首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The common hepatic branch of the vagus nerve is a two-way highway of communication between the brain and the liver, duodenum, stomach and pancreas that regulates many aspects of food intake and metabolism. In this study, we utilized the afferent-specific neurotoxin capsaicin to examine if common hepatic vagal sensory afferents regulate lard intake. Rats implanted with a corticosterone pellet were made diabetic using streptozotocin (STZ) and a subset received steady-state exogenous insulin replacement into the superior mesenteric vein. These were compared with non-diabetic counterparts. Each group was then subdivided into those whose common hepatic branch of the vagus was treated with vehicle or capsaicin. Five days after surgery, the rats were offered the choice of chow and lard to consume for a further 5 days. The STZ-diabetic rats ate significantly less lard than the non-diabetic rats. Capsaicin treatment restored lard intake to that of the insulin-replaced, STZ-diabetic rats, but modified neither chow nor total caloric intake. This increased lard intake led to selective fat deposition into the mesenteric white adipose tissue depot, as opposed to an increase in all visceral fat pad depots evident after insulin replacement-induced lard intake. Capsaicin treatment also increased the levels of circulating glucose and triglycerides and negated the actions of insulin on these and free fatty acids and ketone bodies. Collectively, these data suggest that afferent signalling through the common hepatic branch of the vagus inhibits lard, but not chow, intake, directs fat deposition and regulates plasma metabolite levels.  相似文献   

2.
Food intake and body weight gain of male adult Wistar rats were examined in two groups of animals. One group (n = 14) was allowed to select its diet from separate sources of protein (casein, 3.1 kcal/g), fat (lard and sunflower oil, 7.9 kcal/g) and carbohydrate (CHO, starch and sucrose, 3.3 kcal/g). Another group (n = 10) received a nutritionally complete diet (3.3 kcal/g). After 2 weeks of adaptation to the diets, body weights and meal patterns were recorded for at least 4 days. The total caloric intake was nearly identical for the two groups of rats. Rats given dietary choice gained less weight over 4 days than rats fed chow and showed reduced feed efficiency. During the 24-h period, self-selecting rats consumed 20.8% of calories as proteins, 21% as fats and 58.2% as CHO. Self-selecting rats ate significantly less calories during the day than did rats given chow. The chow diet consisting of 17.3% calories as protein, 7.6% as fat and 75.1% as CHO. When comparing the self-selecting group nutrient intakes to those of chow-fed group it was observed that 24-h protein calorie intakes were identical in both groups. Fat intake was significantly higher and CHO reduced as compared to chow-fed rats. During the day, CHO intake was higher in self-selecting rats, and fat intake was not significantly reduced. During the night, protein and fat intakes were significantly higher in self-selecting rats, while CHO intake was significantly decreased, particularly in the last periods of the night.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Based on observed phenotypic differences in growth and ACTH responses to stress in Sprague Dawley rats obtained from different vendors, we ran head-to-head comparisons on rats obtained from three different vendors, Harlan, Charles River, and Simonsen, with respect to baseline phenotypic differences and a metabolic feedback hypothesis of hypothalamo-pituitary-adrenal (HPA) regulation. Charles River and Harlan rats gained weight faster than Simonsen rats, but chow intake standardized for body weight was not increased, consistent with their greater caloric efficiency. Weight gain was inversely related with mean daily temperatures, without differences in activity levels. Half of the animals given lard and 32% sucrose solutions in addition to chow increased caloric intake and core temperature, decreased caloric efficiency, and increased fat depots, leptin, and in Simonsen rats, insulin. A 5-day regimen of once-daily 2-h restraint decreased feeding and caloric efficiency. Rats from two vendors with the availability of sucrose and lard, Charles River and Simonsen, showed blunted HPA responses to restraint compared to chow controls, whereas the Harlans exhibited no adrenocorticotropin (ACTH) response and an amplified adrenocortical response on the high-energy diet compared to chow controls. Substantial phenotypic differences exist between Sprague Dawley rats from different vendors with respect to metabolism and HPA function. The metabolic feedback hypothesis was supported in two of the three vendors' rats.  相似文献   

4.
We examined whether dietary supplementation of hydroxycitrate (HCA), a competitive inhibitor of the extramitochondrial enzyme ATP-citrate-lyase, which inhibits lipogenesis, reduces food intake and body weight regain in rats after 10-15% weight loss. In four experiments, 24 male rats were fed restrictively (10 g/day) for 10 days and then given ad lib access to one of four different diets (HI-Suc=high sucrose; HI-Glu=high glucose; Chow=grounded standard rat chow; HI-Glu+Fat=high glucose+fat) varying in the content of fat and low molecular carbohydrates for the following 10 days. For half of the rats (n=12), the ad lib diet was supplemented with 3% (w/w) HCA. HCA reduced body weight regain with all diets except Chow. HCA also reduced food intake temporarily with three of the four tested diets. The suppressive effect of HCA on food intake was particularly strong with the HI-Glu+Fat diet (fat=24% of energy). With Diet HI-Glu and HI-Glu+Fat HCA reduced the feed conversion efficiency (cumulative body weight regain (g)/cumulative food intake (MJ)) during the 10 ad lib days, suggesting that it also increased energy expenditure. This effect seemed to be positively related to the glucose content of the diet. All in all, HCA reduced body weight regain after substantial body weight loss, and the effects are presumably linked to its inhibiting effect on lipogenesis, but the exact mechanism still has to be determined.  相似文献   

5.
Adult female rats were allowed to self-select their diet from separate sources of fat, protein, and carbohydrate (starch). Other rats were fed a composite diet that matched the nutrient composition chosen by the self-selecting rats (50% fat, 28% protein, 22% carbohydrate) or a low-fat, high-carbohydrate chow diet. Half of the rats in each diet condition were given access to a 32% sucrose solution for 30 days. Sucrose availability increased total caloric intake (approximately 20%) and body weight gain in all three groups compared to control groups not fed the sucrose solution. The selection animals compensated for their sucrose intake by reducing their fat intake, and to a lesser degree, their starch intake; protein intake was the least affected by sucrose availability. The selection rats consumed less sucrose than the chow-fed rats and displayed a smaller increase in weight, relative to controls, than the chow-fed rats. These differences were attributed to the high-fat intake of the selection animals since similar results were obtained with the rats fed the composite diet. In particular, both the selection and composite diets produced mild obesity in the absence of sucrose. The results demonstrate that sucrose-induced overeating and overweight is not an artifact of restraining the diet choices of rats to a pure sugar and a nutritionally complete diet.  相似文献   

6.
Streptozotocin-diabetic male rats were hyperphagic relative to nondiabetic controls when offered only high carbohydrate (CHO) laboratory chow. Diabetics and controls ate about the same amount of high fat diets made from 67% w/w chow and 33% either coconut oil (saturated) or safflower oil (unsaturated). However, when offered a simultaneous choice of high fat diets and chow, nondiabetics and low dose (35 mg/kg) streptozotocin-diabetics showed a preference for the high fat diet: in contrast the high dose (65 mg/kg) streptozotocin diabetics developed a preference for chow. When pairs of isocaloric synthetic diets were offered, diabetics again preferred low fat/high CHO to high fat/low CHO diets, but the actual intake of fat was not constant across different diet pairs. Nondiabetics also selected away from the high fat diets in these synthetic diet pairs, even when saccharin was added to the high fat diet in an attempt to equate its sweetness with that of the paired low fat-high CHO diet. Plasma ketone levels of diabetics during obligatory high fat diet consumption were negatively correlated with their subsequent preference for the fat diet over simultaneously-offered chow. These data show that strong dietary preferences do not develop for fat in diabetics and suggest that high fat diets do not have net beneficial postingestional effects in these rats.  相似文献   

7.
The effect of liver denervation on the consumption of various diets by rats   总被引:1,自引:0,他引:1  
Liver afferents have been proposed to influence food intake control, however, previous studies have shown that chow (pellet) intake is apparently not altered in total liver denervated rats. The present study explored whether total liver denervation could alter the rats' intake of various diets other than chow pellets. Total liver denervations were verified using staining histological and monoamine histofluorescence techniques. The denervated and sham operated rats were given short-term (4-6 days) exposure to four diets: (diet 1, chow plus a 32% w/v sucrose-water solution; diet 2, 1:1 mixture of powdered chow and granular glucose; diet 3, 33% w/w Crisco and powdered chow mixture and diet 4, a 5% w/v glucose-water solution plus chow. Body weight gains were not affected-by either surgery or diet exposure. Daily consumptions of the diets were similar in both groups, nevertheless, there was a trend for the denervated rats to consume slightly more of a high fat diet, which lends support for one hypothesized liver satiety mechanism. Also, the denervated rats consumed less (an average 5 kcal/day) of the 5% glucose solution (one hypothesis tested would predict an increase consumption of glucose by the denervated rats). Thus the liver may play a role, albeit small, through several ill defined mechanism(s) in the regulation of feeding.  相似文献   

8.
Recent work suggested that the energy intake and weight gain of rats maintained on chow and 32% sucrose solution could be increased by simply offering more sources of sucrose [Tordoff M.G. Obesity by choice: the powerful influence of nutrient availability on nutrient intake. Am J Physiol 2002;282:R1536-R1539.]. In Experiment 1 this procedure was replicated but the effect was not: rats given one bottle of sucrose and five bottles of water consumed as much sucrose as those given five bottles of sucrose and one of water. Adding different flavors to the sucrose did not increase intakes further in Experiment 2. The relative potency of sucrose and other optional foods was studied in Experiment 3. Sucrose solution stimulated more overeating and weight gain than fat (vegetable shortening), and offering both sucrose and shortening did not generate further increases in energy intake. Finally, foods commonly used to produce overeating and weight gain were compared. Sucrose was less effective than a high-fat milk diet, and offering cookies in addition to the milk did not increase energy intake further. The nature of optional foods (nutrient composition and physical form) was markedly more important than the number of food sources available to the animals, and is a better contender as the reason for "obesity by choice".  相似文献   

9.
Binge eating has been associated with stress responses. Data in rats suggest that activation of the hypothalamic-pituitary-adrenal (HPA) axis is suppressed by consumption of a high sucrose diet, and is increased with exposure to a high fat diet. Additionally, the choice to consume a highly palatable food following exposure to a stressor results in reduced corticosterone levels. To test the effects of intermittent access to a high sugar/high fat food on stress hormone levels, rats were given either unrestricted (UR) access to a sucrose-vegetable shortening mixture (SVS) or 2 hour SVS access 7 days (7D) or 3 days (3D) per week for 4 weeks. Rats on the UR and 3D schedules consumed significantly more calories per day than did controls with no access to SVS, and the 7D and 3D rats consumed as many SVS calories in the 2 hour access period as did the UR rats with 24 hour access to SVS. After 4 weeks of access to SVS (UR, 7D, and 3D), rats were briefly restrained. Control and UR rats had elevated corticosterone during and following restraint, whereas there were no differences in corticosterone levels of 7D and 3D rats in response to restraint, as compared to baseline. Post-restraint consumption of chow was significantly decreased in all groups, and consumption of SVS was reduced in the UR, but not the 7D and 3D rats. These data demonstrate that intermittent access to SVS dampens the corticosterone response to restraint stress and that stressful events do not induce bingeing in non-bingeing animals with access to a high sucrose/high fat food.  相似文献   

10.
Weanling rats were fed either a high-fat (30% of calories) or a low-fat (10% of calories) diet for four weeks, after which fat preference was assessed using a choice paradigm. Fat preference was measured during 2-hour intake tests in which three peanut butter/peanut oil mixtures containing 0.50, 0.61, and 0.71 grams fat/gram were offered to each animal. Rats fed the high-fat (HF) diet preferred the highest-fat mixture and consumed more total fat during intake tests than animals fed the low-fat (LF) diet. Intake of NaCl and sucrose solutions was measured during separate intake tests. LF-fed rats drank more NaCl solution than HF-fed rats. Following these tests a subgroup of the LF-fed animals was fed the HF diet, and a subgroup of the HF-fed group was fed the LF diet for a further four weeks. Upon repetition of the intake tests, rats that had been fed the HF diet during the initial four weeks still preferred the highest-fat mixture.  相似文献   

11.
Rats that consume high-energy (HE) diets (i.e., diets high in saturated fats and sugar) show impaired hippocampal-dependent learning and memory (e.g., Kanoski and Davidson (2011) [1]). To further investigate this effect, we trained rats given restricted access to low-fat lab chow on hippocampal-dependent serial feature-negative (FN) and hippocampal-independent simple discrimination problems. When training was completed, Group Chow received ad libitum lab chow. The remaining rats received ad libitum HE diet. Performance on both discrimination problems was tested following 7, 14, 21 and 28 days of HE diet exposure. FN, but not simple discrimination, was abolished initially for all rats, and then re-emerged for Group Chow. For rats fed HE diet, those that weighed the least and had the lowest amount of body fat (HE-diet resistant (HE-DR) rats), performed like Group Chow on both discrimination problems. However, HE diet-induced obese (HE-DIO) rats (i.e., rats that weighed the most weight and had the most body fat) performed like Group Chow on the simple discrimination problem, but were impaired throughout testing on the FN problem. Subsequent assessment of blood-brain barrier (BBB) permeability revealed that concentrations of an exogenously administered dye were elevated in the hippocampus, but not in the striatum or prefrontal cortex for HE-DIO rats relative to the HE-DR and Chow groups. The results indicate that the adverse consequences of HE diet on hippocampal-dependent cognitive functioning are associated with detrimental effects on the BBB and that both of these outcomes vary with sensitivity to HE diet-induced increases in weight and adiposity.  相似文献   

12.
Siberian hamsters increase food intake and hoarding during pregnancy and lactation, perhaps to compensate for large decreases in body fat (approximately 50%). We tested the effects of diet choice on these responses in pregnant, lactating and virgin hamsters housed in a simulated burrow system. Hamsters were offered pellet chow (PC) or a choice of sunflower seeds (SS), rabbit chow (RC) and PC. Pregnant or lactating PC-fed hamsters had increased food intake and hoard size compared with virgins, effects exaggerated by diet self-selection. The pregnancy-induced increases and lactation-induced decreases in body mass were enhanced and diminished by diet self-selection, respectively. Pregnant self-selecting hamsters ate relatively more carbohydrate and less fat and hoarded less carbohydrate and more fat than their virgin counterparts (protein not affected). Lactating and virgin self-selecting hamsters both ate and hoarded relatively more carbohydrate than protein or fat compared with PC-fed hamsters but were not different from each other. Litter and pup sizes were similar at birth, but pups from self-selecting mothers had decreased lipid content (50%) compared with pups from PC-fed mothers, whereas at weaning they were heavier but not fatter. Only lactating PC-fed mothers cannibalized their pups (approximately 60% eaten, 8/10 litters). The pregnancy-induced increased eating and hoarding of carbohydrate may have helped meet immediate energy needs sparing dwindling lipid reserves, whereas the decreased fetal lipid investment may have helped conserve energy in anticipation of the increased demands of lactation. The diet-induced exaggerated caloric intake and food hoard size of lactating hamsters may have promoted pup growth and survival.  相似文献   

13.
The avid consumption of pure carbohydrate solutions, which often results in a distortion of nutrient balance, is generally presumed to be driven by their taste. In the first of two experiments, we examined the effect of consumption cost on rats' intake of three concentrations of sucrose solution (8%, 16%, and 32%) when a nutritionally complete chow was concurrently freely available. In the second experiment, we examined the intake of 24% sucrose solution and chow as the consumption costs of both were varied. Increasing the cost of sucrose resulted in a reduction in the percent calories taken from sucrose; the steepness of the decline in intake with price was inversely related to the sucrose concentration and to the cost of chow. Chow calories were substituted for relatively expensive sucrose calories. An increase in the cost of chow resulted in a reduction in the percent of calories taken from chow and a protein-poor diet. The cost of sucrose did not affect the slope of the chow intake curve, presumably because, despite its sweet taste, sucrose was not a substitute for the protein, fat, and micronutrients in chow. Total caloric intake was conserved in all cases.

Thus, the avid consumption of sucrose solution is curtailed when it is costly; but the degree of change in intake with cost depends on the cost of an alternative food. These results suggest that diet selection involves a comparison not only of the taste and post-ingestive consequences of available foods, but also of the cost of calories and nutrients in the foods. Selection appears to be guided first by caloric requirements and the relative cost of calories, then by nutrient requirements and the relative cost of nutrients, and finally by taste.  相似文献   


14.
Female rats with ventromedial hypothalamic (VMH) lesions, parasagittal hypothalamic knife cuts (KC), or dorsolateral tegmental (DLT) lesions were maintained successively on 0.2 and 0.4% quinine chow, plain chow, pellets, wet mash, and high fat diets (15–45 days each). Only VMH rats overate the 0.2% quinine diet and only KC rats underate the 0.4% quinine diet. Although DLT rats did not overeat the unadulterated chow and pellet diets, as did VMH and KC rats, all three surgical groups attained roughly comparable elevated body weight means after access to the wet mash and high fat diets. Thus, dietary manipulations clearly induce differential patterns of feeding behavior in these three obesity syndromes.  相似文献   

15.
Adult male golden hamsters were maintained on either Purine Rat Chow (Chow diet) or a self-selection diet consisting of high-protein chow, pure fat, and pure carbohydrate (Choice diet). In Experiment 1, animals were deprived of food for single periods of up to 48 hr. Animals on the Chow diet did not increase intake at any time after deprivation; animals on the Choice diet selectively increased their consumption of fat-derived calories and increased their total caloric intake during the first 6 hr of refeeding, but not thereafter. The nature of the diet did not influence the rate at which animals regained weight following deprivation. In Experiment 2, hamsters were placed on food-restriction schedules (access to food either for 1 hr/day only or on alternate days only) until they lost 20% of starting body weight. Chow-fed animals demonstrated little or no change in food intake either during or after food restriction. Hamsters on the Choice diet consumed more calories and lost weight more slowly than did chow-fed animals during 1-hr/day feeding; intake of fat-derived calories was elevated during restriction. Choice hamsters increased total caloric intake only towards the end of the alternate-days restriction schedule. Choice hamsters were hyperphagic following both types of food-restriction schedules, but no increased preference for fat-derived calories was observed. Factors influencing food consumption of hamsters in response to deprivation and restriction are discussed.  相似文献   

16.
Caloric intake, body weight, obesity status (Lee Index) and incorporation of U-14 C-glucose into liver and retroperitoneal fat pad glycogen and lipid were studied in mature female rats that had received bilateral lesions or sham-operations in the dorsomedial hypothalamic nuclei (DMN) after dietary obesity was well established. Their diet consisted of a high-fat-sucrose chow mix, chocolate chip cookies and a drinking fluid of 32% sucrose in tap water. Comparable groups of DMN lesioned rats (DMNL rats) and sham-operated controls were maintained on lab chow pellets and tap water. Prior to the hypothalamic operation, the animals on the high-caloric regimen consumed significantly more calories than the rats on lab chow and also attained commensurately higher body weights and obesity indices. The bulk of the calories consumed during this time was derived from the cookies. Following DMNL, the animals maintained on lab chow became hypophagic and had lower body weights than the sham-operated rats, as has been previously reported. In rats on the high-caloric regimen, DMNL resulted in hyperphagia in comparison to all other groups. The greatest percentage of the calories during this time was derived from the high-fat-sucrose chow mix and sugar water. Correspondingly, DMNL rats on the high-caloric regimen had higher body weights and obesity indices than all other groups. At sacrifice, both a diet and lesion effect were noted in an elevated incorporation of U 14-C glucose in both fat pad and liver lipid and glycogen. The data are interpreted to mean that (1) when a highly palatable, high-caloric diet is available, DMNL do not exert their usual hypophagic and weight-lowering effects; (2) DMNL and control rats show excessive caloric intake when both groups are fed a highly palatable, high-caloric diet in comparison to their chow-fed counterparts. However, DMNL rats fed high-caloric diet also consume significantly more than controls fed this diet; (3) This excessive caloric intake of the DMNL rats possibly predisposes these animals to exaggerated lipogenesis in liver and adipose tissue; (4) the sham-operated controls on the high-caloric regimen also show greater lipogenesis but at a level intermediate between the chow-fed controls and the DMNL rats on the high-caloric diet.  相似文献   

17.
This study was conducted to evaluate whether the composition of carbohydrate or fat diet affects insulin resistance by measuring the muscle glucose transport rate. Both high-sucrose and high-starch diet with or without high-fat decreased insulin-stimulated glucose transport, but there were no significant differences among groups. Calorie intake in both high-sucrose and high-starch diet groups was higher than in chow group. The high-fat high-sucrose diet induced decrease in insulin-stimulated glucose transport was partially improved by supplement with fish oil. Calorie intake in high-fat high-sucrose and fish oil supplemented groups was higher than in chow group. The decreased insulin-stimulated glucose transport was accompanied by the increase in visceral fat mass, plasma triglyceride and insulin levels. These changes were improved by the supplement with fish oil. These results demonstrate that the composition of fat in diet is clearly instrumental in the induction of muscle insulin resistance. However, in high carbohydrate diet, it is likely that the amount of calorie intake may be a more important factor in causing insulin resistance than the composition of carbohydrate. Thus, the compositions of carbohydrate and fat in diet differentially affect on muscle insulin resistance.  相似文献   

18.
Adult male golden hamsters were maintained on either Purina Rat Chow (chow group) or a self-selection diet consisting of high-protein chow, pure carbohydrate, and pure fat (choice group). Animals were injected for 12 consecutive days with either long-acting insulin (20 U/kg for 4 days, 60 U/kg for 4 days, and 100 U/kg for 4 days) or physiological saline. Insulin-injected hamsters under both dietary conditions increased their total caloric consumption by up to 33% and gained significantly more weight than saline-injected controls. Choice hamsters increased their fat intake in response to the 60 and 100 U/kg doses of insulin, but carbohydrate and protein consumption increased only in response to the 100 U/kg dose. Choice hamsters derived approximately 65% of the excess calories ingested during insulin administration from fat, but only 20% from carbohydrate and 15% from protein. Results are related to those previously observed in other species.  相似文献   

19.
The purpose of the present study was to test the hypothesis that short-term alternations of high-fat with normal chow feeding result in higher fat accumulation in liver than continuous intake of the same high-fat diet. Male Sprague-Dawley rats (7 weeks of age) were divided into 3 groups according to diet composition: standard chow (SD; 12,5% kcal as fat), high-fat (HF; 42% kcal as fat), and food cycles (FC) consisting of 10-day alternations between HF and SD diets beginning with the high-fat diet. Rats in each of these 3 groups were sacrificed after 10, 30, and 50 days (n = 10 rats/sub-groups). Energy intake, body weight, liver and muscle relative weights were not significantly (P > 0.05) different between FC- and HF-fed rats. Using the total energy intake for the 50-day period, it was calculated that approximately 30% less calories as fat was ingested in the FC- compared to the HF-fed rats. In spite of this, liver lipid infiltration as well as fat accretion in abdominal adipose tissues were increased (P < 0.01) similarly in FC- and HF-fed rats. Plasma FFA and insulin levels depicted strong tendencies (P < 0.07) to be higher in FC- than in continuous HF-fed rats at the end of the 50-day period. These results indicate that, despite a 30% reduction in ingested lipids, alternations of HF with normal chow diet compared to the continuous hyperlipidic diet caused the same level of infiltration of lipids in the liver and in the abdominal adipose tissues and, to a certain extent, may even result in a larger deterioration of the metabolic profile.  相似文献   

20.
Following training with distinctively flavored nutritive solutions that differ in concentration and thus in caloric value, rats demonstrate flavor-postingestive consequence learning by preferentially consuming one of the flavors in two-bottle tests (both flavors in nutrient-identical solutions.) Experiment 1 investigated whether the relative familiarity of the flavor-nutrient combinations encountered in two-bottle tests contributes to the observed preference. One of the training concentrations (rather than the customary intermediate concentration) was used to present the flavors in testing; thus, one of the flavors was in a familiar context while the other was in an unfamiliar context. The results of two independent trials (rats trained with 1 and 5% sucrose; rats trained with 5 and 40% sucrose) confirmed that two-bottle test preference was not a preference for the familiar flavor-nutrient combination. Experiment 2 examined whether caloric expectancies based upon a previously learned flavor-postingestive consequence association would affect total daily intake. On alternating days, rats consumed 30 mL of dilute (5%) and concentrated (40%) sucrose, each distinctively flavored. When given 30 mL of 22.5% sucrose containing each of the flavors on separate test days, they ate less chow and thus fewer total calories over 24 h when given the flavor previously paired with concentrated sucrose. Experiment 3 replicated the design of Experiment 2 except that fat calories were used instead of sucrose; no significant adjustment of chow intake in extinction tests was noted, even when the number of fat calories used in training was increased (Experiment 4). Thus, rats did not exhibit flavor-cued modulation of chow intake when trained with fat, in contrast to responsivity to flavor cues when trained with sucrose. This differential responding to fat versus carbohydrate calories is consistent with previous observations, in a variety of paradigms, that modulation of caloric intake is less energetically appropriate when ingested foods are high in fat relative to high-carbohydrate foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号