首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malignant peripheral nerve sheath tumours (MPNSTs) are a major cause of mortality in patients with neurofibromatosis 1 (NF1). We have analysed lymphocyte DNA samples from 30 NF1 patients with MPNSTs to determine their underlying constitutional NF1 gene mutations. Mutations were detected in 27/30 (90%) of these patients. NF1 mutations identified included nonsense, missense, frameshift, splice site mutation and single or multi-exonic deletions and with no obvious clustering of the mutations across the gene. Fourteen of the mutations represent novel gene changes. There did not appear to be any relationship between the mutation type and the level of clinical severity observed. Of the 20 patients with high grade MPNSTs, seven patients had small (<20 bp) and multi-exonic deletions and three had small insertions (<20 bp). Several studies have suggested that NF1 patients with a constitutional 1.5 Mb deletion of the NF1 gene have an increased risk of developing malignant peripheral nerve sheath tumours (MPNSTs). None of our patients had a 1.5 Mb deletion. Larger prospective studies are needed to ascertain whether there is a different spectrum of NF1 mutations in NF1 patients with high grade compared to low grade MPNSTs and of patients with the 1.5Mb deletion, in order to determine the true frequency of MPNST in this sub-group of NF1 patients.  相似文献   

2.
3.
4.
Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder characterized predominantly by neurofibromas, café-au-lait spots, and Lisch nodules. The disease is caused by disruptive mutations of the large NF1 gene, with half of cases caused by new mutation. Less than 100 constitutional mutations have thus far been published, ranging from very large deletions to point mutations. We have pursued NF1 mutation analysis by heteroduplex analysis (HDA) and single-strand conformational polymorphism analysis (SSCP) of individual exons. We streamlined these techniques to eliminate the use of radioactivity, to apply both methods to the same PCR product, and to multiplex samples in gels. Applied simultaneously to a set of 67 unrelated NF1 patients, HDA and SSCP have thus far identified 26 mutations and/or variants in 45 of the 59 exons tested. Disease-causing mutations were found in 19% (13/67) of cases studied. Both techniques detected a variety of mutations including splice mutations, insertions, deletions, and point changes, with some overlap in the ability of each method to detect variants. Hum Mutat 9:548–554, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Neurofibromatosis type 2 (NF2) is an autosomal dominant disorder caused by mutations in the NF2 gene. Patients carrying NF2 mutations are predisposed to cerebral and spinal tumors with bilateral vestibular schwannomas as the hallmark. Using single strand conformation polymorphism and temperature gradient gel electrophoresis analysis, we have screened 87 unrelated NF2 patients for mutations in the NF2 gene. In this study, we report phenotypes associated with 14 splice-site mutations carried by 14 propositi and 11 relatives. The mutations were distributed in exons 2, 3, 5, 7, 8, 14, and 15. These splice-site mutations were associated with various phenotypes, from severe to asymptomatic. Phenotypic variation was also observed within families. Mutations downstream from exon 8 resulted more often in mild phenotypes. No meningiomas were found in any of 13 affected or mutation bearing individuals from three families with splice-site mutations of exons 14 and 15. These data suggest that splice-site alteration is a relatively common cause of NF2, and that unlike other mutations the clinical outcomes of splice-site mutations in the NF2 gene are variable. These results add to the growing body of information on genotype–phenotype correlation in NF2. Am. J. Med. Genet. 77:228–233, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
7.
Oral–facial–digital syndrome type 1 (OFD1) is characterised by an X linked dominant mode of inheritance with lethality in males. Clinical features include facial dysmorphism with oral, tooth, and distal abnormalities, polycystic kidney disease, and central nervous system malformations. Large interfamilial and intrafamilial clinical variability has been widely reported, and 18 distinct mutations have been previously reported within OFD1. A French and Belgian collaborative study collected 25 cases from 16 families. OFD1 was analysed using direct sequencing and phenotype–genotype correlation was performed using χ2 test. X inactivation studies were performed on blood lymphocytes. In 11 families, 11 novel mutations, including nine frameshift, one nonsense, and one missense mutation were identified, which spanned nine different exons. A combination of our results with previously reported cases showed that the majority of mutations (65.5%) was located in exons 3, 8, 9, 13, and 16. There was phenotype–genotype correlation between (a) polycystic kidney disease and splice mutations; (b) mental retardation and mutations located in exons 3, 8, 9, 13, and 16; and (c) tooth abnormalities and mutations located in coiled coil domains. Comparing the phenotype of the families with a pathogenic mutation to families with absence of OFD1 mutation, polycystic kidneys and short stature were significantly more frequent in the group with no OFD1 mutation, whereas lingual hamartomas were significantly more frequent in the group with OFD1 mutation. Finally, an X inactivation study showed non‐random X inactivation in a third of the samples. Differential X inactivation between mothers and daughters in two families with high intrafamilial variability was of particular interest. Slight phenotype–genotype correlations were established, and X inactivation study showed that skewed X inactivation could be partially involved in the pathogenesis of intrafamilial clinical variability.  相似文献   

8.
The NF2 tumor suppressor gene, located in chromosome 22q12, is involved in the development of sporadic meningiomas of the nervous system. In order to evaluate the role of the NF2 gene in sporadic meningiomas, we analyzed the entire coding regions of the NF2 gene in a group of 42 sporadic meningiomas: 17 meningothelial, 11 transitional, 11 fibrous, one secretory, one atypical, and one malignant subtype, using denaturing high-performance liquid chromatography (DHPLC) and sequence analysis. Twenty-one mutations were identified in 20 patients with an overall mutation detection rate of 47.6%. The mutations included nine deletions (exons 1, 2, 5, 10, and 12), resulting in a frameshift, four non-sense mutations (exons 1, 2, and 7), four splice errors (exons 4, 5, 7, and 12), two missense mutations (exon 5) and two silent mutations (exon 11). Among these, 14 novel mutations were also identified in the present study. All mutations were noted in the first 12 exons, the region of homology with the ezrin-moesin-radixin protein. Furthermore, an association between NF2 mutations and histologic subtypes were observed; NF2 mutations were more frequent in fibrous meningiomas (8/11, 73%) and transitional meningiomas (6/11, 55%), than in meningothelial variant (5/17, 29%). These results provide evidence that mutations in the NF2 gene play an important role in the development of sporadic meningiomas as well as indicating a different tumorigenesis of these meningioma variants.  相似文献   

9.
Ataxia-telangiectasia (A-T) is an autosomal recessive neurological disorder caused by mutations in the ATM gene. Classical splicing mutations (type I) delete entire exons during pre-mRNA splicing. In this report, we describe nine examples of nonclassical splicing mutations in 12 A-T patients and compare cDNA changes to estimates of splice junction strengths based on maximum entropy modeling. These mutations fall into three categories: pseudoexon insertions (type II), single nucleotide changes within the exon (type III), and intronic changes that disrupt the conserved 3' splice sequence and lead to partial exon deletion (type IV). Four patients with a previously reported type II (pseudoexon) mutation all shared a common founder haplotype. Three patients with apparent missense or silent mutations actually had type III aberrant splicing and partial deletion of an exon. Five patients had type IV mutations that could have been misinterpreted as classical splicing mutations. Instead, their mutations disrupt a splice site and use another AG splice site located nearby within the exon; they lead to partial deletions at the beginning of exons. These nonclassical splicing mutations create frameshifts that result in premature termination codons. Without screening cDNA or using accurate models of splice site strength, the consequences of these genomic mutations cannot be reliably predicted. This may lead to further misinterpretation of genotype-phenotype correlations and may subsequently impact upon gene-based therapeutic approaches.  相似文献   

10.
The high mutation rate at the NF1 locus results in a wide range of molecular abnormalities. The majority of these mutations are private and rare, generating elevated allelic diversity with a restricted number of recurrent mutations. In this study, we have assessed the efficacy of denaturing high-performance liquid chromatography (DHPLC), for detecting mutation in the NF1 gene. DHPLC is a fast and highly sensitive technique based on the detection of heteroduplexes in PCR products by ion pair reverse-phase HPLC under partially denaturing conditions. We established theoretical conditions for DHPLC analysis of all coding exons and splice junctions of the NF1 gene using the WAVEmaker software version 4.1.40 and screened for mutations a panel of 40 unrelated NF1 patients (25 sporadic and 15 familial), genetically uncharacterized. Disruptive mutations were identified in 29 individuals with an overall mutation detection rate of 72.5%. The mutations included eight deletions (exons 4b, 7, 10a, 14, 26, and 31), one insertion (exon 8), nine nonsense mutation (exons 10a, 13, 23.1, 27a, 29, 31, and 36), six missense mutations (exons 15, 16, 17, 24, and 31), four splice errors (exons 11, 14, 36, and 40) and a complex rearrangement within exon 16. Eighteen (62%) of the identified disruptive mutations are novel. Seven unclassified and three previously reported polymorphisms were also detected. None of the missense mutations identified in this study were found after screening of 150 controls. Our results suggest that DHPLC provides an accurate method for the rapid identification of NF1 mutations.  相似文献   

11.
We describe 94 pathogenic NF1 gene alterations in a cohort of 97 Austrian neurofibromatosis type 1 patients meeting the NIH criteria. All mutations were fully characterized at the genomic and mRNA levels. Over half of the patients carried novel mutations, and only a quarter carried recurrent minor-lesion mutations at 16 mutational warm spots. The remaining patients carried NF1 microdeletions (7%) and rare recurring mutations. Thirty-six of the mutations (38%) altered pre-mRNA splicing, and fall into five groups: exon skipping resulting from mutations at authentic splice sites (type I), cryptic exon inclusion caused by deep intronic mutations (type II), creation of de novo splice sites causing loss of exonic sequences (type III), activation of cryptic splice sites upon authentic splice-site disruption (type IV), and exonic sequence alterations causing exon skipping (type V). Extensive in silico analyses of 37 NF1 exons and surrounding intronic sequences suggested that the availability of a cryptic splice site combined with a strong natural upstream 3' splice site (3'ss)is the main determinant of cryptic splice-site activation upon 5' splice-site disruption. Furthermore, the exonic sequences downstream of exonic cryptic 5' splice sites (5'ss) resemble intronic more than exonic sequences with respect to exonic splicing enhancer and silencer density, helping to distinguish between exonic cryptic and pseudo 5'ss. This study provides valuable predictors for the splicing pathway used upon 5'ss mutation, and underscores the importance of using RNA-based techniques, together with methods to identify microdeletions and intragenic copy-number changes, for effective and reliable NF1 mutation detection.  相似文献   

12.
Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders in humans. NF1 is caused by mutations in the NF1 gene which consists of 57 exons and encodes a GTPase activating protein (GAP), neurofibromin. To date, more than 640 different NF1 mutations have been identified and registered in the Human Gene Mutation Database (HGMD). In order to assess the NF1 mutational spectrum in Korean NF1 patients, we screened 23 unrelated Korean NF1 patients for mutations in the coding region and splice sites of the NF1 gene. We have identified 21 distinct NF1 mutations in 22 patients. The mutations included 10 single base substitutions (3 missense and 7 nonsense), 10 splice site mutations, and 1 single base deletion. Eight mutations have been previously identified and thirteen mutations were novel. The mutations are evenly distributed across exon 3 through intron 47 of the NF1 gene and no mutational hot spots were found. This analysis revealed a wide spectrum of NF1 mutations in Korean patients. A genotype- phenotype correlation analysis suggests that there is no clear relationship between specific NF1 mutations and clinical features of the disease.  相似文献   

13.
Neurofibromatosis type 2 (NF2) is a monogenic dominantly inherited disease that predisposes to the development of tumors of the nervous system, particularly meningiomas and schwannomas. The gene which, when altered, causes NF2, is localized on chromosome 22 and has recently been identified. The NF2 gene is also the site of somatic mutation in tumors, suggesting that it might have a tumor suppressor activity. We here report a screening method for the detection of point mutations in NF2 which takes advantage of denaturing gradient gel electrophoresis (DGGE). This method efficiently screens 95% of the coding sequence and 90% of intron/exon junctions. When applied to 91 unrelated NF2 patients, it enabled the identification of 32 germ-line mutations. Since mutations are found in only one third of the patients, it is expected that mutations or deletions affecting the promoter and/or intronic regions of the NF2 gene occur frequently. The characterized mutations are preferentially located within the 5° half of the gene. Most of them are predicted to lead to the synthesis of a truncated protein. A search for genotype/phenotype correlations showed that, at least in this series of patients, mild manifestations of the disease were associated with mutations which preserve the C-terminal end of the protein.  相似文献   

14.
Constitutional heterozygous inactivating mutations in the neurofibromatosis 2 (NF2) tumor suppressor gene cause the autosomal dominant disease NF2, and biallelic inactivating somatic NF2 mutations are found in a high proportion of unilateral sporadic vestibular schwannoma (USVS) and sporadic meningioma. We surveyed the distributions of constitutional NF2 mutations in 823 NF2 families, 278 somatic NF2 mutations in USVS, and 208 somatic NF2 mutations in sporadic meningioma. Based on the available NF2 mutation data, the most dominant influence on the spectra of mutations in exons 1-15 are C>T transitions that change arginine codons (CGA) to stop codons (TGA) due to spontaneous deamination of methylcytosine to thymine in CpG dinucleotides. The paucity of reported mutations in exon 9 and the absence of reported mutations in exons 16 and 17 may be related to structure-function relationships in the NF2 protein.  相似文献   

15.
Desmin splice variants causing cardiac and skeletal myopathy   总被引:8,自引:0,他引:8  
Desmin myopathy is a hereditary or sporadic cardiac and skeletal myopathy characterised by intracytoplasmic accumulation of desmin reactive deposits in muscle cells. We have characterised novel splice site mutations in the gene desmin resulting in deletion of the entire exon 3 during the pre-mRNA splicing. Sequencing of cDNA and genomic DNA identified a heterozygous de novo A to G change at the +3 position of the splice donor site of intron 3 (IVS3+3A→G) in a patient with sporadic skeletal and cardiac myopathy. A G to A transition at the highly conserved -1 nucleotide position of intron 2 affecting the splice acceptor site (IVS2-1G→A) was found in an unrelated patient with a similar phenotype. Expression of genomic DNA fragments carrying the IVS3+3A→G and IVS2-1G→A mutations confirmed that these mutations cause exon 3 deletion. Aberrant splicing leads to an in frame deletion of 32 complete codons and is predicted to result in mutant desmin lacking 32 amino acids from the 1B segment of the alpha helical rod. Functional analysis of the mutant desmin in SW13 (vim-) cells showed aggregation of abnormal coarse clumps of desmin positive material dispersed throughout the cytoplasm. This is the first report on the pathogenic potentials of splice site mutations in the desmin gene.


Keywords: cardiac and skeletal myopathy; desmin splice site mutations; expression study; genotype-phenotype correlation  相似文献   

16.
We studied the NF1 gene in 93 unrelated patients with neurofibromatosis type1, focusing the analysis on four exons that contain the highest number of possible mutations occurring at CpG sites. We used denaturing gradient gel electrophoresis to analyse exons 16, 28, 29 and 49, which contain 45 (25%) of the 183 possible mutations that could occur at the 120 CpG dinucleotides of the coding sequence. Six different mutations were identified, five of which are novel: two truncating mutations, W1810X and 5448insG, located in exon29; two splice defects leading to exon29 skipping, 5206-2A>G and 5546G>A; and one missense mutation, L844F, located in exon16. The already described R1748X mutation located in exon29 was found in two unrelated patients. The 5546G>A and R1748X mutations are located at CpG sites, whereas the W1810X involves a CpNpG site. Four novel polymorphisms, which may be helpful for family studies, were also identified. Overall, all but one mutations were found in exon29, a result which suggests that all the CpG sites of the NF1 coding sequence do not have the same mutability, and that exon29, the most CpG-rich exon, contains mutational hotspots associated with NF1.  相似文献   

17.
Neurofibromatosis 2 (NF2) is an inherited cancer syndrome resulting from mutations in the NF2 tumor suppressor gene. Analysis of NF2 mutations has revealed some general genotype-phenotype correlations. Severe disease has been associated with mutations that produce a premature termination while more mild disease has been associated with missense mutations. Here, we provide experimental proof for these genotype-phenotype correlations by demonstrating that nonsense mutations fail to produce stable merlin protein while missense mutations result in the generation of merlin proteins defective in negative growth regulation. This inability to suppress cell growth may result from defects in the function of merlin at several levels, including failure to form an intramolecular complex. Based on these findings, we propose a model for merlin growth suppression that provides a framework for analyzing NF2 patient mutations and merlin function.   相似文献   

18.
Screening for large mutations of the NF2 gene   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
Neurofibromatosis 2 (NF2) is a severe autosomal dominant disorder that predisposes to multiple tumours of the nervous system. About half of all patients are founders with clinically unaffected parents. The purpose of the present study was to examine the extent to which mosaicism is present in NF2 founders. A total of 233 NF2 founders with bilateral vestibular schwannomas (BVS) were screened by exon scanning. NF2 mutations were detected in the blood samples of 122 patients (52%). In 10 of the 122 cases, the ratio of mutant to normal alleles was obviously less than 1, suggesting mosaicism. Tumour specimens were available from 35 of the 111 subjects in whom no mutation could be detected in blood specimens. Mutational analysis by exon scanning detected typical NF2 mutations in 21 of the 35 tumours. In nine subjects, the alterations found in tumours could be confirmed to be the constitutional mutation based on finding of identical mutations in pathologically and/or anatomically distinct second tumours. In six other subjects with only a single tumour available, allelic loss of the NF2 gene was found in addition to the mutation in each tumour, suggesting that either the mutation or the deletion of the NF2 gene is probably the constitutional genetic alteration. Our results suggest that failure to find constitutional mutations in blood specimen from these 15 patients was not because of the limitation of the applied screening technique, but the lack of the mutations in their leucocytes, best explained by mosaicism. Extrapolating the rate (15/35 = 43%) of mosaicism in these 35 cases to the 111 NF2 founders with no constitutional NF2 mutations found in their blood, we inferred 48 mosaic subjects (111 x 0.429). Adding the 10 mosaic cases detected directly in blood specimens, we estimate the rate of mosaicism to be 24.8% (58/233) in our cohort of 233 NF2 founders with bilateral vestibular schwannomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号