首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kao SJ  Lei HC  Kuo CT  Chang MS  Chen BC  Chang YC  Chiu WT  Lin CH 《Immunology》2005,115(3):366-374
We previously demonstrated that lipoteichoic acid (LTA) might activate phosphatidylcholine-phospholipase C (PC-PLC) and phosphatidylinositol-phospholipase C (PI-PLC) to induce protein kinase C activation, which in turn initiates nuclear factor-kappaB (NF-kappaB) activation and finally induces inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) release in RAW 264.7 macrophages. In this study, we further investigated the roles of tyrosine kinase, phosphatidylinositiol 3-kinase (PI3K)/Akt, and p38 mitogen-activated protein kinase (MAPK) in LTA-induced iNOS expression and NO release in RAW 264.7 macrophages. Tyrosine kinase inhibitors (genistein and tyrphostin AG126), PI3K inhibitors (wortmannin and LY 294002), and a p38 MAPK inhibitor (SB 203580) attenuated LTA-induced iNOS expression and NO release in concentration-dependent manners. Treatment of RAW 264.7 macrophages with LTA caused time-dependent activations of Akt and p38 MAPK. The LTA-induced Akt activation was inhibited by wortmannin, LY 294002, genistein, and tyrphostin AG126. The LTA-induced p38 MAPK activation was inhibited by genistein, tyrphostin AG126, wortmannin, LY 294002, and SB 203580. The LTA-induced formation of an NF-kappaB-specific DNA-protein complex in the nucleus was inhibited by wortmannin, LY 294002, genistein, tyrphostin AG126, and SB 203580. Treatment of macrophages with LTA caused an increase in kappaB-luciferase activity, and this effect was inhibited by tyrphostin AG126, wortmannin, LY 294002, the Akt dominant negative mutant (AktDN), and SB 203580. Based on those findings, we suggest that LTA might activate the PI3K/Akt pathway through tyrosine kinase to induce p38 MAPK activation, which in turn initiates NF-kappaB activation, and ultimately induces iNOS expression and NO release in RAW 264.7 macrophages.  相似文献   

2.
Macrophage-like RAW264.7 cells are killed by the combination of gamma interferon (IFN-gamma) treatment and infection with Rickettsia prowazekii. The roles of tumor necrosis factor alpha (TNF-alpha), the nitric oxide synthase pathway, and lipopolysaccharide (LPS) in this killing were investigated. R. prowazekii, both the Breinl and Madrid E strains, induced RAW264.7 cells to produce TNF-alpha. However, dead rickettsiae (which cannot kill the IFN-gamma-treated RAW264.7 cells) induced the production of as much TNF-alpha as viable rickettsiae. Inhibition of the production of TNF-alpha (by the addition of actinomycin D or emetine during the rickettsial infection) or neutralization of TNF-alpha (by the addition of polyclonal rabbit anti-mouse TNF-alpha serum both during the IFN-gamma treatment and during the rickettsial infection) did not inhibit the killing of the RAW264.7 cells. Addition of polymyxin B (which inhibits many effects of LPS) during the IFN-gamma treatment did not inhibit the ability of IFN-gamma to prepare the RAW264.7 cells to be killed by R. prowazekii. Suppression of nitrite production by addition of the nitric oxide synthase inhibitor aminoguanidine both during the IFN-gamma treatment and during the rickettsial infection also did not inhibit the killing of the RAW264.7 cells. R. prowazekii-mediated killing of the RAW264.7 cells was dramatically suppressed in cultures treated with IFN-gamma plus LPS compared with that in cultures treated with IFN-gamma alone, and inhibition of nitric oxide synthase restored the rickettsia-induced killing of the RAW264.7 cells in cultures treated with IFN-gamma plus LPS. These data indicate that (i) TNF-alpha, LPS, and the nitric oxide synthase pathway are not required in order for IFN-gamma to prepare RAW264.7 cells to be killed by R. prowazekii; (ii) neither TNF-alpha nor the nitric oxide synthase pathway is responsible for the killing of the IFN-gamma-treated RAW264.7 cells by R. prowazekii; and (iii) in cultures treated with IFN-gamma plus LPS and then incubated with rickettsiae, a nitric oxide synthase pathway-dependent mechanism inhibits the killing of the RAW264.7 cells.  相似文献   

3.
Signaling pathways associated with tumor necrosis factor (TNF)-alpha-induced intercellular adhesion molecule 1 (ICAM-1) surface and gene expression were investigated in well differentiated normal human bronchial epithelial (NHBE) cells in air-liquid interface primary culture. Cells were exposed to human recombinant TNF-alpha (hrTNF-alpha; 0.015 to 150 ng/ml [specific activity, 2.86 x 10(7) U/mg]). TNF-alpha enhanced ICAM-1 surface expression (measured by flow cytometry) and steady-state messenger RNA (mRNA) levels (assessed by Northern hybridization) in concentration- and time-dependent manners. TNF-alpha-induced ICAM-1 surface and gene expression were both blocked by the RNA polymerase II inhibitor actinomycin D (0.1 microg/ml), and surface expression was attenuated by a neutralizing monoclonal antibody directed against the TNF-alpha receptor p55 (TNF-RI). The intracellular signaling pathway leading to enhanced expression appeared to involve activation of a phospholipase C that hydrolyzes phosphatidylcholine (PC-PLC) because D609, a specific PC-PLC inhibitor, attenuated TNF-alpha-induced increases in production of diacyl-glycerol (DAG), a hydrolysis product of PC-PLC, and also attenuated TNF-alpha enhancement of ICAM-1 surface and gene expression. Because DAG formed by action of PC-PLC can activate protein kinase C (PKC), involvement of PKC was investigated. The specific PKC inhibitor calphostin C blocked both surface and gene expression of ICAM-1 in response to TNF-alpha in a concentration-dependent manner. Finally, TNF-alpha stimulated binding of p65 and/or c-rel complexes to the nuclear factor (NF)-kappaB consensus binding site found on the ICAM-1 promoter, and binding of these complexes was inhibited by D609. The results support the following pathway, whereby TNF-alpha enhances expression of ICAM-1 in NHBE cells: TNF-alpha --> TNF-RI --> PC-PLC --> DAG --> PKC --> (NF-kappaB?) --> ICAM-1 mRNA --> ICAM-1 surface expression.  相似文献   

4.
We determined whether the expression of matrix metalloproteinases (MMP) and tissue inhibitors of MMPs (TIMP) in murine macrophages is regulated by the novel synthetic bacterial lipopeptide JBT 3002. Multilamellar liposomes (MLV) encapsulating JBT 3002 (MLV-JBT 3002) stimulated the production of 72-kDa and 92-kDa (gelatinase A and B) type IV collagenase and inhibited the production of murine metalloelastase (MME) in a dose-dependent manner in murine peritoneal macrophages. MLV-JBT 3002 also induced production of TIMP-1. MLV-JBT 3002 did not induce collagenase production in tumor cells. Priming murine macrophages with interferon-gamma (IFN-gamma) inhibited JBT 3002-stimulated production of both MMP-9 and MMP-2 and further inhibited production of MME by a mechanism involving nitric oxide (NO). This conclusion is based on data showing that IFN-gamma failed to inhibit production of MMP in the presence of L-methyl arginine or in macrophages from inducible nitric oxide synthase knockout mice. These data suggest that JBT 3002 differentially regulates the production of various MMPs and TIMP in macrophages.  相似文献   

5.
Chamomile has long been used in traditional medicine for the treatment of inflammation-related disorders. In this study we investigated the inhibitory effects of chamomile on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and explored its potential anti-inflammatory mechanisms using RAW 264.7 macrophages. Chamomile treatment inhibited LPS-induced NO production and significantly blocked IL-1β, IL-6 and TNFα-induced NO levels in RAW 264.7 macrophages. Chamomile caused reduction in LPS-induced iNOS mRNA and protein expression. In RAW 264.7 macrophages, LPS-induced DNA binding activity of RelA/p65 was significantly inhibited by chamomile, an effect that was mediated through the inhibition of IKKβ, the upstream kinase regulating NF-κB/Rel activity, and degradation of inhibitory factor-κB. These results demonstrate that chamomile inhibits NO production and iNOS gene expression by inhibiting RelA/p65 activation and supports the utilization of chamomile as an effective anti-inflammatory agent.  相似文献   

6.
S Ratnam  S Mookerjea 《Immunology》1998,94(4):560-568
Activated macrophages utilize both reactive oxygen intermediates and reactive oxynitrogen intermediates for defence against microbes. However, simultaneous generation of superoxide (O- 2;) and nitric oxide (NO) could be harmful to host cells due to the production of peroxynitrite, nitrogen dioxide and hydroxyl radicals. Therefore, the regulation of the production of these molecules is critical to host survival. During periods of inflammation or infection, the level of serum C-reactive protein (CRP) increases in many species. Human and rat CRP have been shown to bind and interact with phagocytic cells. Since many of the interactions of CRP involve the binding to the phosphocholine ligand, we studied the role of CRP in O- 2; and NO generation through the modulation of phosphatidylcholine (PC) metabolism in macrophages. This study has shown that, while rat CRP inhibited phorbol myristate acetate- (PMA) induced release of O- 2; by rat macrophages, CRP-treated macrophages released NO in a time- and dose-dependent manner. CRP increased inducible nitric oxide synthase (iNOS) enzyme as well as iNOS mRNA levels in rat macrophages. Tricyclodecan-9-yl-xanthogenate (D609), an inhibitor to PC phospholipase C (PC-PLC), suppressed iNOS induction but enhanced PMA-induced release of O- 2;. These data indicate that an increased level of CRP during periods of inflammation may result in differential regulation of macrophage NADPH oxidase and iNOS activity. Increased hepatic synthesis of CRP may contribute to the mechanism by which phagocytic cells avoid simultaneous O- 2; and NO synthesis, and this could possibly be mediated through the regulation of PC-PLC.  相似文献   

7.
In macrophages, bacterial lipopolysaccharide (LPS) has been noted to mimic certain effects of the sphingolipid ceramide, suggesting that ceramide may be involved in macrophage activation by LPS and/or that LPS utilizes ceramide-related signaling pathways. Putative downstream targets of ceramide include a ceramide-activated (serine/threonine) protein kinase (CAPK) and phosphatase (CAPP). However, the potential role of tyrosine phosphorylation pathways in macrophage response to ceramide has not been examined. Herein we report that cell-permeable analogs of ceramide up-regulate both inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF) production in RAW 264.7 murine macrophages. Herbimycin A and genistein, potent natural inhibitors of protein tyrosine (but not serine/threonine) phosphorylation, block ceramide-induced iNOS and TNF production. Furthermore, the highly src-family selective pyrazolopyrimidine inhibitor PP1 also blocks ceramide-induced iNOS and TNF production in RAW 264.7 cells. We found that PP1 also inhibits ceramide-mediated tyrosine phosphorylation of the src-family kinase hck. These data indicate that src-related tyrosine kinases play a critical role in macrophage activation by ceramide.  相似文献   

8.
Synthetic CpG containing oligodeoxynucleotide (CpG ODN) is recognized for its ability to activate cells to produce several cytokines, such as IL-12 and TNF-alpha. In the present study we have demonstrated that CpG ODN 1826, known for its immunostimulatory activity in the mouse system could, by itself, induce nitric oxide (NO) and inducible nitric oxide synthase (iNOS) production from mouse macrophage cell line (RAW 264.7). Neutralizing antibody against TNF-alpha was not able to inhibit NO or iNOS production from the CpG ODN 1826-activated macrophages, suggesting that although the TNF-alpha was also produced by CpG ODN-activated macrophages, the production of iNOS was not mediated through TNF-alpha. Although both CpG ODN 1826 and lipopolysaccharide (LPS) were able to stimulate NO and iNOS production, the exposure time required for maximum production of NO and iNOS for the CpG ODN 1826-activated macrophages was significantly longer than those activated with LPS. These results were due probably to a delay of NF-kappaB translocation, as indicated by the delay of IkappaBalpha degradation. Moreover, the fact that chloroquine abolished NO and iNOS production from the cells treated with CpG ODN 1826 but not from those treated with LPS suggested that the induction of NO and iNOS production from the cells stimulated with CpG ODN (1826) also required endosomal maturation/acidification.  相似文献   

9.
Under chronic inflammatory conditions, monocytes/macrophages often exhibit a desensitized phenotype, which is characterized by attenuated reactive oxygen species (ROS) production in close association with depletion of protein kinase C alpha (PKC alpha). This behavior has been observed in monocytes derived from septic blood although the stimulus responsible for initiating these alterations remained obscure. Using RAW264.7 macrophages, we provide evidence that components of neither gram-negative nor gram-positive bacteria deplete PKC alpha, whereas the T(H)1 cytokine interferon-gamma (IFNgamma) does. As shown by western blot analysis, lipopolysaccharide, as well as lipoteichoic acid, did not alter PKC alpha expression, but IFNgamma dose-dependently decreased PKC alpha protein level. Taking into consideration that diacylglycerol and Ca2+ as established PKC alpha activators are released in response to phospholipase C activation, we pretreated cells with the phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor tricyclodecan-9-yl potassium xanthate (D609) and the phosphatidylinositol-specific phospholipase C inhibitor 1-(6-(17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). In cells preincubated with D609, IFNgamma-mediated PKC alpha depletion was attenuated, whereas U73122 did not impair this process. Moreover, phorbol 12-myristate 13-acetate-initiated ROS formation, which was attenuated in macrophages pretreated with IFNgamma, was restored in the presence of the PC-PLC inhibitor. These results suggest that IFNgamma causes PC-PLC stimulation, diacylglycerol release, Ca2+ influx, and concomitant PKC alpha activation, which subsequently depletes PKC alpha. Strategies to antagonize IFNgamma might be helpful to prevent monocyte/macrophage desensitization.  相似文献   

10.
目的:明确脂多糖(LPS)预处理后巨噬细胞对后续热灭活革兰氏阳性金黄色葡萄球菌(HKSa)刺激的反应性变化,并探讨其机制。方法:Griess法检测细胞培养上清一氧化氮(NO)含量;实时荧光定量PCR和Western blotting技术检测Toll样受体2(TLR2)mRNA和蛋白表达;双荧光报告基因检测法观察细胞内活化T细胞核因子(NF-AT)转录活性。结果:LPS预处理小鼠巨噬细胞系RAW264.7细胞24 h后,该细胞在后续HKSa刺激下NO生成量显著增加,提示LPS可以致敏巨噬细胞、增强其对HKSa的反应性。LPS可以剂量依赖性地增加细胞内TLR2 mRNA和蛋白表达;LPS预处理也可增强TLR2特异性配体肽聚糖刺激巨噬细胞NO生成的效应;TLR2特异性中和抗体可部分阻断LPS的致敏效应。LPS可促进NF-AT转录激活,细胞内钙离子(Ca2+)螯合剂BAPTA/AM和calcineurin抑制剂cyclosporin A(CsA)均可阻断LPS的作用;BAPTA/AM和CsA均能显著抑制LPS的致敏效应。结论:LPS可以致敏巨噬细胞,从而使其在后续HKSa作用下NO生成量增加;模式识别受体TLR2和Ca2+/calcineurin/NF-AT信号转导途径可能参与了LPS的这一致敏效应。  相似文献   

11.
12.
Lee JY  Lee MS  Choi JW  Shin TS  Woo HC  Kim HR 《Inflammation》2012,35(5):1650-1658
Strong anti-inflammatory activity has been found in Laminaria japonica dichloromethane fraction (LDF); however, the molecular mechanisms underlying its anti-inflammatory activity are not reported. Our results indicated that LDF inhibited LPS-induced nitric oxide and prostaglandin E(2) production in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) in RAW 264.7 cells. Also, levels of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6 were remarkably reduced by LDF in LPS-treated RAW 264.7 cells. LDF greatly inhibited promoter activity of nuclear factor-κB (NF-κB) and translocation of NF-κB subunits by prevention of the degradation of inhibitor κB-α in LPS-treated RAW 264.7 cells (p?相似文献   

13.
Yu PJ  Jin H  Zhang JY  Wang GF  Li JR  Zhu ZG  Tian YX  Wu SY  Xu W  Zhang JJ  Wu SG 《Inflammation》2012,35(3):967-977
Praeruptorin C, D, and E (PC, PD, and PE) are three pyranocoumarins isolated from the dried root of Peucedanum praeruptorum Dunn of Umbelliferae. In the present study, we investigated the anti-inflammatory effect of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Pyranocoumarins significantly inhibited LPS-induced production of nitric oxide, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). The mRNA and protein expressions of inducible nitric oxide synthase, IL-6, and TNF-α were also suppressed by these compounds. Both PD and PE exhibited greater anti-inflammatory activities than PC. Further study showed that pyranocoumarins suppressed the cytoplasmic loss of inhibitor κB-α protein and inhibited the translocation of NF-κB from cytoplasm to nucleus. In addition, pyranocoumarins suppressed LPS-induced STAT3 tyrosine phosphorylation. Taken together, the results suggest that pyranocoumarins may exert anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages through the inhibition of NF-κB and STAT3 activation.  相似文献   

14.
The effect of caspase inhibitors on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 267.4 murine macrophage cells was investigated. Pretreatment of RAW cells with a broad caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK), resulted in a striking reduction in LPS-induced NO production. Z-VAD-FMK inhibited LPS-induced NF-kappaB activation. Furthermore, it blocked phosphorylation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) but not that of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinases. Similarly, a caspase 3-specific inhibitor, Z-Asp-Glu-Val-Asp-fluoromethylketone, inhibited NO production, NF-kappaB activation, and JNK/SAPK phosphorylation in LPS-stimulated RAW cells. The attenuated NO production was due to inhibition of the expression of an inducible-type NO synthase (iNOS). The overexpression of the dominant negative mutant of JNK/SAPK and the addition of a JNK/SAPK inhibitor blocked iNOS expression but did not block LPS-induced caspase 3 activation. It was therefore suggested that the inhibition of caspase 3 might abrogate LPS-induced NO production by preventing the activation of NF-kappaB and JNK/SAPK. The caspase family, especially caspase 3, is likely to play an important role in the signal transduction for iNOS-mediated NO production in LPS-stimulated mouse macrophages.  相似文献   

15.
Licochalcone A (LicA), a major phenolic constituent of the licorice species Glycyrrhiza inflata, exhibits various biological properties, including chemopreventive, anti-bacterial, and anti-spasmodic activity. We report that LicA inhibits inflammatory reactions in macrophages and protects mice from endotoxin shock. Our in vitro experiments showed that LicA suppressed not only the generation of nitric oxide (NO) and prostaglandin (PG)E(2), but also the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 induced by lipopolysaccharide (LPS) in RAW264.7 cells. Similarly, LicA inhibited the production of inflammatory cytokines induced by LPS in RAW264.7 cells, including IL-1 beta and IL-6. In an animal model, LicA protected BALB/c mice from LPS-induced endotoxin shock, possibly through inhibiting the production of inflammatory cytokines and NO. Collectively, LicA inhibited the production of inflammatory mediators and may be a potential target for treatment of various inflammatory diseases.  相似文献   

16.
Tumor necrosis factor (TNF)-alpha, a pluripotent cytokine implicated in the pathogenesis of airway inflammation, has been shown to provoke hypersecretion of mucin by airway epithelial cells in vitro. In this study, we investigated potential signaling pathways mediating TNF-alpha-induced mucin secretion using guinea pig tracheal epithelial (GPTE) cells in air-liquid interface culture. Exogenously applied TNF-alpha (human recombinant) stimulated mucin secretion in a concentration-dependent manner, with maximal effects at 10 to 15 ng/ml (286 to 429 U/ml). The pathway of stimulated secretion appeared to involve generation of intracellular nitric oxide (NO), activation of soluble guanylate cyclase (GC-S), production of cyclic guanosine monophosphate (cGMP), and activation of cGMP-dependent protein kinase (PKG). TNF-alpha increased production of nitrite and nitrate by GPTE cells; both mucin secretion and cGMP production were attenuated by NG-monomethyl-L-arginine (1 mM), a competitive inhibitor of nitric oxide synthase (NOS), or by the GC-S inhibitor LY83583 (50 microM); and mucin secretion in response to TNF-alpha or to the cGMP analogue dibutyryl cGMP (100 and 500 microM) was attenuated by the specific PKG inhibitor KT5823 (1 microM). Increased mucin secretion and increased cGMP production in response to TNF-alpha both appeared to be mediated by a phospholipase C that hydrolyzes phosphatidylcholine (PC-PLC), and by protein kinase C (PKC), since both responses were attenuated by either D609 (10 and 20 microg/ml), a specific PC-PLC inhibitor, or by each of three PKC inhibitors: Calphostin C (0.3 and 0.5 microM), bisindoylmaleimide (GF 109203X, Go 6850; 20 nM), or Ro31-8220 (10 microM). Collectively, the results suggest that TNF-alpha stimulates secretion of mucin by GPTE cells via a mechanism(s) dependent on PC-PLC and PKC, and involving activation of NOS, generation of NO, production of cGMP, and activation of PKG.  相似文献   

17.
The antihistoplasma activity of recombinant murine gamma interferon (rMuIFN-gamma)-treated macrophages of the RAW 264.7 cell line depends on the generation of nitric oxide (NO.) from L-arginine. Macrophages of the P388D1 cell line treated with rMuIFN-gamma do not produce NO. or inhibit the intracellular growth of Histoplasma capsulatum. NO. is generated by the inducible enzyme nitric oxide synthase (iNOS) formed by stimulated macrophages. Northern (RNA) blot analysis of RAW 264.7 cells revealed the expression of iNOS mRNA after exposure to rMuIFN-gamma. In contrast, rMuIFN-gamma-treated P388D1 cells did not produce detectable levels of iNOS. These data suggest that the failure of P388D1 cells to generate NO. and to restrict the intracellular growth of H. capsulatum is due to a lack of expression of iNOS following treatment with rMuIFN-gamma.  相似文献   

18.
19.
The effect of spironolactone (SPIR) on lipopolysaccharide (LPS)-induced production of proinflammatory mediators was examined using RAW 264.7 macrophage-like cells and mouse peritoneal macrophages. SPIR significantly inhibited LPS-induced production of nitric oxide (NO), tumor necrosis factor-α and prostaglandin E2. The inhibition was not mediated by cell death. SPIR reduced the expression of an inducible NO synthase mRNA in response to LPS. SPIR significantly inhibited phosphorylation of p65 nuclear factor (NF)-κB in response to LPS. Furthermore, SPIR inhibited phosphorylation of IκB kinase (IKK) as an upstream molecule of NF-κB in response to LPS. LPS did not induce the production of aldosterone in RAW 264.7 cells. Taken together, SPIR is suggested to inhibit LPS-induced proinflammatory mediators via inactivation of IKK/NF-κB in LPS signaling.  相似文献   

20.
Methylsulfonylmethane (MSM) is a non-toxic, natural organosulfur compound, which is known to possess antioxidant and anti-inflammatory activities. In recent years, MSM has been widely used as a dietary supplement for its beneficial effects against various diseases, especially arthritis. Despite being a popular supplement product, the mechanism of action of MSM is not well known. This study was designed to investigate the effects of MSM on cytotoxic signals induced by lipopolysaccharide (LPS) and interferon-gamma (IFN-γ) in RAW 264.7 macrophage-like cells. The results showed that MSM reversed apoptosis of RAW 264.7 macrophage-like cells at non-cytotoxic concentrations probably through the modulation of apoptotic proteins. After pre-treatment of cells with non-toxic doses of MSM; caspase-3 activation, p53 accumulation, cytochrome c release and Bax/Bcl-2 ratio were significantly decreased and full length poly ADP-ribose polymerase (PARP) was significantly increased. In addition, the loss of mitochondrial membrane potential was decreased with MSM pretreatment in activated macrophages. Since excess nitric oxide production causes apoptosis of macrophages, anti-apoptotic effects of MSM are thought to be mediated by its inhibitor effects on inducible nitric oxide synthase (iNOS) protein and nitric oxide levels. More interestingly, higher doses of MSM exhibited biphasic effects, inhibited cell viability, induced apoptosis of macrophages, increased caspase-3 activity and PARP cleavage. Thus, our results reveal the molecular mechanism of of MSM indicating that MSM supplementation may be beneficial for complications related to nitric oxide-dependent apoptosis in inflammatory conditions. However, the optimum concentration of MSM must be chosen carefully to elicit the desired effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号