purkinje cell-specific marker, and postembedding GABA and glycine immunocytochemistry. In the cerebellar nuclei, vestibular nuclei and nucleus prepositus hypoglossi Purkinje cell terminals were found apposed to GABAergic and glycinergic neurons as well as to larger non-GABAergic, non-glycinergic neurons. In the cerebellar and vestibular nuclei individual Purkinje cell terminals innervated both the inhibitory and excitatory neurons. Both types of neurons were contacted not only by GABAergic Purkinje cell terminals but also by GABA-containing terminals that were not labelled for L7 and by non-GABAergic, non-glycinergic terminals that formed excitatory synapses. Glycine-containing terminals were relatively scarce (<2% of the GABA-containing terminals) and frequently contacted the larger non-GABAergic, non-glycinergic neurons. To summarize, Purkinje cell axons evoke their effects through different types of neurons present in the cerebellar and vestibular nuclear complex. The observation that individual Purkinje cells can innervate both excitatory and inhibitory neurons suggests that the excitatory cerebellar output system and the inhibitory feedback to the inferior olive are controlled simultaneously.  相似文献   

19.
Estrogen influences brain-derived neurotrophic factor (BDNF) expression in the neocortex. However, BDNF-producing cortical neurons do not express detectable levels of nuclear estrogen receptors; instead, the most abundant cortical nuclear estrogen receptor, ER-beta, is present in GABAergic neurons, prompting us to test the hypothesis that estrogen effects on BDNF are mediated via cortical inhibitory interneurons. Adult female ovariectomized rats were provided acute estrogen replacement and the number of cortical GABA, ER-beta, and ER-beta/GABA double-labeled neurons was examined. Within 48 hours of injection of 17-beta-estradiol, the number of perirhinal neurons double-labeled for ER-beta/GABA was reduced by 28% (P<0.01 compared to vehicle-treated ovariectomized controls), and all cells expressing detectable levels of GABA were reduced by 19% (P<0.01). To investigate potential relationships between estrogen receptors, GABAergic neurons, and BDNF-expressing cells, brain sections were double- or triple-labeled for ER-beta, GABAergic, and BDNF immunomarkers. The findings indicated that ER-beta-bearing inhibitory neurons project onto other GABAergic neurons that lack nuclear estrogen receptors; these inhibitory neurons in turn innervate BDNF-expressing excitatory cells. High estrogen states reduce cortical GABA levels, presumably releasing inhibition on BDNF-expressing neurons. This identifies a putative two-step transsynaptic mechanism whereby estrogen availability modulates expression of inhibitory transmitters, resulting in increased BDNF expression.  相似文献   

20.
The early development of the cerebral cortex is characterized by neurogenesis, neuronal migration, cellular differentiation and programmed cell death. Cajal-Retzius cells, developing cortical plate neurons and subplate cells form a transient synaptic circuit which may serve as a template for the formation of cortical layers and columns. These three neuronal cell types show distinct electrophysiological properties and synaptic inputs. Endogenous or exogenous harmful disturbances during this developmental period may lead to the preservation of early cortical circuits, which may act as trigger zones for the initiation of pathophysiological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号