首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spindle checkpoint prevents anaphase onset until completion of mitotic spindle assembly by restraining activation of the ubiquitin ligase anaphase-promoting complex/cyclosome-Cdc20 (APC/CCdc20). We show that the spindle checkpoint requires mitotic cyclin-dependent kinase (cdk) activity. Inhibiting cdk activity overrides checkpoint-dependent arrest in Xenopus egg extracts and human cells. Following inhibition, the interaction between APC/C and Cdc20 transiently increases while the inhibitory checkpoint protein Mad2 dissociates from Cdc20. Cdk inhibition also overcomes Mad2-induced mitotic arrest. In addition, in vitro cdk1-phosphorylated Cdc20 interacts with Mad2 rather than APC/ C. Thus, cdk activity is required to restrain APC/CCdc20 activation until completion of spindle assembly.  相似文献   

2.
Inappropriate attachment/tension between chromosomal kinetochores and the kinetochore microtubules activates the spindle assembly checkpoint, which delays anaphase by blocking the ubiquitin-mediated degradation of securin/Pds1p by APCCdc20. The checkpoint proteins Mad2 and Mad3/BubR1 bind to Cdc20, although how they inhibit APCCdc20 is unclear. We investigated the roles of two evolutionarily conserved KEN boxes and a D box within Mad3/BubR1. Although such motifs usually mediate APC-substrate recognition and ubiquitination, they have no apparent role in Mad3p turnover in Saccharomyces cerevisiae. Instead, these motifs are important for Mad3p function in the checkpoint and for binding to Cdc20p. We show that the Mad3p D box and KEN boxes function together to mediate Cdc20p-Mad3p interaction and that Mad3p and an anaphase-promoting complex (APC) substrate, Hsl1p, compete for Cdc20p binding in a D-box- and KEN-box-dependent manner. In vivo, we observed an increased binding of Cdc20p to Mad3p and decreased binding to Hsl1p upon checkpoint activation. Furthermore, we demonstrate that Mad2p stimulates the association between Mad3p and Cdc20p and that this stimulated binding requires KEN box 1 within Mad3p. These findings implicate Mad3p as a pseudosubstrate inhibitor of APCCdc20, competing with APC substrates for Cdc20p binding. We present a model aimed at unifying previous analyses of checkpoint function by focusing on the Mad3-Cdc20 interaction.  相似文献   

3.
The anaphase-promoting complex/cyclosome (APC) ubiquitin ligase is activated by Cdc20 and Cdh1 and inhibited by Mad2 and the spindle assembly checkpoint complex, Mad2B, and the early mitotic inhibitor Emi1. Mad2 inhibits APC(Cdc20), whereas Mad2B preferentially inhibits APC(Cdh1). We have examined the mechanism of APC inhibition by Emi1 and find that unlike Mad2 proteins, Emi1 binds and inhibits both APC(Cdh1) and APC(Cdc20). Also unlike Mad2, Emi1 stabilizes cyclin A in the embryo and requires zinc for its APC inhibitory activity. We find that Emi1 binds the substrate-binding region of Cdc20 and prevents substrate binding to the APC, illustrating a novel mechanism of APC inhibition.  相似文献   

4.
In mitosis, the duplicated chromosomes are separated and equally distributed to progeny cells under the guidance of the spindle, a dynamic microtubule network. Previous studies revealed a mitotic checkpoint that prevents segregation of the chromosomes until all of the chromosomes are properly attached to microtubules through the kinetochores. A variety of kinetochore-localized proteins, including Mad2 and Cdc20, have been implicated in controlling the mitotic checkpoint. Here we report that both Mad2 and Cdc20 can physically associate with Nek2, a serine/threonine kinase implicated in centrosome functions. We show that, similar to Nek2, the endogenous Cdc20 protein can be detected in the centrosome and the spindle poles. Both Cdc20 and Mad2 can be phosphorylated by Nek2. Moreover, our studies demonstrate that overexpression of Nek2 enhances the ability of Mad2 to induce a delay in mitosis. These observations indicate that Nek2 may act upon the Mad2-Cdc20 protein complex and play a critical role in regulating the mitotic checkpoint protein complex. We propose that overexpression of Nek2 may promote aneuploidy by disrupting the control of the mitotic checkpoint.  相似文献   

5.
The mitotic arrest-deficient protein Mad1 forms a complex with Mad2, which is required for imposing mitotic arrest on cells in which the spindle assembly is perturbed. By mass spectrometry of affinity-purified Mad2-associated factors, we identified the translocated promoter region (Tpr), a component of the nuclear pore complex (NPC), as a novel Mad2-interacting protein. Tpr directly binds to Mad1 and Mad2. Depletion of Tpr in HeLa cells disrupts the NPC localization of Mad1 and Mad2 during interphase and decreases the levels of Mad1-bound Mad2. Furthermore, depletion of Tpr decreases the levels of Mad1 at kinetochores during prometaphase, correlating with the inability of Mad1 to activate Mad2, which is required for inhibiting APCCdc20. These findings reveal an important role for Tpr in which Mad1–Mad2 proteins are regulated during the cell cycle and mitotic spindle checkpoint signaling.  相似文献   

6.
p55Cdc/Cdc20 is expressed in cycling mammalian cells and has been shown to be an activator of the mitotic spindle assembly checkpoint. We previously showed that overexpression of p55Cdc/Cdc20 in myeloid cells resulted in accelerated apoptosis and inhibition of granulocyte differentiation in the murine myeloid cell line 32Dcl3. p55Cdc/Cdc20 protein expression is detected in cells at late G1 phase of the cell cycle but is maximal during G2 phase. We report in this paper that inducible expression of p55Cdc/Cdc20 in 32Dcl3 cells results in premature transition from G1 to S phase. To characterize the mechanism of this early transition, we examined the expression of critical regulatory proteins during the cell cycle. Although expression of cyclin D, cyclin E, cdk2, and cdc2 did not change significantly between p55Cdc/Cdc20-overexpressing and control cells, p27Kip1 protein levels were lower and cdk2 activity higher during G1 to S transition in p55Cdc/Cdc20-overexpressing cells compared to control cells. Cyclin B1 levels were lower at early G1 phase in cells overexpressing p55Cdc/Cdc20. Our results suggest that p55Cdc/Cdc20 may play an important role in G1 to S transition during myelopoiesis.  相似文献   

7.
Exit from mitosis requires the degradation of regulatory proteins including the mitotic cyclins and securin through ubiquitination by the anaphase promoting complex (APC) bound to Cdc20 or Cdh1. Cdc20-APC is regulated through inhibition by the spindle assembly checkpoint protein MAD2. Knowledge of Cdh1-APC regulation is limited to the phosphorylation-dependent dissociation of Cdh1 from APC. We report a novel means of regulating Cdh1 by the MAD2-related gene, MAD2L2. MAD2L2 specifically binds and inhibits Cdh1-APC, paralleling the effect of MAD2 on Cdc20. We suggest that MAD2L2 and MAD2 inhibit the release of substrates from APC and propose a mechanism of inhibition.  相似文献   

8.
Wang H  Liu D  Wang Y  Qin J  Elledge SJ 《Genes & development》2001,15(11):1361-1372
In Saccharomyces cerevisiae, Pds1 is an anaphase inhibitor and plays an essential role in DNA damage and spindle checkpoint pathways. Pds1 is phosphorylated in response to DNA damage but not spindle disruption, indicating distinct mechanisms delaying anaphase entry. Phosphorylation of Pds1 is Mec1 and Chk1 dependent in vivo. Here, we show that Pds1 is phosphorylated at multiple sites in vivo in response to DNA damage by Chk1. Mutation of the Chk1 phosphorylation sites on Pds1 abolished most of its DNA damage-inducible phosphorylation and its checkpoint function, whereas its anaphase inhibitor functions and spindle checkpoint functions remain intact. Loss of Pds1 phosphorylation correlates with APC-dependent Pds1 destruction in response to DNA damage. We also show that APC(Cdc20) is active in preanaphase arrested cells after DNA damage. This suggests that Pds1 is stabilized by phosphorylation in response to DNA damage, but APC(Cdc20) activity is not altered. Our results indicate that phosphorylation of Pds1 by Chk1 is the key function of Chk1 required to prevent anaphase entry.  相似文献   

9.
The spindle checkpoint delays anaphase onset until all chromosomes are correctly attached to microtubules. Ipl1 protein kinase (Aurora B) is required to correct inappropriate kinetochore-microtubule attachments and for the response to lack of tension between sister kinetochores. Here we identify residues in the checkpoint protein Mad3p that are phosphorylated by Ipl1p. When phosphorylation of Mad3p at two sites is prevented, the cell's response to reduced kinetochore tension is dramatically curtailed. Our data provide strong evidence for a distinct checkpoint pathway responding to lack of sister kinetochore tension, in which Ipl1p-dependent phosphorylation of Mad3p is a key step.  相似文献   

10.
The spindle checkpoint is a conserved signaling pathway that ensures genomic integrity by preventing cell division when chromosomes are not correctly attached to the spindle. Checkpoint activation depends on the hierarchical recruitment of checkpoint proteins to generate a catalytic platform at the kinetochore. Although Mad1 kinetochore localization is the key regulatory downstream event in this cascade, its receptor and mechanism of recruitment have not been conclusively identified. Here, we demonstrate that Mad1 kinetochore association in budding yeast is mediated by phosphorylation of a region within the Bub1 checkpoint protein by the conserved protein kinase Mps1. Tethering this region of Bub1 to kinetochores bypasses the checkpoint requirement for Mps1-mediated kinetochore recruitment of upstream checkpoint proteins. The Mad1 interaction with Bub1 and kinetochores can be reconstituted in the presence of Mps1 and Mad2. Together, this work reveals a critical mechanism that determines kinetochore activation of the spindle checkpoint.  相似文献   

11.
The precise order of molecular events during cell cycle progression depends upon ubiquitin-mediated proteolysis of cell cycle regulators. We demonstrated previously that Hsl1p, a protein kinase that inhibits the Swe1p protein kinase in a bud morphogenesis checkpoint, is targeted for ubiquitin-mediated turnover by the anaphase-promoting complex (APC). Here, we investigate regions of Hsl1p that are critical both for binding to the APC machinery and for APC-mediated degradation. We demonstrate that Hsl1p contains both a destruction box (D box) and a KEN box motif that are necessary for Hsl1p turnover with either APC(Cdc20) or APC(Cdh1). In coimmunoprecipitation studies, the D box of full-length Hsl1p was critical for association with Cdc20p, whereas the KEN box was important for association with Cdh1p. Fusion of a 206-amino-acid fragment of Hsl1p containing these motifs to a heterologous protein resulted in APC-dependent degradation of the fusion protein that required intact D box and KEN box motifs. Finally, this bacterially expressed Hsl1p fusion protein interacted with Cdc20p and Cdh1p either translated in vitro or expressed in and purified from insect cells. Binding to Cdc20p and Cdh1p was disrupted completely by a D box/KEN box double mutant. These results indicate that D box and KEN box motifs are important for direct binding to the APC machinery, leading to ubiquitination and subsequent protein degradation.  相似文献   

12.
In mitosis, the spindle checkpoint protein Mad2 averts aneuploidy by delaying anaphase onset until chromosomes align. Here we show that depletion of Mad2 in meiosis I mouse oocytes induced an increased incidence of aneuploidy. Proteolysis of cyclin B and securin commenced earlier in Mad2-depleted oocytes, resulting in a shortened duration of meiosis I. Furthermore, overexpression of Mad2 inhibited homolog disjunction. We conclude that Mad2 delays the onset of cyclin B and securin degradation and averts aneuploidy during meiosis I in mammalian oocytes. The data suggest a link between trisomies such as Down syndrome and defective oocyte spindle checkpoint function.  相似文献   

13.
Adeno-associated virus (AAV) type 2 or UV-inactivated AAV (UV-AAV2) infection provokes a DNA damage response that leads to cell cycle arrest at the G2/M border. p53-deficient cells cannot sustain the G2 arrest, enter prolonged impaired mitosis, and die. Here, we studied how non-replicating AAV2 kills p53-deficient osteosarcoma cells. We found that the virus uncouples centriole duplication from the cell cycle, inducing centrosome overamplification that is dependent on Chk1, ATR and CDK kinases, and on G2 arrest. Interference with spindle checkpoint components Mad2 and BubR1 revealed unexpectedly that mitotic catastrophe occurs independently of spindle checkpoint function. We conclude that, in the p53-deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. As AAV2 acts through cellular damage response pathways, the results provide information on the role of Chk1 in mitotic catastrophe after DNA damage signaling in general.  相似文献   

14.
Cdc7 kinase regulates DNA replication. However, its role in DNA repair and recombination is poorly understood. Here we describe a pathway that stabilizes the human Cdc7–ASK (activator of S-phase kinase; also called Dbf4), its regulation, and its function in cellular responses to compromised DNA replication. Stalled DNA replication evoked stabilization of the Cdc7–ASK (Dbf4) complex in a manner dependent on ATR–Chk1-mediated checkpoint signaling and its interplay with the anaphase-promoting complex/cyclosomeCdh1 (APC/CCdh1) ubiquitin ligase. Mechanistically, Chk1 kinase inactivates APC/CCdh1 through degradation of Cdh1 upon replication block, thereby stabilizing APC/CCdh1 substrates, including Cdc7–ASK (Dbf4). Furthermore, motif C of ASK (Dbf4) interacts with the N-terminal region of RAD18 ubiquitin ligase, and this interaction is required for chromatin binding of RAD18. Impaired interaction of ASK (Dbf4) with RAD18 disables foci formation by RAD18 and hinders chromatin loading of translesion DNA polymerase η. These findings define a novel mechanism that orchestrates replication checkpoint signaling and ubiquitin–proteasome machinery with the DNA damage bypass pathway to guard against replication collapse under conditions of replication stress.  相似文献   

15.
The proportions of aneuploid/polyploid versus euploid cellsformed after treatment with spindle poisons like nocodazoleare of course dependent on the relative survival of cells withnumerical chromosome aberrations. This work aimed at studyingthe survival of polyploid cells formed after treatment witha nocodazole concentration sufficient to significantly decreasetubulin polymerization (0.1 µg/ml). First, normal primarylymphocytes were analysed and the following complementary chromosomalparameters were quantified: mitotic index, frequency of abnormalmitoses, polyploid metaphases and apoptotic cells. The resultsclearly indicate a positive correlation between abnormal mitoticfigures, apoptosis and the induction of polyploidy. They thereforeled to a single cell approach in which both apoptosis and polyploidyinduction could be scored in the same cell. For this purpose,actively proliferating cells are required and two human leukaemiccell lines were used, KS (p53-positive) and K562 (p53-negative),which have a near-triploid karyotype. Cells were separated intoan apoptotic and a viable fraction by means of annexin-V stainingand flow cytometry. In KS, treatment with nocodazole induceda similar fraction of hexaploid cells in both the viable andapoptotic fraction, but no dodecaploid cells were ever observed.In contrast, a population of dodecaploid cells (essentiallyviable) was clearly observed in the K562 cell line. The resultsin KS, as compared with K562, confirm that wild-type p53 canprevent further cycling of polyploid cells by blocking rereplication.The most probable explanation for these data is that not onlythe mitotic spindle but also interphase microtubules are sensitiveto nocodazole treatment. Our data thus strongly suggest thatbesides the G1/S checkpoint under the control of p53, the G2/Mtransition may be sensitive to depolymerization of microtubules,possibly under the control of Cdc2, Bcl-2, Raf-1 and/or Rho. 1 To whom correspondence should be addressed. Tel: +32 2 629 3423; Fax: +32 2 629 27 59; Email: mkirschv{at}vub.ac.be  相似文献   

16.
Damage to the mitotic spindle and centrosome dysfunction can lead to cancer. To prevent this, cells trigger a succession of checkpoint responses, where an initial mitotic delay is followed by slippage without cytokinesis, spawning tetraploid G1 cells that undergo a p53-dependent G1/S arrest. We describe the importance of Lats2 (Large Tumor Suppressor 2) in this checkpoint response. Lats2 binds Mdm2, inhibits its E3 ligase activity, and activates p53. Nocodazole, a microtubule poison that provokes centrosome/mitotic apparatus dysfunction, induces Lats2 translocation from centrosomes to the nucleus and p53 accumulation. In turn, p53 rapidly and selectively up-regulates Lats2 expression in G2/M cells, thereby defining a positive feedback loop. Abrogation of Lats2 promotes accumulation of polyploid cells upon exposure to nocodazole, which can be prevented by direct activation of p53. The Lats2-Mdm2-p53 axis thus constitutes a novel checkpoint pathway critical for the maintenance of proper chromosome number.  相似文献   

17.
Faithful chromosome segregation requires the combined activities of the microtubule-based mitotic spindle and the multiple proteins that form mitotic kinetochores. Here, we show that the fission yeast mitotic mutant, tsm1-512, is an allele of the tubulin folding chaperone, cofactor D. Chromosome segregation in this and in an additional cofactor D mutant depends on growth conditions that are monitored specifically by the mitotic checkpoint proteins Mad1, 2, 3 and Bub3. The temperature-sensitive mutants we have used disrupt the function of cofactor D to different extents, but both strains form a mitotic spindle in which the poles separate in anaphase. However, chromosome segregation is often unequal, apparently due to a defect in kinetochore–microtubule interactions. Mutations in cofactor D render cells particularly sensitive to the expression levels of a CENP-B-like protein, Abp1p, which works as an allele-specific, high-copy suppressor of cofactor D. This and other genetic interactions between cofactor D mutants and specific kinetochore and spindle components suggest their critical role in establishing the normal kinetochore–microtubule interface.Communicated by M. Yamamoto.  相似文献   

18.
During mitosis, genomic integrity is maintained by the proper coordination of anaphase entry and mitotic exit through mitotic checkpoints. In budding yeast, exit from mitosis is triggered by the activation of the small GTPase Tem1p. Bfa1p in association with Bub2p negatively regulates Tem1p in response to spindle damage, spindle misorientation, and DNA damage, resulting in cell cycle arrest. To delineate the Bfa1p domains that respond to distinct checkpoint signals, we constructed 13 Bfa1 deletion mutants. The C-terminal 184 amino acids of Bfa1p (Bfa1-D8(391-574)) contained the entire capacity of Bfa1p to generate mitotic arrest in response to spindle damage, spindle misorientation, and DNA damage. This domain was also enough to interact with the mitotic exit network proteins Tem1p, Bub2p, and Cdc5p, and to localize to the spindle pole body (SPB). Over-expression of Bfa1-D8(391-574) induced late anaphase arrest as efficient as the full-length Bfa1p in a Bub2p-dependent manner. In contrast, the N-terminal portion of Bfa1p (Bfa1-D16(1-376)) could not localize to SPB and did not block mitotic exit in response to diverse checkpoint signals. Bfa1-D16(1-376) interacted with Tem1p but not with Bub2p and its over-expression partially arrested cells in mitosis in the absence of Bub2p. By random mutagenesis of Bfa1-D8(391-574) with hydroxylamine, we isolated a point mutant of D8, D8(E438K), which interacts with both Tem1p and Bub2p but cannot respond to checkpoint signals. This mutant also showed reduced efficiency in the localization to SPB. Taken together, our study demonstrated that various checkpoint signals are transmitted to the C-terminal domain of Bfa1 (Bfa1-D8(391-574)) and that Bfa1p localization to SPB is necessary but not sufficient to regulate mitotic exit in response to various checkpoint signals.  相似文献   

19.
In eukaryotes, the DNA replication checkpoint prevents entry into mitosis when DNA replication is incomplete and is crucial for maintaining genomic integrity. Much less is known about equivalent controls that operate during meiosis. Here, we show that a DNA replication checkpoint control operates during meiosis in fission yeast. The mitotic checkpoint Rad genes and the Cds1 protein kinase are required for the DNA replication checkpoint during meiosis, with Cds1 playing a more prominent role than it does during mitosis. When DNA replication is blocked, the checkpoint maintains Cdc2 tyrosine 15 phosphorylation keeping Cdc2 protein kinase activity low and preventing onset of meiosis I. Additionally, there is a second checkpoint acting during meiosis that is revealed if cells are prevented from maintaining Cdc2 tyrosine 15 phosphorylation when DNA replication is blocked. Such cells arrest with high Cdc2 protein kinase activity and separated spindle pole bodies, an arrest state similar to that observed in mitotic budding yeast cells when DNA replication is incomplete. This second checkpoint is meiosis specific and may reflect processes occurring only during meiosis such as increased recombination rates, an extended duration of nuclear division, or homolog chromosome pairing.  相似文献   

20.
BACKGROUND: The progression of cytokinesis requires cyclin B destruction by the anaphase promoting complex (APC/C) and, in fission yeast, activation of the septation initiation network (SIN) is also essential. The gamma-tubulin complex (gamma-TuC) localizes to the centrosome throughout the cell cycle and is directly involved in the organization of the mitotic spindle. RESULTS: We have previously shown that the mutant defective in alp4+ (Spc97/GCP2) displays bipolar spindle defects due to a failure in the recruitment of the gamma-TuC on to the spindle pole body (SPB, the centrosome equivalent). Here we show that in these mutants the Mad2 checkpoint is activated, yet septation proceeds due to the untimely activation of the SIN. The Sid1 kinase, the downstream effector of the SIN, is recruited prematurely to both, instead of only one, of the SPBs, which triggers septation despite the presence of monopolar spindles. Remarkably, cyclin B levels, which would normally have declined, remain high at the SPB in septated mutant cells. CONCLUSIONS: We propose a novel role of the gamma-TuC in inhibiting activation of the SIN until cyclin B is destroyed. Given the ubiquitous existence of the gamma-TuC, this mechanism may be conserved throughout evolution and function to couple cytokinesis to mitotic exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号