首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postsynaptic currents (PSCs) were recorded using the patch-clamp technique in neurons of the rat inferior colliculus (IC) to investigate the muscarinic modulation of the GABAergic transmission. In the presence of strychnine (0.5 microM) and kynurenic acid (1 mM), spontaneous GABAergic PSCs were observed in all IC neurons investigated. Muscarine (10 microM) greatly potentiated the frequency of these GABAergic PSCs (618% of the control). 4-DAMP (50 nM), a M3 receptor preferring antagonist, greatly blocked the muscarine-evoked PSC frequency increase. The muscarinic antagonists telenzepine (50 nM; M1 preferring), methoctramine (10 microM; M2 preferring), and himbazine (10 microM; M4 preferring), and the nicotinic antagonist mecamylamine (10 microM) did not significantly affect the muscarine effect. These findings indicate that the muscarinic modulation of the GABAergic transmission is primarily mediated by M3 receptors, while M1-, M2- and M4- and nicotinic receptors do not participate substantially. In the presence of tetrodotoxin (0.5 microM), muscarine failed to increase the PSC frequency indicating that its effect depended on the generation of spikes. We suggest that GABAergic interneurones express M3 receptors at some distance from the terminal. Their activation excites GABAergic interneurones, thereby enhancing GABA release in the IC. The muscarinic modulation of the GABAergic transmission may play an important role in the maturation of inhibitory synapses in the developing IC.  相似文献   

2.
1. Miniature inhibitory postsynaptic currents (mIPSCs) were recorded in mouse Purkinje cells in the presence of 1 micro M tetrodotoxin (TTX). Under these conditions, which eliminated Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCCs), the contribution of Ca(2+) stores to spontaneous GABA release was examined. 2. The plant alkaloid ryanodine acts as an inhibitor of endoplasmic reticulum ryanodine-sensitive Ca(2+) release channels (ryanodine receptors) at low micromolar concentrations. Ryanodine effects were confined to a subpopulation of cells tested. At 10 micro M ryanodine, 4/12 cells showed a significant increase in mean mIPSC frequency of +19.6+/-4.0% (n=4). 3. The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump inhibitor cyclopiazonic acid (CPA) produced a more robust effect. In 8/10 cells, 25 micro M CPA caused a significant increase in mean mIPSC frequency; the mean increase being +26.0+/-3.0% (n=8). Similar results were seen with thapsigargin (1-2 micro M), another SERCA pump inhibitor. 4. Ruthenium red (RuR) has been proposed to either act directly on the release machinery or block Ca(2+) pumps on internal stores. At 10 micro M RuR, all cells showed a rapid, large increase in mean mIPSC frequency of +90.4+/-16.4% (n=9). This increase was greater than that seen by agents known to modulate Ca(2+) stores and was more consistent with a direct action. At this concentration, RuR also occluded the effects of CPA. 5. For all reagents, there were no obvious effects on mean mIPSC amplitude. However, the effects on mIPSC frequency were consistent with a presynaptic action and indicate that Ca(2+) stores may contribute to spontaneous GABA release onto mouse Purkinje cells.  相似文献   

3.
Nuclei of the brainstem involved in behavioral state control are mutually interconnected. Histaminergic neurons of the posterior hypothalamus receive inputs from brainstem noradrenergic cell groups as well as from the locus coeruleus. The role of adrenergic inputs in histaminergic function is unclear. We examined the actions of adrenergic agonists on histaminergic neurons of the tuberomamillary nucleus (TM) using electrophysiological methods in a brain slice preparation. Evoked GABAergic inhibitory postsynaptic potentials (IPSPs) in histaminergic neurons were reduced in amplitude following the application of norepinephrine (NE) (2-20 microM) or clonidine (10 microM) but were not affected by isoproterenol (10 microM). Norepinephrine application caused no changes in membrane properties of TM neurons. Responses to exogenously applied GABA were unaffected by adrenergic agonists. Clonidine reduced the frequency of spontaneous IPSPs, an action that was blocked by yohimbine. Norepinephrine did not alter the amplitude distribution of bicuculline-sensitive miniature inhibitory postsynaptic currents (mIPSCs). Thus, GABA release onto TM neurons is modulated presynaptically by adrenergic alpha(2)-receptors. Inputs from noradrenergic neurons of the brainstem will reduce the inhibitory actions of GABAergic inputs resulting in disinhibition of histaminergic neurons.  相似文献   

4.
γ-Aminobutyric acid (GABA)-containing interneurons of the ventral tegmental area (VTA) regulate the activity of dopaminergic neurons. These GABAergic interneurons are known to be innervated by synaptic terminals containing enkephalin, an endogenous ligand of μ-opioid receptors. Bath application of μ-opioid receptor agonists inhibits the activity of VTA GABAergic neurons but the mechanism whereby μ-opioid receptors regulate synaptic GABA release from these neurons has not been directly identified. Using cultured VTA neurons we have confirmed that μ-opioid receptor agonists inhibit synaptic GABA release. DAMGO, a selective μ-opioid receptor agonist, had four distinct effects on GABAergic IPSCs: (1) it inhibited the frequency and amplitude of spontaneous IPSCs (sIPSCs), (2) it reduced the amplitude of IPSCs evoked by single action potentials, (3) it inhibited the frequency, but not the amplitude of miniature IPSCs (mIPSCs), and (4) DAMGO inhibited mIPSCs evoked by ionomycin, a Ca2+ ionophore. The inhibition of action potential-evoked IPSCs and of spontaneous and ionomycin-evoked mIPSCs by DAMGO was prevented by the K+ channel blocker, 4-aminopyridine (4-AP). In conclusion, our work shows that one of the mechanisms through which μ-opioid receptors inhibit GABA release by VTA neurons is through inhibition of the secretory process at the nerve terminal level. In addition, considering that ionomycin stimulates exocytosis through a mechanism that should be insensitive to membrane polarization, our experiments with 4-AP suggest that K+ channels are implicated in the inhibition of the efficacy of the secretory process by μ-opioid receptors.  相似文献   

5.
The periaqueductal gray (PAG) plays a critical role in descending antinociception. In mechanically dissociated rat PAG neurons, pharmacologically separated spontaneous GABAergic miniature inhibitory postsynaptic currents (mIPSCs) were recorded using the nystatin-perforated patch technique. Both DAMGO, a specific mu-opioid receptor agonist, and serotonin inhibited mIPSC frequency in a dose-dependent manner without affecting mIPSC amplitude, respectively, in the same PAG neurons. The presynaptic opioid effect was blocked by a specific mu-opioid receptor antagonist, CTOP. The presynaptic serotonergic effect was mimicked by a specific 5-HT(1A) receptor agonist, 8-OH-DPAT, and blocked by the specific antagonist, NAN-190. These opioidergic and serotonergic inhibitions of GABA release employed the similar intracellular mechanism of opening 4-AP-sensitive K(+) channels via GTP-binding proteins (G-proteins). Subthreshold concentrations of DAMGO (3 nM) significantly decreased mIPSC frequency with subthreshold concentrations of serotonin (3 nM) and this effect was completely blocked by pretreatment with N-ethylmaleimide (NEM), a PTX-sensitive G-protein inhibitor. In contrast, maximum doses of DAMGO (10 microM) did not further inhibit mIPSC frequency with maximum doses of serotonin (10 microM). In conclusion, activation of presynaptic mu-opioid and 5-HT(1A) receptors synergistically inhibited GABA release. These results suggest a cellular mechanism within PAG for the analgesic effectiveness of combined therapies using opioids in conjunction with classes of anti-depressants which increase synaptic serotonin levels.  相似文献   

6.
γ-Aminobutyric acid (GABA)-containing interneurons of the ventral tegmental area (VTA) regulate the activity of dopaminergic neurons. These GABAergic interneurons are known to be innervated by synaptic terminals containing enkephalin, an endogenous ligand of μ-opioid receptors. Bath application of μ-opioid receptor agonists inhibits the activity of VTA GABAergic neurons but the mechanism whereby μ-opioid receptors regulate synaptic GABA release from these neurons has not been directly identified. Using cultured VTA neurons we have confirmed that μ-opioid receptor agonists inhibit synaptic GABA release. DAMGO, a selective μ-opioid receptor agonist, had four distinct effects on GABAergic IPSCs: (1) it inhibited the frequency and amplitude of spontaneous IPSCs (sIPSCs), (2) it reduced the amplitude of IPSCs evoked by single action potentials, (3) it inhibited the frequency, but not the amplitude of miniature IPSCs (mIPSCs), and (4) DAMGO inhibited mIPSCs evoked by ionomycin, a Ca2+ ionophore. The inhibition of action potential-evoked IPSCs and of spontaneous and ionomycin-evoked mIPSCs by DAMGO was prevented by the K+ channel blocker, 4-aminopyridine (4-AP). In conclusion, our work shows that one of the mechanisms through which μ-opioid receptors inhibit GABA release by VTA neurons is through inhibition of the secretory process at the nerve terminal level. In addition, considering that ionomycin stimulates exocytosis through a mechanism that should be insensitive to membrane polarization, our experiments with 4-AP suggest that K+ channels are implicated in the inhibition of the efficacy of the secretory process by μ-opioid receptors.  相似文献   

7.
The volatile anesthetics enhance GABAergic inhibitory transmission at synaptic and extrasynaptic sites at central neurons. In the present study, we investigated the effects of three volatile anesthetics (isoflurane, enflurane and sevoflurane) on synaptic and extrasynaptic GABAA receptor responses using mechanically dissociated rat hippocampal CA1 neurons in which functional native nerve endings (boutons) were retained. The extrasynaptic GABAA receptors were activated by exogenous GABA application while synaptic ones were assessed by miniature and evoked inhibitory postsynaptic currents (mIPSCs and eIPSCs, respectively). All volatile anesthetics concentration-dependently enhanced the exogenous GABA-induced postsynaptic responses. The structural isomers, isoflurane and enflurane, increased mIPSC frequency while sevoflurane had no effect. None of these anesthetics altered mIPSC amplitudes at their clinically relevant concentrations. Sevoflurane prolonged event kinetics by increasing decay time of mIPSCs and eIPSCs at clinically relevant concentration. On the other hand, both isoflurane and enflurane only prolonged the kinetics of these events at 1 mM of high concentration. For GABAergic eIPSCs, both isoflurane and enflurane decreased the evoked response amplitude and increased the failure rate (Rf), while sevoflurane decreased the amplitude without affecting Rf. These results suggest that isoflurane and enflurane at the clinically relevant concentrations predominantly act on GABAergic presynaptic nerve endings to decrease action potential dependent GABA release. It was concluded that these anesthetics have heterogeneous effects on mIPSCs and eIPSCs with different modulation of synaptic and extrasynaptic GABAA receptors.  相似文献   

8.
Spinal muscarinic acetylcholine receptors (mAChRs) play an important role in the regulation of nociception. To determine the role of individual mAChR subtypes in control of synaptic GABA release, spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) were recorded in lamina II neurons using whole-cell recordings in spinal cord slices of wild-type and mAChR subtype knockout (KO) mice. The mAChR agonist oxotremorine-M (3-10 microM) dose-dependently decreased the frequency of GABAergic sIPSCs and mIPSCs in wild-type mice. However, in the presence of the M2 and M4 subtype-preferring antagonist himbacine, oxotremorine-M caused a large increase in the sIPSC frequency. In M3 KO and M1/M3 double-KO mice, oxotremorine-M produced a consistent decrease in the frequency of sIPSCs, and this effect was abolished by himbacine. We were surprised to find that in M2/M4 double-KO mice, oxotremorine-M consistently increased the frequency of sIPSCs and mIPSCs in all neurons tested, and this effect was completely abolished by 4-diphenylacetoxy-N-methylpiperidine methiodide, an M3 subtype-preferring antagonist. In M2 or M4 single-KO mice, oxotremorine-M produced a variable effect on sIPSCs; it increased the frequency of sIPSCs in some cells but decreased the sIPSC frequency in other neurons. Taken together, these data strongly suggest that activation of the M3 subtype increases synaptic GABA release in the spinal dorsal horn of mice. In contrast, stimulation of presynaptic M2 and M4 subtypes predominantly attenuates GABAergic inputs to dorsal horn neurons in mice, an action that is opposite to the role of M2 and M4 subtypes in the spinal cord of rats.  相似文献   

9.
Using patch clamp recordings from an in vitro spinal cord slice preparation of neonatal rats (9-15days old), we characterized the GABAergic synaptic transmission in sympathetic preganglionic neurones (SPN) of the central autonomic nucleus (CA) of lamina X. Local applications of isoguvacine (100microM), a selective agonist at GABA(A) receptors, induced in all cells tested a chloride current which was abolished by bicuculline, a competitive antagonist at GABA(A) receptors. In addition, 25% of the recorded cells displayed spontaneous tetrodotoxin-insensitive and bicuculline-sensitive chloride miniature inhibitory postsynaptic currents (mIPSCs). Acetylcholine (100microM) increased the frequency of GABAergic mIPSCs without affecting their amplitudes or their kinetic properties indicating a presynaptic site of action. The presynaptic effect of ACh was restricted to GABAergic neurones synapsing onto sympathetic preganglionic neurones. The facilitatory effect of ACh was abolished in the absence of external calcium or in the presence of 100microM cadmium added to the bath solution. Choline 10mM, an agonist at alpha7 nicotinic acetylcholine receptors (nAChRs) or muscarine (10microM), a muscarinic receptor agonist, did not reproduce the presynaptic effect of ACh. The presynaptic effect of ACh was blocked by 1microM of dihydro-beta-erythroidine (DHbetaE), an antagonist of non-alpha7 nAChRs but was insensitive to alpha7 nAChRs antagonists (strychnine, alpha-bungarotoxin and methyllycaconitine) or to the muscarinic receptor antagonist atropine (10microM). It was concluded that SPNs of the central autonomic nucleus displayed a functional GABAergic transmission which is facilitated by terminal non alpha7 nAChRs.  相似文献   

10.
GABAergic neurones in the mesencephalon are important regulators of dopamine neurones. Cholinergic projections from mesopontine nuclei preferentially synapse onto these GABAergic neurones, thus suggesting that ACh can regulate dopamine neurones indirectly by modulating GABAergic interneurones. Muscarinic receptors mediate excitation of these interneurones through a Ca(2+)-dependent mechanism. Using a mesencephalic primary culture model, we show here that muscarine (10 microM) increases intracellular Ca2+ concentrations ([Ca2+]i) in GABAergic interneurones. Compatible with previous anatomical data, our pharmacological studies further suggest that the M3 receptor is the primary mediator of this increase. The rise in [Ca2+]i induced by muscarine was not activity-dependent but required influx of Ca2+ from the extracellular medium. Consistent with the known coupling of the M3 receptor to PKC, the effect of muscarine was blocked by bisindolylmaleimide, a selective PKC antagonist. The effect of muscarine was inhibited by SKF 96365 and verapamil, drugs known to block non-selective cationic channels such as those formed by transient receptor potential (TRPC) proteins. Finally, GABAergic neurones were found to be immunopositive for TRPC1, 3, 5 and 6. Taken together, these results suggest that the Ca(2+)-dependent regulation of mesencephalic GABAergic neurones by muscarinic receptors requires activation of some receptor-operated Ca2+ channels through a PKC-dependent mechanism.  相似文献   

11.
The physiological and pharmacological properties of gamma-aminobutyric acid (GABA)ergic miniature inhibitory postsynaptic currents (mIPSCs) were investigated in substantia gelatinosa neurons of mouse spinal cord using whole-cell patch clamp recordings. Two cell populations were pharmacologically identified based on the effect of propofol (10 muM) on the mIPSC decay kinetics: those exhibiting propofol-sensitive mIPSCs, with a slow decay kinetic (mIPSC(SLOW)), and those exhibiting propofol-resistant mIPSCs, with a fast decay kinetic (mIPSC(FAST)) (decay time constants of 14.2+/-0.7 and 7.4+/-0.8 ms, respectively). The frequency and amplitude of both types of mIPSCs were not affected by propofol. Miniature IPSC(FAST) showed midazolam insensitivity, while midazolam prolonged the decay phase of mIPSC(SLOW) without modulation of the frequency and amplitude. Exogenous GABA-evoked responses in the neurons with mIPSC(SLOW) were potentiated by propofol, while those in neurons with mIPSC(FAST) were unaffected by propofol. Furthermore, non-stationary noise analysis of the two kinetically and pharmacologically distinct mIPSCs revealed different conductance of GABA(A) receptor channels underlying the synaptic events. Pharmacological responses to propofol and midazolam suggested that mIPSC(FAST) and mIPSC(SLOW) in substantia gelatinosa neurons can be mediated by GABA(A) receptors with different subunit compositions.  相似文献   

12.
In the developing cerebellum, NMDA receptors promote the maturation of axonal terminals of inhibitory interneurons. We compared the effects of AMPA/kainate receptor agonists in cultured cerebellar cells from GAD65-eGFP mice. Both AMPA and kainate augmented granule cell survival without affecting interneurons. The action of kainate was blocked by an AMPA but not by a NMDA receptor antagonist, suggesting AMPA receptor involvement. AMPA and kainate increased the size of the GABAergic terminals and the action of kainate was insensitive to NMDA blockers. Whole cell recordings in granule neurons revealed that chronic treatment for 5 days with kainate as well as NMDA decreased AMPA receptor expression while interneuronal kainate receptors were depressed by kainate treatment. Acute kainate application increased mIPSCs frequency in both granule neurons and interneurons and this effect was only partially blocked by an AMPA receptor antagonist. In contrast to what was reported for NMDA, chronic treatment with kainate induced a significant decrease of the basal mIPSCs frequency but increased the acute action of kainate on mIPSCs. Direct recordings from presynaptic GABAergic terminals suggest that AMPA and kainate receptors are present in developing GABAergic terminals and their activation affects the size of GABAergic terminals and spontaneous GABA release.  相似文献   

13.
The medial preoptic area (MPOA) of the hypothalamus is critically involved in the regulation of male sexual behavior and has been implicated in several homeostatic processes. Serotonin (5-hydroxytryptamine, 5-HT) inhibits sexual behavior via effects in the MPOA, where there are high densities of 5-HT(1A) and 5-HT(1B) receptor subtypes. We used whole-cell recordings under voltage-clamp conditions to investigate the serotonergic modulation of gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission in mechanically dissociated rat MPOA neurons with native presynaptic nerve endings. Spontaneous GABAergic miniature inhibitory postsynaptic currents (mIPSCs) in the MPOA were completely blocked by bicuculline. Serotonin reversibly reduced the GABAergic mIPSC frequency without affecting the mean current amplitude. Serotonergic inhibition of mIPSC frequency was mimicked by (+/-)-8-hydroxy-2-dipropylaminotetralin hydrobromide, a specific 5-HT(1A) receptor agonist, and blocked by 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl] piperazine hydrobromide, a specific 5-HT(1A) receptor antagonist. 6-Cyano-7-nitroquinoxaline-2,3-dione completely blocked spontaneous glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in the MPOA. Serotonin reversibly decreased the glutamatergic mEPSC frequency without affecting the mean current amplitude. Serotonergic inhibition of mEPSC frequency was mimicked by CGS 12066B, a specific 5-HT(1B) receptor agonist, and blocked by SB 216641, a specific 5-HT(1B) receptor antagonist. Stimulation of adenylyl cyclase with forskolin increased the frequencies of GABAergic mIPSCs and glutamatergic mEPSCs, and blocked the inhibitory effects of 5-HT. H-89, a selective protein kinase A (PKA) inhibitor, decreased the frequencies of GABAergic mIPSCs and glutamatergic mEPSCs, and blocked their reduction by 5-HT. These findings suggest that 5-HT reduces the frequency of GABAergic mIPSCs and glutamatergic mEPSCs through 5-HT(1A) and 5-HT(1B) receptor-mediated inhibition, respectively, of the PKA-dependent pathway in the presynaptic nerve terminals of MPOA neurons.  相似文献   

14.
Xing J  Li DP  Li J 《Neuropharmacology》2008,54(4):734-744
Nitric oxide (NO) affects neuronal activity of the midbrain periaqueductal gray (PAG). The purpose of this report was to investigate the role of GABA receptors in NO modulation of neuronal activity through inhibitory and excitatory synaptic inputs within the dorsolateral PAG (dl-PAG). First, spontaneous miniature inhibitory postsynaptic currents (mIPSCs) and excitatory postsynaptic currents (mEPSCs) were recorded using whole cell voltage-clamp methods. Increased NO by either S-nitroso-N-acetyl-penicillamine (SNAP, 100 microM) or L-arginine (50 microM) significantly augmented the frequency of mIPSCs of the dl-PAG neurons without altering their amplitudes or decay time constants. The effects were eliminated after bath application of carboxy-PTIO (NO scavenger), and 1-(2-trifluorom-ethylphenyl) imidazole (NO synthase inhibitor). In contrast, SNAP and L-arginine did not alter mEPSCs in dl-PAG neurons. However the frequency of mEPSCs was significantly increased with prior application of the GABA(B) receptors antagonist, CGP55845. In addition, NO significantly decreased the discharge rate of spontaneous action potentials in the dl-PAG neurons and the effect was reduced in the presence of the GABA(A) receptor antagonist, bicuculline. Our data show that within the dl-PAG NO potentiates the synaptic release of GABA, while NO-induced GABA presynaptically inhibits glutamate release through GABA(B) receptors. Overall, NO suppresses neuronal activity of the dl-PAG via a potentiation of GABAergic synaptic inputs and via GABA(A) receptors.  相似文献   

15.
The muscarinic receptor is known to be involved in the acetylcholine (ACh)-induced secretion of catecholamines in the adrenal medullary (AM) cells of various mammals. The muscarinic receptor subtype involved and its physiological role, however, have not been elucidated yet. Thus, we investigated these issues in acutely isolated rat AM cells and perfused rat adrenal medulla. The RT-PCR analysis revealed the presence of M(2), M(3), M(4), and M(5) mRNAs. Immunocytochemistry with specific antibodies showed that M(5)-like immunoreactivities (IRs) were detected at half the cell membrane area, which was much larger than that with M(3)- or M(4)-like IRs. Muscarine produced inward currents in a dose-dependent manner. Pilocarpine, McN-A-343, and oxotremorine were less efficient than muscarine; and RS-86, which has no action on the M(5) receptor, produced no current. Electrical stimulation of nerve fibers produced a frequency-dependent increase in the Ca(2+) signal in perfused adrenal medullae. Muscarinic receptors were found to be involved in neuronal transmission in AM cells in the presence of a cholinesterase inhibitor, which suppresses ACh degradation. We concluded that the M(5) receptor is the major muscarinic receptor subtype in rat AM cells and may be involved in neuronal transmission under conditions where ACh spills over the synapse.  相似文献   

16.
Estrogens exert a variety of modulatory effects on the structure and function of the nervous system. In particular, 17 beta-estradiol was found to affect GABAergic inhibition in adult animals but its action on GABAergic currents during development has not been elucidated. In the present study, we investigated the effect of 17 beta-estradiol on hippocampal neurons developing in vitro. In this model, mIPSC kinetics showed acceleration with age along with increased alpha1 subunit expression, similarly as in vivo. Long-term treatment with 17 beta-estradiol increased mIPSC amplitudes in neurons cultured for 6-8 and 9-11DIV and prolonged the mIPSC decaying phase only in the 9-11DIV group. The time needed for the onset of 17 beta-estradiol effect on mIPSC amplitude was approximately 48 h. In the period of 9-11DIV, treatment with 17 beta-estradiol strongly reduced the tonic conductance activated by low GABA concentrations. The effects of 17 beta-estradiol on mIPSCs and tonic conductance were not correlated with any change in expression of considered GABAAR subunits (alpha1-3, alpha5-6, gamma2) while alpha4 and delta subunits were at the detection limit. In conclusion, we provide evidence that 17 beta-estradiol differentially affects the phasic and tonic components of GABAergic currents in neurons developing in vitro.  相似文献   

17.
1. We previously reported a presynaptic facilitatory action of A(2A) receptors on GABAergic synaptic transmission in the rat globus pallidus (GP). In the present study we identify the intracellular signalling mechanisms responsible for this facilitatory action of A(2A) receptors, using biochemical and patch-clamp methods in rat GP slices. 2. The adenosine A(2A) receptor selective agonist CGS21680 (1, 10 microM) and the adenylyl cyclase activator forskolin (1, 10 microM) both significantly increased cyclic AMP accumulation in GP slices. The CGS21680 (1 microM)-mediated increase in cyclic AMP was inhibited by the A(2A) receptor selective antagonist KF17837 (10 microM). 3. In an analysis of miniature inhibitory postsynaptic currents (mIPSCs), forskolin (10 microM) increased the mIPSC frequency without affecting their amplitude distribution, a result similar to that previously reported with CGS21680. 4. The adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22,536, 300 microM) abolished the CGS21680-induced enhancement in the frequency of mIPSCs. 5. H-89 (10 microM), a selective inhibitor for cyclic AMP-dependent protein kinase (PKA), blocked the CGS21680-induced enhancement of the mIPSC frequency. 6. The calcium channel blocker CdCl(2) (100 microM) did not prevent CGS21680 from increasing the frequency of mIPSCs. 7. These results indicate that A(2A) receptor-mediated potentiation of mIPSCs in the GP involves the sequential activation of the A(2A) receptor, adenylyl cyclase, and then PKA, and that this facilitatory modulation could occur independently of presynaptic Ca(2+) influx.  相似文献   

18.
Previous work has shown endogenous cholinergic activity facilitates both GABAergic and glycinergic neurotransmission to premotor cardiac vagal neurons. Exogenous application of nicotine increases the frequency of glycinergic and GABAergic inhibitory postsynaptic currents (IPSCs) and miniature IPSCs (mIPSCs) to cardiac vagal neurons. In this study we examined whether the nicotine evoked facilitation of GABAergic and glycinergic neurotransmission to cardiac vagal neurons is dependent or independent of activation of voltage dependent calcium channels. Nicotine evoked increases in GABAergic and glycinergic mIPSCs in cardiac vagal neurons which were blocked by the non-specific calcium channel antagonist cadmium (100 microM). Application of the L (Cav 1) type calcium channel antagonist nimodipine (10 microM) had no effect. However, the increase in both GABAergic and glycinergic mIPSCs elicited by nicotine was abolished by the P/Q (Cav 2.1) voltage gated calcium channel antagonist omega-agatoxin IVA (100 nM). Omega-conotoxin GVIA (1 microM), a specific blocker of N (Cav 2.2) type voltage gated calcium currents, inhibited the nicotine elicited augmentation of GABA and abolished the increase in glycine mIPSC frequency. This work demonstrates that the nicotine evoked facilitation of GABAergic and glycinergic neurotransmission to cardiac vagal neurons is dependent upon activation of P/Q (Cav 2.1) and N (Cav 2.2) type calcium channels.  相似文献   

19.
Methylmercury (MeHg) is an important environmental neurotoxicant that is present in seafood and affects the developing and mature nervous system. The neurotoxicity induced by MeHg is a concern, particularly for fish-eating populations and pregnant or nursing women. During MeHg-induced neurotoxicity, degeneration of the granule cell layer in the cerebellum occurs, which leads to deficits in motor function. I suggest that the action of MeHg on specific neurotransmitter receptors contributes to the selective vulnerability of granule cells. MeHg appears to stimulate M(3) muscarinic acetylcholine receptors and to inhibit GABA(A) receptor subtypes preferentially on cerebellar granule cells. This could lead to the loss of tonic inhibition of granule cells as a result of antagonism of GABA(A) receptors, and a M(3)-receptor-mediated increase in the intracellular concentration of Ca(2+) and block of a K(+)-dependent leak current. The net result would be increased spontaneous release of glutamate, which, coupled with a MeHg-induced impairment of glutamate uptake by astrocytes, could cause Ca(2+)-mediated cytotoxicity.  相似文献   

20.
In the present study, the patch-clamp technique was applied to cultured hippocampal neurons to evaluate the effects of the nerve agent VX on evoked and spontaneous postsynaptic currents mediated by gamma-aminobutyric acid (GABA) and glutamate. At 0.01 nM, VX reduced the amplitude of evoked GABAergic currents, and only at concentrations >1 nM did it decrease the amplitude of evoked glutamatergic currents. The effect of VX on GABAergic currents, which was partially reversible upon washing of the neurons with VX-free external solution, could be prevented by the muscarinic antagonist atropine. In contrast, the effect of VX on glutamatergic currents, which was not reversible upon washing, appears to be related to the VX-induced reduction of the amplitude and frequency of repetitively firing by action potentials. In the presence of the Na(+)-channel blocker tetrodotoxin (TTX), VX (>/=10 nM) increased the frequency of GABA- and glutamate-mediated miniature postsynaptic currents (MPSCs). This effect of VX was unrelated to cholinesterase inhibition and was Ca(2+) dependent. The lack of effect of VX on MPSC kinetics indicates that VX-induced alterations of evoked and spontaneous currents are exclusively due to alterations of the transmitter release processes. The ability of VX to affect transmitter release in the brain may underlie some of its neurotoxic effects and may provide the basis for the development of therapeutic countermeasures to treat and/or prevent VX-induced neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号