首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 746 毫秒
1.
Metabolic insult results in apoptosis and depletion of mature oligodendrocytes during demyelination. To examine the role of insulin-like growth factor-1 (IGF-1) during acute demyelination and remyelination in the adult CNS, we exposed transgenic mice that continuously express IGF-1 (IGF-1 tg) to cuprizone intoxication. Demyelination was observed within the corpus callosum in both wild-type and IGF-1 tg mice 3 weeks after exposure to cuprizone. Wild-type mice showed significant apoptotic mature oligodendrocytes and a dramatic loss of these cells within the lesion that resulted in near complete depletion and demyelination by week 5. In contrast, the demyelinated corpus callosum of the IGF-1 tg mice was near full recovery by week 5. This rapid recovery was apparently caused by survival of the mature oligodendrocyte population because apoptosis was negligible, and by week 4, the mature oligodendrocyte population was completely restored. Furthermore, despite demyelination in both wild-type and IGF-1 tg mice, oligodendrocyte progenitors accumulated only in the absence of mature oligodendrocytes and failed to accumulate if the mature oligodendrocytes remained as demonstrated in the IGF-1 tg mice. These results suggest that IGF-1 may be important in preventing the depletion of mature oligodendrocytes in vivo and thus facilitates an early recovery from demyelination.  相似文献   

2.
In multiple sclerosis, remyelination becomes limited after repeated or prolonged episodes of demyelination. To test the effect of platelet-derived growth factor-A (PDGF-A) in recovery from chronic demyelination we induced corpus callosum demyelination using cuprizone treatment in hPDGF-A transgenic (tg) mice with the human PDGF-A gene under control of an astrocyte-specific promoter. After chronic demyelination and removal of cuprizone from the diet, remyelination and oligodendrocyte density improved significantly in hPDGF-A tg mice compared with wild-type mice. In hPDGF-A tg mice, oligodendrocyte progenitor density and proliferation values were increased in the corpus callosum during acute demyelination but not during chronic demyelination or the subsequent recovery period, compared with hPDGF-A tg mice without cuprizone or to treatment-matched wild-type mice. Proliferation within the subventricular zone and subcallosal zone was elevated throughout cuprizone treatment but was not different between hPDGF-A tg and wild-type mice. Importantly, hPDGF-A tg mice had reduced apoptosis in the corpus callosum during the recovery period after chronic demyelination. Therefore, PDGF-A may support oligodendrocyte generation and survival to promote remyelination of chronic lesions. Furthermore, preventing oligodendrocyte apoptosis may be important not only during active demyelination but also for supporting the generation of new oligodendrocytes to remyelinate chronic lesions.  相似文献   

3.
Estrogen exerts neuroprotective and promyelinating actions. The therapeutic effect has been shown in animal models of multiple sclerosis, in which the myelin sheath is specifically destroyed in the central nervous system. However, it remains unproven whether estrogen is directly involved in remyelination via the myelin producing cells, oligodendrocytes, or which estrogen receptors are involved. In this study, we found that the membrane‐associated estrogen receptor, the G protein‐coupled receptor 30 (GPR30), also known as GPER, was expressed in oligodendrocytes in rat spinal cord and corpus callosum. Moreover, GPR30 was expressed throughout oligodendrocyte differentiation and promyelinating stages in primary oligodendrocyte cultures derived from rat spinal cords and brains. To evaluate the role of signaling via GPR30 in promyelination, a specific agonist for GPR30, G1, was administered to a rat model of demyelination induced by cuprizone treatment. Histological examination of the corpus callosum with oligodendrocyte differentiation stage‐specific markers showed that G1 enhanced oligodendrocyte maturation in corpus callosum of cuprizone‐treated animals. It also enhanced oligodendrocyte ensheathment of dorsal root ganglion (DRG) neurons in co‐culture and myelination in cuprizone‐treated animals. This study is the first evidence that GPR30 signaling promotes remyelination by oligodendrocytes after demyelination. GPR30 ligands may provide a novel therapy for the treatment of multiple sclerosis. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Precursor cells have the capacity to repopulate the demyelinated brain, but the molecular mechanisms that facilitate their recruitment are largely unknown. The low-affinity neurotrophin receptor, p75(NTR), may be one of these regulators; however, its expression profile by oligodendroglia within the multiple sclerosis (MS) brain remains uncertain. We therefore assessed the expression profile of this receptor within 8 MS and 4 control brains. We found no evidence of expression of p75(NTR) by mature oligodendrocytes. Instead, we demonstrated the presence of p75(NTR) on a subgroup of NG2-positive oligodendroglial progenitors in a periventricular plaque in one MS sample. Notably, p75(NTR)-expressing cells were also detected within the subventricular zone (SVZ) of this brain, adjacent to the periventricular plaque. In animals with experimental demyelination we observed similar patterns of p75(NTR) expression, initially confined to precursor cells within the SVZ, followed at later stages in the disease course by its expression amongst a subset of oligodendroglial progenitors within the corpus callosum. These data suggest that a population of precursor cells within the SVZ can be induced to express p75(NTR) and to subsequently assume an oligodendroglial progenitor phenotype in response to demyelination in the adjacent white matter.  相似文献   

5.
Oligodendroglial cell death is a frequent phenomenon of many neurological diseases, e.g. in demyelinating diseases such as multiple sclerosis (MS). The underlying mechanisms are largely unknown. Here, we demonstrate that in the toxic demyelination cuprizone model, oligodendroglial cell death and downregulation of myelin genes start days after initiation of the cuprizone diet and weeks before demyelination is obvious. In early – but not in later – stages, dying oligodendrocytes express activated caspase 3, suggesting a switch from classical apoptotic pathways to caspase 3-independent mechanisms during the course of the cuprizone diet. The expression level of FAS in the corpus callosum, a cell death receptor crucial for oligodendroglial cell death in experimental autoimmune encephalomyelitis (EAE), correlates with the expression of activated caspase 3 in oligodendrocytes. However, mice lacking FAS in oligodendrocytes are not protected against cuprizone-induced oligodendroglial cell death, showing that FAS is dispensable for oligodendroglial cell death in the cuprizone model.  相似文献   

6.
Briggs DT  Martin CB  Ingersoll SA  Barnum SR  Martin BK 《Glia》2007,55(14):1405-1415
Complement has been implicated as a potential effector mechanism in neurodegeneration; yet the precise role of complement in this process remains elusive. In this report, we have utilized the cuprizone model of demyelination-remyelination to examine the contribution of complement to disease. C1q deposition was observed in the corpus callosum of C57BL/6 mice during demyelination, suggesting complement activation by apoptotic oligodendrocyte debris. Simultaneously, these mice lost expression of the rodent complement regulatory protein, Crry. A soluble CNS-specific form of the Crry protein (sCrry) expressed in a transgenic mouse under the control of an astrocyte-specific promoter was induced in the corpus callosum during cuprizone treatment. Expression of this protein completely protected the mice from demyelination. Interestingly, sCrry mice had low levels of demyelination at later times when control mice were remyelinating. Although the sCrry transgenic mice had lower levels of demyelination, there was no decrease in overall cellularity, however there were decreased numbers of microglia in the sCrry mice relative to controls. Strikingly, sCrry mice had early recovery of mature oligodendrocytes, although they later disappeared. TUNEL staining suggested that production of the sCrry protein in the transgenic mice protected from a late apoptosis event at 3 weeks of cuprizone treatment. Our data suggest complement provides some protection of mature oligodendrocytes during cuprizone treatment but may be critical for subsequent remyelination events. These data suggest that temporal restriction of complement inhibition may be required in some disease settings.  相似文献   

7.
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. Interleukin (IL)−6 is a pleiotropic cytokine with a potential role in MS. Here we used transgenic mice with astrocyte‐targeted production of IL‐6 (GFAP‐IL6Tg) to study the effect of IL‐6 in the cuprizone‐induced demyelination paradigm, which is an experimental model of de‐ and re‐myelination, both hallmarks of MS. Our results demonstrated that cuprizone‐treated GFAP‐IL6Tg mice showed a significant reduction in astroglial and especially microglial activation/accumulation in the corpus callosum in comparison with the corresponding cuprizone‐treated wild type (WT). Production of a key microglial attracting chemokine CXCL10, as well as CXCL1 and CCL4 was lower in cuprizone‐treated GFAP‐IL6Tg mice compared with cuprizone‐treated WT. Reduced microglial cell accumulation was associated with inefficient removal of degraded myelin and axonal protection in cuprizone‐treated GFAP‐IL6Tg mice, compared with WT mice at the peak of demyelination. In addition, transgenic production of IL‐6 did not alter initial oligodendrocyte (OL) apoptosis and oligodendrocyte precursor cell recruitment to the lesion site, but it impaired early OL differentiation, possibly due to impaired removal of degraded myelin. Indeed, a microglial receptor involved in myelin phagocytosis, TREM2, as well as the phagolysosomal protein CD68 were lower in cuprizone‐treated GFAP‐IL6Tg compared with WT mice. Our results show for the first time that astrocyte‐targeted production of IL‐6 may play a role in modulating experimental demyelination induced by cuprizone. Further understanding of the IL‐6‐mediated molecular mechanisms involved in the regulation of demyelination is needed, and may have implications for the development of future therapeutic strategies for the treatment of MS. GLIA 2016;64:2104–2119  相似文献   

8.
We have documented changes in the oligodendrocyte population during demyelinating insult to the adult CNS. Feeding of cuprizone to adult mice led to apoptotic death of mature oligodendrocytes followed by profound demyelination of the corpus callosum. A regenerative response was initiated even during active demyelination. Oligodendrocyte progenitors have begun to proliferate and then accumulate within the lesion. Many of these cells may have migrated from the sub-ventricular zone and fornix before their accumulation in the demyelinating corpus callosum. The accumulation of differentiating oligodendrocyte progenitors was followed closely by the reappearance of mature oligodendrocytes and remyelination. Interestingly, an increase in IGF-1 mRNA was detected at Week 3 through Week 7, suggesting potential involvement in remyelination. Other factors, however, such as PDGF, NT3, FGF, jagged, and notch remained unchanged. These results suggest that the mature oligodendroglial population depleted by apoptosis is replaced by a newly formed oligodendroglial population derived from progenitors; these accumulate and seem to differentiate during remyelination.  相似文献   

9.
The regeneration of oligodendrocytes is a crucial step in recovery from demyelination, as surviving oligodendrocytes exhibit limited structural plasticity and rarely form additional myelin sheaths. New oligodendrocytes arise through the differentiation of platelet‐derived growth factor receptor α (PDGFRα) expressing oligodendrocyte progenitor cells (OPCs) that are widely distributed throughout the CNS. Although there has been detailed investigation of the behavior of these progenitors in white matter, recent studies suggest that disease burden in multiple sclerosis (MS) is more strongly correlated with gray matter atrophy. The timing and efficiency of remyelination in gray matter is distinct from white matter, but the dynamics of OPCs that contribute to these differences have not been defined. Here, we used in vivo genetic fate tracing to determine the behavior of OPCs in gray and white matter regions in response to cuprizone‐induced demyelination. Our studies indicate that the temporal dynamics of OPC differentiation varies significantly between white and gray matter. While OPCs rapidly repopulate the corpus callosum and mature into CC1 expressing mature oligodendrocytes, OPC differentiation in the cingulate cortex and hippocampus occurs much more slowly, resulting in a delay in remyelination relative to the corpus callosum. The protracted maturation of OPCs in gray matter may contribute to greater axonal pathology and disease burden in MS.  相似文献   

10.
The cuprizone model is a suitable animal model of de- and remyelination secondary to toxin-induced oligodendrogliopathy. From a pharmaceutical point of view, the cuprizone model is a valuable tool to study the potency of compounds which interfere with toxin-induced oligodendrocyte cell death or boost/inhibit remyelinating pathways and processes. The aim of this study was to analyze the vulnerability of neighboring white mater tracts (i.e., the fornix and cingulum) next to the midline of the corpus callosum which is the region of interest of most studies using this model. Male mice were fed cuprizone for various time periods. Different white matter areas were analyzed for myelin (anti-PLP), microglia (anti-IBA1), and astrocyte (anti-GFAP) responses by means of immunohistochemistry. Furthermore, Luxol fast blue–periodic acid Schiff stains were performed to validate loss of myelin-reactive fibers in the different regions. Cuprizone induced profound demyelination of the midline of the corpus callosum and medial parts of the cingulum that was paralleled by a significant astrocyte and microglia response. In contrast, lateral parts of the corpus callosum and the cingulum, as well as the fornix region which is just beneath the midline of the corpus callosum appeared to be resistant to cuprizone exposure. Furthermore, resistant areas displayed reduced astrogliosis and microgliosis. This study clearly demonstrates that neighboring white matter tracts display distinct vulnerability to toxin-induced demyelination. This important finding has direct relevance for evaluation strategies in this frequently used animal model for multiple sclerosis.  相似文献   

11.
Leukemia inhibitory factor (LIF) receptor signaling limits the severity of inflammatory demyelination in experimental autoimmune encephalomyelitis, a T-cell dependent animal model of multiple sclerosis (MS) [Butzkueven et al. (2002) Nat Med 8:613-619]. To identify whether LIF exerts direct effects within the central nervous system to limit demyelination, we have studied the influence of LIF upon the phenotype of mice challenged with cuprizone, a copper chelator, which produces a toxic oligodendrocytopathy. We find that exogenously administered LIF limits cuprizone-induced demyelination. Knockout mice deficient in LIF exhibit both potentiated demyelination and oligodendrocyte loss after cuprizone challenge, an effect that is ameliorated by exogenous LIF, arguing for a direct beneficial effect of endogenous LIF receptor signaling. Numbers of oligodendrocyte progenitor cells in cuprizone-challenged mice are not influenced by either exogenous LIF or LIF deficiency, arguing for effects directed to the differentiated oligodendrocyte. Studies on the influence of LIF upon remyelination after cuprizone challenge fail to reveal any significant effect of exogenous LIF. The LIF-knockout mice do, however, display impaired remyelination, although oligodendrocyte replenishment, previously identified to occur from the progenitor pool, is not significantly compromised. Thus endogenous LIF receptor signaling is not only protective of oligodendrocytes but can also enhance remyelination, and exogenous LIF has therapeutic potential in limiting the consequences of oligodendrocyte damage.  相似文献   

12.
Remyelination is a potent regenerative process in demyelinating diseases, such as multiple sclerosis, the effective therapeutic promotion of which will fill an unmet clinical need. The development of proregenerative therapies requires the identification of key regulatory targets that are likely to be involved in the integration of multiple signaling mechanisms. Fibroblast growth factor (FGF) signaling system, which comprises multiple ligands and receptors, potentially provides one such target. Since the FGF/FGF receptor (FGFR) interactions are complex and regulate multiple diverse functions of oligodendrocyte lineage cells, it is difficult to predict their overall therapeutic potential in the regeneration of oligodendrocytes and myelin. Therefore, to assess the integrated effects of FGFR signaling on this process, we simultaneously inactivated both FGFR1 and FGFR2 in oligodendrocytes and their precursors using two Cre‐driver mouse lines. Acute and chronic cuprizone‐induced or lysolecithin‐induced demyelination was established in Fgfr1/Fgfr2 double knockout mice (dKO). We found that in the acute cuprizone model, there was normal differentiation of oligodendrocytes and recovery of myelin in the corpus callosum of both control and dKO mice. Similarly, in the spinal cord, lysolecithin‐induced demyelinated lesions regenerated similarly in the dKO and control mice. In contrast, in the chronic cuprizone model, fewer differentiated oligodendrocytes and less efficient myelin recovery were observed in the dKO compared to control mice. These data suggest that while cell‐autonomous FGF signaling is redundant during recovery of acute demyelinated lesions, it facilitates regenerative processes in chronic demyelination. Thus, FGF‐based therapies have potential value in stimulating oligodendrocyte and myelin regeneration in late‐stage disease. GLIA 2015;63:1714–1728  相似文献   

13.
14.
Multiple sclerosis (MS) is characterized by multifocal loss of myelin, oligodendrocytes, and axons. Potential MS therapies include enhancement of remyelination by transplantation or manipulation of endogenous oligodendrocyte progenitor cells. Characteristics of endogenous oligodendrocyte progenitors in normal human brain and in MS lesions have not been studied extensively. This report describes the distribution of cells in sections from normal adult human brain and MS lesions by using antibodies directed against NG2, an integral membrane chondroitin sulfate proteoglycan expressed by oligodendrocyte progenitor cells. Stellate-shaped NG2-positive cells were detected in the white and gray matter of normal adult human brain and appeared as abundant as, but distinct from, astrocytes, oligodendrocytes, and microglia. Stellate-shaped or elongated NG2-positive cells also were detected in chronic MS lesions. A subpopulation of the elongated NG2-positive cells expressed the putative apoptotic signaling molecule p75(NTR). TUNEL-positive cells in three active, nine chronic active, and four chronic inactive lesions, however, were p75(NTR)-negative. These studies identify cells with phenotypic markers of endogenous oligodendrocyte progenitors in the mature human CNS and suggest that functional subpopulations of NG2-positive cells exist in MS lesions. Endogenous oligodendrocyte progenitor cells may represent a viable target for future therapies intended to enhance remyelination in MS patients.  相似文献   

15.
16.
17.
Recent evidence suggests that the oral drug Fingolimod (FTY720) for relapsing‐remitting multiple sclerosis (MS) may act directly on the central nervous system (CNS) and modulate disease pathogenesis and progression in experimental models of MS. However, the specific subtype of sphingosine‐1‐phosphate (S1P) receptors that mediates the effect of FTY720 on the CNS cells has not been fully elucidated. Here, we report that S1P receptor 1 (S1PR1) is elevated in reactive astrocytes in an autoimmunity independent mouse model of MS and that selective S1PR1 modulation is sufficient to ameliorate the loss of oligodendrocytes and demyelination. The non‐selective S1PR modulator, FTY720, or a short‐lived S1PR1‐specific modulator, CYM5442, was administered daily to mice while on cuprizone diet. Both FTY720‐ and CYM5422‐treated mice displayed a significant reduction in oligodendrocyte apoptosis and astrocyte and microglial activation in comparison to vehicle‐treated groups, which was associated with decreased production of proinflammatory mediators and down‐regulation of astrocytic S1PR1 protein. Interestingly, S1PR1 modulation during the early phase of cuprizone intoxication was required to suppress oligodendrocyte death and consequent demyelination as drug treatment from 10 days after the initiation of cuprizone feeding was no longer effective. CYM5442 treatment during the brief cuprizone exposure significantly prevented Il‐1β, Il‐6, Cxcl10, and Cxcl3 induction, resulting in suppression of subsequent reactive gliosis and demyelination. Our study identifies functional antagonism of S1PR1 as a major mechanism for the protective effect of FTY720 in the cuprizone model and suggests pathogenic contributions of astrocyte S1PR1 signaling in primary demyelination and its potential as a therapeutic target for CNS inflammation.  相似文献   

18.
We examined the phenotypic composition of cells and the underlying mechanisms of demyelination following injection of lipopolysaccharide (LPS) into the corpus callosum of rats. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed fragmented DNA, which co‐localized with oligodendrocytes in areas of demyelination following intracerebral injection with LPS. Immunostaining showed the presence of caspase 3 in cells which expressed the oligodendrocyte markers, suggesting activation of the apoptotic pathway. Commensurate reduction in glial fibrillary acid protein (GFAP)+/ gap junction protein connexin43+ (Cx43) cells, was also seen in the corpus callosum prior to histochemical evidence of demyelination. Expression of mRNA for proinflammatory cytokines was maximal 3 day postinjection, at a time when the numbers of TUNEL positive cells in the corpus callosum were declining and the total number of CD68+ cells peaked at day 14 postinjection. Our studies suggest that death of oligodendrocytes is an early event in LPS model of demyelination. We believe that the innate immune model of oligodendrocyte death will be useful in the development of neuroprotective agents capable of rescuing oligodendrocytes from apoptosis. GLIA 2013;61:1261–1273  相似文献   

19.
Corticosteroids (CS) are effective in the treatment of many brain disorders, such as multiple sclerosis (MS) or traumatic brain injury. This has been scrutinised in different experimental animal models. However, neither the mechanisms, nor the site of CS action are fully understood. Short-term high-dose CS treatment improves MS symptoms and severity of clinical disability during an acute inflammatory exacerbation of disease. In the present study, we analysed the influence of CS on the expression of cellular and molecular markers of spontaneous endogenous remyelination in the toxic non-immune cuprizone animal model at early (9 days) and intermediate (21 days) remyelination, as well as steroidal effects in primary astrocytes and oligodendrocyte progenitor cultures. Dexamethasone (Dex) and methylprednisolone (MP) induced a higher expression of the differentiation markers myelin basic protein and proteolipid protein (PLP) in cultured oligodendrocyte progenitor cells (OPC). CS exposure of primary cultured astrocytes resulted in a greater expression of those genes involved in OPC proliferation [fibroblast growth factor 2 (FGF2) and platelet-derived growth factor (PDGF)-αα] and a reduced expression of the pro-maturation factor insulin-like growth factor 1. Pro-maturating effects of CS were completely blocked by FGF2 and PDGF-αα co-application in OPC cultures. MP treatment in vivo resulted in a reduced recovery of PLP-staining intensity, whereas the re-population of the demyelinated corpus callosum with adenomatous polyposis coli-expressing oligodendrocytes was not affected. The numbers of brain intrinsic inflammatory cells, microglia and astrocytes during remyelination were similar in placebo and MP-treated animals. Our findings suggest that treatment with CS might have, in addition to the well-known benefical effects on inflammatory processes, a negative influence on remyelination.  相似文献   

20.
The ontogeny of oligodendrocytes in the myelin deficient (md) rat mutant and in control rats was explored immunohistochemically using an antiserum against the oligodendrocyte specific enzyme, glycerol phosphate dehydrogenase (GPDH), and the avidin-biotin complex technique. In control rats, GPDH was demonstrated to be expressed relatively early in oligodendrocyte differentiation, prior to either myelin basic protein or proteolipid protein expression. With development, oligodendrocytes containing GPDH increased in number, apparent staining intensity, cell soma area and process elaboration. Fewer GPDH+oligodendrocytes were observed in the brain of mutant rats than in unaffected littermates at all developmental ages, and major developmental increases in oligodendrocyte density were delayed. The density of GPDH+oligodendrocytes was reduced by about 40% in both the corpus callosum and in the cingulate cortex of P22-25 and mutants compared with control rats. The oligodendrocyte cell soma area was not influenced by the md condition, and increased 2-fold with development in rats of both genotypes. The area of coronal sections occupied by the corpus callosum increased about 2.5-fold with development, and was 30% smaller in mutant rats late in their lifespan than in unaffected littermates. The reductions in oligodendrocyte density reported here are of insufficient magnitude to fully account for biochemically measured reductions in oligodendrocyte gene expression accompanying the md trait, indicating that gene expression per oligodendrocyte is also impaired. Cell counts in control rats also revealed that oligodendrocytes are overproduced during development. Cell density and the total number of corpus callosum GPDH+oligodendrocytes per section were maximal at P22-25 and then decreased to adult values. These results suggest that glial cells, like neurons, may be generated in excessive numbers, and some subsequently die, as a normal concomitant of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号