首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1. Neocortical slices of the first and second temporal gyrus and frontal lobe, removed in human epileptic patients for the relief of intractable seizures, were maintained in vitro at 35 +/- 1 degrees C. Electrophysiological properties of neurons in the deep layers (1,800-2,600 micron below the pial surface) were studied with conventional intracellular recording and stimulation techniques. Synaptic responses were evoked by extracellular focal stimuli. Intracellular injections of some cells with the fluorescent dye Lucifer yellow revealed large spiny pyramidal neurons. 2. Values of input resistance, resting membrane potential (Vm), and action-potential amplitude were similar for neurons in different cortical regions. These parameters were also similar when neurons were grouped in accordance to the degree of electrographic epileptiform activity displayed by the cortical tissue in situ. 3. Inward rectification occurred when neurons were depolarized by 5-15 mV positive to the resting Vm. This rectification was abolished by extracellular application of tetrodotoxin (TTX, 1 microM), but was still observed in the presence of the Ca2+-channel blocker Cd2+ (2 mM). Pulses of hyperpolarizing current elicited a slowly developing inward rectification, called anomalous rectification, which was insensitive to TTX, but blocked by extracellular application of Cs+ (1-2 mM). 4. Intracellular injection of depolarizing square pulses of current (0.1-4 s) evoked repetitive firing. In most cells the firing rate decreased smoothly for tens of milliseconds (i.e., it adapted) before reaching a steady level. Plots of the relation between frequency of the repetitive firing and injected current (f-I curve) displayed two linear segments for the early intervals as well as for the adapted and/or the steady firing. The slope of the initial, steeper linear segment of the f-I curve computed during the early intervals and during the adapted firing was 163 +/- 51 and 56 +/- 27 (SD) Hz/nA, respectively. 5. A long-lasting (up to 8 s) afterhyperpolarization (AHP) followed the repetitive firing induced by square pulses of depolarizing current. Its amplitude was directly proportional to the amount of current injected, it was sensitive to changes in the Vm, and it had an equilibrium potential 10-40 mV negative to the resting Vm. This value plus the fact that the AHP could be recorded with KCl-filled microelectrodes suggested that it was caused by an increase in conductance to K+ ions. Bath application of the Ca2+ channel blockers Cd2+ (2 mM) or Mn2+ (2 mM) decreased and eventually blocked the AHP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The aim of this study was to measure the effects of synaptic input on motoneuron firing rate in an unanesthetized cat preparation, where activation of voltage-sensitive dendritic conductances may influence synaptic integration and repetitive firing. In anesthetized cats, the change in firing rate produced by a steady synaptic input is approximately equal to the product of the effective synaptic current measured at the resting potential (I(N)) and the slope of the linear relation between somatically injected current and motoneuron discharge rate (f-I slope). However, previous studies in the unanesthetized decerebrate cat indicate that firing rate modulation may be strongly influenced by voltage-dependent dendritic conductances. To quantify the effects of these conductances on motoneuron firing behavior, we injected suprathreshold current steps into medial gastrocnemius motoneurons of decerebrate cats and measured the changes in firing rate produced by superimposed excitatory synaptic input. In the same cells, we measured I(N) and the f-I slope to determine the predicted change in firing rate (Delta F = I(N) * f-I slope). In contrast to previous results in anesthetized cats, synaptically induced changes in motoneuron firing rate were greater-than-predicted. This enhanced effect indicates that additional inward current was present during repetitive firing. This additional inward current amplified the effective synaptic currents produced by two different excitatory sources, group Ia muscle spindle afferents and caudal cutaneous sural nerve afferents. There was a trend toward more prevalent amplification of the Ia input (14/16 cells) than the sural input (11/16 cells). However, in those cells where both inputs were amplified (10/16 cells), amplification was similar in magnitude for each source. When these two synaptic inputs were simultaneously activated, their combined effect was generally very close to the linear sum of their amplified individual effects. Linear summation is also observed in medial gastrocnemius motoneurons of anesthetized cats, where amplification is not present. This similarity suggests that amplification does not disturb the processes of synaptic integration. Linear summation of amplified input was evident for the two segmental inputs studied here. If these phenomena also hold for other synaptic sources, then the presence of active dendritic conductances underlying amplification might enable motoneurons to integrate multiple synaptic inputs and drive motoneuron firing rates throughout the entire physiological range in a relatively simple fashion.  相似文献   

3.
Summary Repetitive firing of motoneurones was examined in decerebrate, unanaesthetised, paralysed cats in which fictive locomotion was induced by stimulation of the mesencephalic locomotor region. Repetitive firing produced by sustained intracellular current injection was compared with repetitive firing observed during fictive locomotion in 17 motoneurones. During similar interspike intervals, the afterhyperpolarisations (AHPs) during fictive locomotion were decreased in amplitude compared to the AHPs following action potentials produced by sustained depolarising current injections. Action potentials were evoked in 10 motoneurones by the injection of short duration pulses of depolarising current throughout the step cycles. When compared to the AHPs evoked at rest, the AHPs during fictive locomotion were reduced in amplitude at similar membrane potentials. The post-spike trajectories were also compared in different phases of the step cycle. The AHPs following these spikes were reduced in amplitude particularly in the depolarised phases of the step cycles. The frequency-current (f-I) relations of 7 motoneurones were examined in the presence and absence of fictive locomotion. Primary ranges of firing were observed in all cells in the absence of fictive locomotion. In most cells (6/7), however, there was no relation between the amount of current injected and the frequency of repetitive firing during fictive locomotion. In one cell, there was a large increase in the slope of the f-I relation. It is suggested that this increase in slope resulted from a reduction in the AHP conductance; furthermore, the usual elimination of the relation is consistent with the suggestions that the repetitive firing in motoneurones during fictive locomotion is not produced by somatic depolarisation alone, and that motoneurones do not behave as simple input-output devices during this behaviour. The correlation of firing level with increasing firing frequency which has previously been demonstrated during repetitive firing produced by afferent stimulation or by somatic current injection is not present during fictive locomotion. This lends further support to the suggestion that motoneurone repetitive firing during fictive locomotion is not produced or regulated by somatic depolarisation. It is suggested that although motoneurones possess the intrinsic ability to fire repetitively in response to somatic depolarisation, the nervous system need not rely on this ability in order to produce repetitive firing during motor acts. This capability to modify or bypass specific motoneuronal properties may lend the nervous system a high degree of control over its motor output.  相似文献   

4.
Repetitive firing in layer V neurons from cat neocortex in vitro   总被引:7,自引:0,他引:7  
Input-output relations of large neurons from layer V of cat sensorimotor cortex were studied in an in vitro slice preparation using steps and ramps of intracellularly injected current. Depolarization attained during the interspike interval (ISI) was compared to the voltage levels required to activate a previously described (29) persistent sodium current (INaP). INaP was studied using a single-electrode voltage clamp in the same cells tested for firing behavior. Following an injected current step, firing rate declined smoothly to a steady level with a time course that was approximately exponential in most cells (tau, 9-43 ms). In most cells, the relation between firing rate and injected current (f-I relation) consisted of two linear segments, both for adapted, steady firing and for early intervals during adaptation. The slope of the steeper, initial (or sole) linear segment of the f-I curve averaged 26.2 Hz/nA during steady firing and was steeper when plotted for early interspike intervals. The variation of the depolarization at which spike initiation occurred (firing level) and the membrane potential between rhythmic spikes was examined during adaptation and steady firing. In most cells, firing level rose rapidly during a rhythmic train to a steady value. The steady firing level attained remained unchanged over a wide range of steady firing rates. Nevertheless, the mean depolarization during the interspike interval (V) increased approximately linearly with steady firing rate. Even at the slowest firing rates, V is sufficient to activate INaP. The use of injected current ramps demonstrated that neocortical cells were sensitive to rate of change of stimulus current (dI/dt) as well as its amplitude (I). The use of ramps followed by steady currents demonstrated that the repetitive response lagged behind changes in stimulus parameters and did not reach a steady state even during slow ramps; i.e., the response depended on time as well as on I and dI/dt. Instantaneous firing rate during the ramp increased linearly with time for a wide range of ramp slopes (dI/dt). The instantaneous firing rate of early interspike intervals was also linearly related to ramp slope for small ramp slopes. In spite of these linear relationships, quantitative analysis indicated that firing rate during ramp stimulation cannot, in general, be described by a simple linear combination of separate amplitude- and rate-dependent terms. The repetitive firing properties of the in vitro neurons are compared to those of in vivo neocortical neurons and other cell types.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Teshima K  Kim SH  Allen CN 《Neuroscience》2003,120(1):65-73
In neurons of the suprachiasmatic nucleus, spike frequency adaptation and membrane afterhyperpolarization occur during a train of action potentials. Extracellular Ca2+ may regulate neuronal excitability by several mechanisms, including activation of small conductance and large conductance Ca(2+)-activated K+ channels. The overall goal of this study was to examine the role of Ca(2+)-activated K+ currents in individual suprachiasmatic nucleus neurons. To this end, we used the nystatin-perforated patch technique to record currents from suprachiasmatic nucleus neurons. Iberiotoxin and tetraethylammonium, antagonists of large conductance Ca(2+)-activated K+ channels, had no effect on the membrane afterhyperpolarization. However, antagonists of small conductance Ca(2+)-activated K+ channels, apamin and d-tubocurarine, reduced the amplitude of the membrane afterhyperpolarization and inhibited the spike frequency adaptation that occurred during a train of action potentials. Although there was no significant difference in membrane AHP between different portions of the circadian day, apamin and d-tubocurarine increased the spontaneous firing frequency of suprachiasmatic nucleus neurons during the daytime. In voltage-clamp mode, membrane depolarization-activated currents were followed by an outward tail current reversing near the K+ equilibrium potential. The tail current decayed with a time constant of 220 ms at +20 mV and 149 ms at -40 mV. Apamin irreversibly and d-tubocurarine reversibly inhibited the tail current. The tail current amplitude was also reduced by the GABAA receptor antagonist, bicuculline methiodide, while picrotoxin (another GABAA receptor antagonist) was without effect. Removal of extracellular Ca2+ or the addition of Cd2+ reversibly inhibited the tail current. These results indicate that apamin- and d-tubocurarine-sensitive small conductance Ca(2+)-activated K+ channels have a modulatory function on the action potential firing frequency as well as the membrane afterhyperpolarization that follows a train of action potentials in suprachiasmatic nucleus neurons. Importantly, our data also indicate that a portion of the effects of bicuculline methiodide on suprachiasmatic nucleus neurons may be mediated by inhibition of small conductance Ca(2+)-activated K+ channels.  相似文献   

6.
The persistent excitation of guinea-pig olfactory cortical neurones in vitro by the muscarinic agonist oxotremorine-M (OXO-M) was investigated. In OXO-M (10-20 microM), a slowly-decaying afterdepolarization (sADP) accompanied by sustained repetitive firing was induced following a long depolarizing stimulus. The corresponding slow inward current (IADP) revealed under voltage clamp behaved like a K(+)-mediated tail current, but was associated with a decreased membrane conductance. IADP was insensitive to tetrodotoxin (TTX), Ba2+, Cs+, or 4-aminopyridine (4-AP), but was blocked by 500 microM TEA or TBA (tetrabutylammonium). The OXO-M response and IADP were also reduced by Cd2+ or Ca(2+)-free solution, suggesting a dependence on Ca(2+)-entry. We propose that OXO-M induces a novel outward K+ current that can be slowly de-activated by Ca(2+)-entry during a depolarizing stimulus. Summation of IADP tail currents could contribute to the sustained muscarinic excitation of mammalian cortical neurones.  相似文献   

7.
Neuronal cell firing is crucial to nerve-nerve communication. The ability to produce consecutive action potentials is related to the activation of inward currents after each upstroke. If fast Na current is indeed responsible for the overshoot, it is still unclear which current drives membrane voltage to the Na threshold. In this study we present evidence that in adult rat sensory neurones a dihydropyridine-sensitive Ca channel exists in addition to the well characterized L-type, or high-threshold Ca channel. During stimulated action potential trains, L-type Ca channels open during the excitation wave, whereas activity of the other dihydropyridine-sensitive Ca channel was observed primarily between action potentials. This second Ca pathway shows remarkably long openings at negative potentials after a series of positive prepulses. The nerve action potential and the repetitive firing work as a physiological Ca channel facilitation mechanism. Therefore, we suggest that this novel Ca conductance provides inward current, between two consecutive action potentials, able to modulate the frequency of neuronal bursts. Received: 3 August 1995/Received after revision: 9 October 1995/Accepted: 10 October 1995  相似文献   

8.
1. Human neocortical neurons fire repetitively in response to long depolarizing current injections. The slope of the relationship between average firing frequency and injected current (f-I slope) was linear or bilinear in these cells. The mean steady-state f-I slope (average of the last 500 ms of a 1-s firing episode) was 57.8 Hz/nA. The instantaneous firing rate decreased with time during a 1-s constant-current injection (spike frequency adaptation). Also, human neurons exhibited habituation in response to a 1-s current stimulus repeated every 2 s. 2. Afterhyperpolarizations (AHPs) reflect the active ionic conductances after action potentials. We studied AHPs with the use of intracellular recordings and pharmacological manipulations in the in vitro slice preparation to 1) gain insight into the ionic mechanisms underlying the AHPs and 2) elucidate the role that the underlying currents play in the functional behavior of human cortical neurons. 3. We have classified three AHPs in human neocortical neurons on the basis of their time courses: fast, medium, and slow. The amplitude of the AHPs was dependent on stimulus intensity and duration, number and frequency of spikes, and membrane potential. 4. The fast AHP had a reversal potential of -65 mV and was eliminated in extracellular Co2+, tetraethylammonium (TEA) or 4-aminopyridine, and intracellular TEA or CsCl. These manipulations also caused an increase in spike width. 5. The medium AHP had a reversal potential of -90 to -93 mV (22-24 mV hyperpolarized from mean resting potential). This AHP was reduced by Co2+, apamin, tubocurare, muscarine, norepinephrine (NE), and serotonin (5-HT). Pharmacological manipulations suggest that the medium AHP is produced in part by 1) a Ca-dependent K+ current and 2) a time-dependent anomalous rectifier (IH). 6. The slow AHP reversed at -83 to -87 mV (14-18 mV hyperpolarized from mean resting potential). This AHP was diminished by Co2+, muscarine, NE, and 5-HT. The pharmacology of the slow AHP suggests that a Ca-dependent K+ current with slow kinetics contributes to this AHP. 7. The currents involved in the fast AHP are important in spike repolarization, control of interspike interval during repetitive firing, and prevention of burst firing. Currents underlying the medium and slow AHPs influence the interspike interval during repetitive firing and produce spike frequency adaptation and habituation.  相似文献   

9.
ALS (amyotrophic lateral sclerosis) is an adult-onset and deadly neurodegenerative disease characterized by a progressive and selective loss of motoneurons. Transgenic mice overexpressing a mutated human gene (G93A) coding for the enzyme SOD1 (Cu/Zn superoxide dismutase) develop a motoneuron disease resembling ALS in humans. In this generally accepted ALS model, we tested the electrophysiological properties of individual embryonic and neonatal spinal motoneurons in culture by measuring a wide range of electrical properties influencing motoneuron excitability during current clamp. There were no differences in the motoneuron resting potential, input conductance, action potential shape, or afterhyperpolarization between G93A and control motoneurons. The relationship between the motoneuron's firing frequency and injected current (f-I relation) was altered. The slope of the f-I relation and the maximal firing rate of the G93A motoneurons were much greater than in the control motoneurons. Differences in spontaneous synaptic input were excluded as a cause of increased excitability. This finding identifies a markedly elevated intrinsic electrical excitability in cultured embryonic and neonatal mutant G93A spinal motoneurons. We conclude that the observed intrinsic motoneuron hyperexcitability is induced by the SOD1 toxic gain-of-function through an aberration in the process of action potential generation. This hyperexcitability may play a crucial role in the pathogenesis of ALS as the motoneurons were cultured from presymptomatic mice.  相似文献   

10.
Repetitive impulse firing was elicited in neurone models by steady stimulating currents of abrupt onset. The neurone models were based on the Frankenhaeuser—Huxley equations (1964) for voltage clamp data from the amphibian peripheral nerve. A frequency-current curve (‘f-I curve’), initial adaptation, and minimum firing rate similar to those of cat spinal motoneurones were obtained in the Frankenhaeuser—Huxley model if it were provided with (i) a long-lasting after-hyperpolarization due to potassium permeability changes, and (ii) a decreased subthreshold sodium inactivation. For detailed comparisons to the repetitive impulse firing of spinal motoneurones, model versions were used in which the subthreshold sodium inactivation was very slight, and the passive membrane properties as well as the afterpotentials resembled those of spinal motoneurones. In their repetitive behaviour, these models were quantitatively similar to spinal motoneurones. In the motoneurone-like model versions, initial adaptation was due to a kind of ‘summation’ of the potassium permeability changes underlying the after-hyperpolarizations of consecutive spikes. The slope of the f-I curve was markedly affected by modifications of the size or time course of the potassium permeability changes responsible for the after-hyperpolarization.  相似文献   

11.
Repetitive firing properties of phrenic motoneurons in the cat   总被引:2,自引:0,他引:2  
1. Using both rectangular- and ramp-shaped intracellularly injected currents, the repetitive firing properties of 23 antidromically identified phrenic motoneurons were determined in anesthetized, paralyzed, and artificially ventilated cats during hypocapnic apnea. In response to rectangular depolarizing current injections, regular repetitive firing was observed in all cells. 2. At the beginning of a rectangular current pulse, the firing pattern was characterized by high frequency of firing that rapidly adapted to a much lower steady-state value. The relationship between the reciprocal of the first interspike interval (F1-2) and injected current was described by an initial linear portion of shallow slope, followed by a much steeper segment that smoothly reached a plateau value. The plateau value of F1-2 did not change with further increase in injected current. 3. The steady-state firing frequency versus injected current relationship was represented by a line of shallow slope over the entire range of injected currents. The slope of this line ranged between 1.1 and 4.5 Hz/nA. 4. A weaker correlation between minimal firing frequency for continuous activity and the reciprocal of the after hyperpolarization duration (1/AHPdur) was found for phrenic motoneurons than exists for lumbosacral motoneurons (26). Comparison of AHP shape at different levels of repetitive firing revealed that the slopes of the ascending portions of the AHP were similar except at the higher injected currents. Further, in the same cells during natural inspiratory activity the ascending part of the AHP was similar to that observed during current injection. 5. Depolarizing current ramps (approximately 1-s duration) were injected into 11 phrenic motoneurons. Instantaneous firing frequency was directly proportional to the intensity of the instantaneous injected current and independent of the rate of change of current for the range of ramp slopes tested (5-80 nA/s). Ramp-and-hold current injections were done in three motoneurons, and the peak instantaneous firing frequency showed little adaptation during the hold maneuver. 6. During hypocapnic apnea, we mimicked the expiratory-phase inhibition and inspiratory-phase excitation of phrenic motoneurons by injecting a 1-s depolarizing current ramp that was immediately preceded by a 1-s hyperpolarizing current ramp of the same absolute peak current intensity. Compared with the effects of positive current ramps alone the spike onsets during the negative-positive current ramp paradigm were either facilitated or retarded. Various ionic mechanisms are suggested for these effects as well as their function in determining the onset of firing during natur  相似文献   

12.
1. Repetitive activity and membrane conductance parameters of crab walking leg axons have been studied in the double sucrose gap. 2. The responses to constant current stimulus could be classified into three catagories; highly repetitive with wide firing frequency range, type I; highly repetitive with narrow frequency range, type II; and nonrepetitive or repetitive to only a limited degree, type III. The minimum firing frequency for type I axons was much greater than for other recording techniques. 3. Voltage-clamp currents in type III axons were qualitatively similar to those of squid or lobster axon. 4. The outward membrane currents of type I and II axons showed a transient phase in addition to the usual delayed current. The magnitude of this transient was a function of both the holding and test voltages. 5. The direction of the transient current reversed in potassium-rich saline. 6. The type I repetitive response in the walking leg axons appears to be generated by the same types of conductance changes that have been demonstrated in molluscan central neurons.  相似文献   

13.
Neurons and dynamical models of spike generation display two different types of threshold behavior, with steady current stimulation: type 1 [the firing frequency vs. current (f-I) relationship is continuous at threshold) and type 2 (discontinuous f-I)]. The dynamics at threshold can have profound effects on the encoding of input as spikes, the sensitivity of spike generation to input noise, and the coherence of population firing. We have examined the f-I and frequency-conductance (f-g) relationships of cells in layer 2/3 of slices of young (15-21 DIV) rat somatosensory cortex, focusing in detail on the nature of the threshold. Using white-noise stimulation, we also measured firing frequency and interspike interval variability as a function of noise amplitude. Regular-spiking (RS) pyramidal neurons show a type 1 threshold, consistent with their well-known ability to fire regularly at very low frequencies. In fast-spiking (FS) inhibitory interneurons, although regular firing is supported over a wide range of frequencies, there is a clear discontinuity in their f-I relationship at threshold (type 2), which has not previously been highlighted. FS neurons are unable to support maintained periodic firing below a critical frequency fc, in the range of 10 to 30 Hz. Very close to threshold, FS cells switch irregularly between bursts of periodic firing and subthreshold oscillations. These characteristics mean that the dynamics of RS neurons are well suited to encoding inputs into low-frequency firing rates, whereas the dynamics of FS neurons are suited to maintaining and quickly synchronizing to gamma and higher-frequency input.  相似文献   

14.
The magnitudes and time courses of conductance changes in molluscan neurons show marked temperature dependence. Interestingly, though, the relationship between repetitive firing frequency and stimulus current is not greatly affected by moderated temperature changes (6-8 degrees C). The transient potassium current, IA, is largely reponsible for the interspike voltage trajectory, hence, repetitive interval, in molluscan neurons. It is shown in this study that temperature dependencies of the rate constants and magnitude of the IA system are balanced in such a way that the observed temperature insensitivity of the repetitive response is predicted.  相似文献   

15.
Ionic conductances underlying excitability in tonically firing neurons (TFNs) from substantia gelatinosa (SG) were studied by the patch-clamp method in rat spinal cord slices. Ca(2+)-dependent K(+) (K(CA)) conductance sensitive to apamin was found to prolong the interspike intervals and stabilize firing evoked by a sustained membrane depolarization. Suppression of Ca(2+) and K(CA) currents, however, did not abolish the basic pattern of tonic firing, indicating that it was generated by voltage-gated Na(+) and K(+) currents. Na(+) and K(+) channels were further analyzed in somatic nucleated patches. Na(+) channels exhibited fast activation and inactivation kinetics and followed two-exponential time course of recovery from inactivation. The major K(+) current was carried through tetraethylammonium (TEA)-sensitive rapidly activating delayed-rectifier (K(DR)) channels with a slow inactivation. The TEA-insensitive transient A-type K(+) (K(A)) current was very small in patches and was strongly inactivated at resting potential. Block of K(DR) rather than K(A) conductance by 1 mM TEA lowered the frequency and stability of firing. Intracellular staining with biocytin revealed at least three morphological groups of TFNs. Finally, on the basis of present data, we created a model of TFN and showed that Na(+) and K(DR) currents are sufficient to generate a basic pattern of tonic firing. It is concluded that the balanced contribution of all ionic conductances described here is important for generation and modulation of tonic firing in SG neurons.  相似文献   

16.
Neurons and dynamical models of spike generation display two different classes of threshold behavior: type 1 [firing frequency vs. current (f-I) relationship is continuous at threshold] and type 2 (discontinuous f-I). With steady current or conductance stimulation, regular-spiking (RS) pyramidal neurons and fast-spiking (FS) inhibitory interneurons in layer 2/3 of somatosensory cortex exhibit type 1 and type 2 threshold behaviors, respectively. We compared the postsynaptic firing variability of type 1 RS and type 2 FS cells, during naturalistic, fluctuating conductance input. In RS neurons, increasing the level of independently random, shunting inhibition caused a monotonic increase in spike reliability, whereas in FS interneurons, there was an optimum level of shunting inhibition for achieving the most reliable spike generation and the most precise spike-time encoding. This was observed over a range of different degrees of synchrony, or correlation, in the input. RS cells displayed a progressive rise in spike jitter during natural-like transient burst inputs, whereas for FS cells, jitter was mostly kept low. Furthermore, RS cells showed encoding of the input level in the spike shape, whereas FS cells did not. These differences between the two cell types are consistent with a role of RS neurons as rate-coding integrators, and a role of FS neurons as resonators controlling the coherence of synchronous firing.  相似文献   

17.
Whole-cell patch clamp recordings were performed on hypoglossal motoneurons (HMs) in a brain stem slice preparation from the neonatal rat. The medium afterhyperpolarization (mAHP) was the only afterpotential always present after single or multiple spikes, making it suitable for studying its role in firing behavior. At resting membrane potential (-68.8 +/- 0.7 mV), mAHP (23 +/- 2 ms rise-time and 150 +/- 10 ms decay) had 9.5 +/- 0.7 mV amplitude, was suppressed in Ca(2+)-free medium or by 100 nM apamin, and reversed at -94 mV membrane potential. These observations suggest that mAHP was due to activation of Ca(2+)-dependent, SK-type K(+) channels. Carbachol (10-100 microM) reversibly and dose dependently blocked the mAHP and depolarized HMs (both effects prevented by 10 microM atropine). Similar mAHP block was produced by muscarine (50 microM). In control solution a constant current pulse (1 s) induced HM repetitive firing with small spike frequency adaptation. When the mAHP was blocked by apamin, the same current pulse evoked much higher frequency firing with strong spike frequency adaptation. Carbachol also elicited faster firing and adapting behavior. Voltage clamp experiments demonstrated a slowly deactivating, apamin-sensitive K(+) current (I(AHP)) which could account for the mAHP. I(AHP) reversed at -94 mV membrane potential, was activated by depolarization as short as 1 ms, decayed with a time constant of 154 +/- 9 ms at -50 mV, and was also blocked by 50 microM carbachol. These data suggest that mAHP had an important role in controlling firing behavior as clearly demonstrated after its pharmacological block and was potently modulated by muscarinic receptor activity.  相似文献   

18.
1. We have developed a 19-compartment cable model of a guinea pig CA3 pyramidal neuron. Each compartment is allowed to contain six active ionic conductances: gNa, gCa, gK(DR) (where DR stands for delayed rectifier), gK(A), gK(AHP), and gK(C). THe conductance gCa is of the high-voltage activated type. The model kinetics for the first five of these conductances incorporate voltage-clamp data obtained from isolated hippocampal pyramidal neurons. The kinetics of gK(C) are based on data from bullfrog sympathetic neurons. The time constant for decay of submembrane calcium derives from optical imaging of Ca signals in Purkinje cell dendrites. 2. To construct the model from available voltage-clamp data, we first reproduced current-clamp records from a model isolated neuron (soma plus proximal dendrites). We next assumed that ionic channel kinetics in the dendrites were the same as in the soma. In accord with dendritic recordings and calcium-imaging data, we also assumed that significant gCa occurs in dendrites. We then attached sections of basilar and apical dendritic cable. By trial and error, we found a distribution (not necessarily unique) of ionic conductance densities that was consistent with current-clamp records from the soma and dendrites of whole neurons and from isolated apical dendrites. 3. The resulting model reproduces the Ca(2+)-dependent spike depolarizing afterpotential (DAP) recorded after a stimulus subthreshold for burst elicitation. 4. The model also reproduces the behavior of CA3 pyramidal neurons injected with increasing somatic depolarizing currents: low-frequency (0.3-1.0 Hz) rhythmic bursting for small currents, with burst frequency increasing with current magnitude; then more irregular bursts followed by afterhyperpolarizations (AHPs) interspersed with brief bursts without AHPs; and finally, rhythmic action potentials without bursts. 5. The model predicts the existence of still another firing pattern during tonic depolarizing dendritic stimulation: brief bursts at less than 1 to approximately 12 Hz, a pattern not observed during somatic stimulation. These bursts correspond to rhythmic dendritic calcium spikes. 6. The model CA3 pyramidal neuron can be made to resemble functionally a CA1 pyramidal neuron by increasing gK(DR) and decreasing dendritic gCa and gK(C). Specifically, after these alterations, tonic depolarization of the soma leads to adapting repetitive firing, whereas stimulation of the distal dendrites leads to bursting. 7. A critical set of parameters concerns the regulation of the pool of intracellular [Ca2+] that interacts with membrane channels (gK(C) and gK(AHP)), particularly in the dendrites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Effects of Ba2+ and tetraethylammonium on cortical neurones   总被引:3,自引:1,他引:2       下载免费PDF全文
1. Ba(2+), applied by micro-iontophoresis, excites most cortical neurones that are excitable by ACh; other neurones tend to be depressed.2. The discharges evoked by Ba(2+) resemble those evoked by ACh, but they have an even slower time course and are characterized by firing in high frequency bursts.3. The excitatory action of Ba(2+), unlike that of ACh, is not abolished by muscarine antagonists; but it can be prevented with dinitrophenol.4. The depolarizing effect of Ba(2+) is associated with a rise in membrane resistance and it has a reversal level 24 mV more negative than the resting potential.5. These observations suggest that, as in other tissues, Ba(2+) reduced the K(+) conductance by a direct action on the cell membrane. Some diminution in Na(+) inactivation is indicated by the repetitive firing at high frequency.6. TEA has a predominantly depressant effect on all neurones tested. Like Ba(2+), it often increases greatly the duration of spikes, but there is no regular change in resting membrane resistance and no tendency to repetitive firing. TEA probably reduces only the delayed K(+) current.7. Even in large doses neither Ba(2+) nor TEA interferes with the conductance increase that generates the typical prolonged IPSPs recorded in cortical neurones.  相似文献   

20.
Spike-frequency adaptation is a prominent aspect of neuronal dynamics that shapes a neuron's signal processing properties on timescales ranging from about 10 ms to >1 s. For integrate-and-fire model neurons spike-frequency adaptation is incorporated either as an adaptation current or as a dynamic firing threshold. Whether a physiologically observed adaptation mechanism should be modeled as an adaptation current or a dynamic threshold, however, is not known. Here we show that a dynamic threshold has a divisive effect on the onset f-I curve (the initial maximal firing rate following a step increase in an input current) measured at increasing mean threshold levels, i.e., adaptation states. In contrast, an adaptation current subtractively shifts this f-I curve to higher inputs without affecting its slope. As a consequence, an adaptation current acts essentially linearly, resulting in a high-pass filter component of the neuron's transfer function for current stimuli. With a dynamic threshold, however, the transfer function strongly depends on the input range because of the multiplicative effect on the f-I curves. Simulations of conductance-based spiking models with adaptation currents, such as afterhyperpolarization (AHP)-type, M-type, and sodium-activated potassium currents, do not show the divisive effects of a dynamic threshold, but agree with the properties of integrate-and-fire neurons with adaptation current. Notably, the effects of slow inactivation of sodium currents cannot be reproduced by either model. Our results suggest that, when lateral shifts of the onset f-I curve are seen in response to adapting inputs, adaptation should be modeled with adaptation currents and not with a dynamic threshold. In contrast, when the slope of onset f-I curves depends on the adaptation state, then adaptation should be modeled with a dynamic threshold. Further, the observation of divisively altered onset f-I curves in adapted neurons with notable variability of their spike threshold could hint to yet known biophysical mechanisms directly affecting the threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号