首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of selected single alpha-motoneurons, Renshaw cells (RCs), and Ia inhibitory interneurons (IaINs) during fictive locomotion was recorded via microelectrodes in decerebrate (precollicular-postmammillary) cats in which fictive locomotion was induced by stimulation of the mesencephalic locomotor region. The interrelationships in the timing and frequency of discharge among these three interconnected cell types were determined by comparing their averaged step cycle firing histograms, which were normalized in reference to motoneuron activity recorded in ventral root filaments. Previous findings that RCs are rhythmically active during locomotion and discharge in phase with the motoneurons from which they are excited were confirmed, and further details of the phase relationships between RC and alpha-motoneuron activity during fictive locomotion were obtained. Flexor and extensor RCs became active after the onset of flexor and extensor motoneuron activity, respectively. Maximal activity in extensor RCs occurred at the end of the extension phase coincidental with the onset of hyperpolarization and a decrease in activity in extensor motoneurons. Maximal flexor RC activity occurred during middle to late flexion and was temporally related to the onset of reduced flexor motoneuron activity. The IaINs recorded in the present experiments were rhythmically active during fictive locomotion, as previously reported. The quadriceps IaINs were mainly active during the extension phase of the step cycle, along with extensor RCs. Thus the known inhibition of quadriceps IaINs by RCs coupled to quadriceps and other extensor motoneurons is obviously not sufficient to interfere with the appropriate phasing of IaIN activity and reciprocal inhibition during fictive locomotion, as had been speculated. Most of the quadriceps IaINs analyzed exhibited a decrease in discharge frequency at the end of the extension phase of the step cycle, which was coincidental with increased rates of firing in extensor RCs. These data are consistent with the possibility that extensor RCs contribute to the reduction in quadriceps IaIN discharge at the end of the extension phase of the step cycle. The possibility that IaIN rhythmicity during fictive locomotion arises from periodic inhibition, possibly from Renshaw cells, was tested by stimulating the reciprocal inhibitory pathway throughout the fictive step cycle. The amplitude of Ia inhibitory postsynaptic potentials (IPSPs) varied significantly throughout the fictive step cycle in 14 of the 17 motoneurons tested, and, in 11 of these 14 motoneurons, the Ia IPSPs were maximal during the phase of the step cycle in which the motoneuron was most  相似文献   

2.
We examined whether forelimb and hindlimb phasic afferent input is a prerequisite for the production of avian locomotor patterns. We eliminated phasic afferent feedback through paralysis of a decerebrate animal. The term "fictive" has been used to describe the neural activity associated with spontaneous or evoked motor output during neuromuscular paralysis. We observed that a paralysed decerebrate bird is capable of producing similar locomotor activity patterns as an unparalysed preparation, regardless of whether the "fictive" locomotion is generated spontaneously, or in response to focal electrical and/or neurochemical stimulation of discrete brainstem locomotor regions. Not all aspects of "fictive" locomotor patterns were identical to the locomotion elicited prior to paralysis. The stimulus current threshold necessary to evoke hindlimb locomotion increased from 69 +/- 22 mu A (mean +/- S.D.) prior to paralysis to 185 +/- 87 mu A for "fictive" stepping. For wing activity, the threshold increased from 84 +/- 46 mu A during wing flapping to 228 +/- 148 mu A for "fictive" flight. In addition, the frequency of "fictive" efferent locomotor activity from the leg nerve (1.04 +/- 0.44 Hz) decreased relative to the frequency of leg activity prior to paralysis (1.55 +/- 0.70 Hz). Similarly, the frequency of wing activity decreased from 2.73 +/- 0.73 Hz before paralysis to 1.8 +/- 0.69 Hz after paralysis. Finally flexor burst duration remained constant during treadmill and "fictive" walking while the extensor burst duration was markedly increased during "fictive" walking. Thus, the relative contributions of leg flexor activity to the overall step cycle (burst proportion = burst duration/cycle duration) decreased during evoked "fictive" stepping, while the burst proportion of the leg extensor increased. Afferent feedback therefore appears to modulate leg extensor burst duration more than leg flexor duration. For the wings, the burst proportion of the major wing depressors remained constant before and after paralysis.  相似文献   

3.
A computational model of the mammalian spinal cord circuitry incorporating a two-level central pattern generator (CPG) with separate half-centre rhythm generator (RG) and pattern formation (PF) networks has been developed from observations obtained during fictive locomotion in decerebrate cats. Sensory afferents have been incorporated in the model to study the effects of afferent stimulation on locomotor phase switching and step cycle period and on the firing patterns of flexor and extensor motoneurones. Here we show that this CPG structure can be integrated with reflex circuits to reproduce the reorganization of group I reflex pathways occurring during locomotion. During the extensor phase of fictive locomotion, activation of extensor muscle group I afferents increases extensor motoneurone activity and prolongs the extensor phase. This extensor phase prolongation may occur with or without a resetting of the locomotor cycle, which (according to the model) depends on the degree to which sensory input affects the RG and PF circuits, respectively. The same stimulation delivered during flexion produces a temporary resetting to extension without changing the timing of following locomotor cycles. The model reproduces this behaviour by suggesting that this sensory input influences the PF network without affecting the RG. The model also suggests that the different effects of flexor muscle nerve afferent stimulation observed experimentally (phase prolongation versus resetting) result from opposing influences of flexor group I and II afferents on the PF and RG circuits controlling the activity of flexor and extensor motoneurones. The results of modelling provide insights into proprioceptive control of locomotion.  相似文献   

4.
We examined the features of spontaneous deletions of bursts of motoneuron activity that can occur within otherwise rhythmic alternating flexor and extensor activity during fictive locomotion and scratch in adult decerebrate cats. Deletions of activity were observed both in hindlimb flexor and extensor motoneuron pools during brain stem-stimulation-evoked fictive locomotion but only in extensors during fictive scratch. Paired intracellular motoneuron recordings showed that deletions reduced the depolarization of homonymous motoneurons in qualitatively similar ways. Differences occurred in the extent to which activity in synergist motoneuron pools operating at other joints within the limb was reduced during deletions. The timing of the rhythmic activity that followed a deletion was often at an integer multiple of the preexisting locomotor or scratch cycle period. This maintenance of cycle period was also seen during deletions in which there was a complete failure of motoneuron depolarization. The activity of antagonist motoneurons was usually sustained during deletions with some rhythmic modulation at intervals of the preexisting cycle period. We discuss an organization of the central pattern generator for locomotion and scratch that functions as a single rhythm generator with separate and multiple pattern formation modules for controlling the hyper- and depolarization of subsets of motoneurons within the limb.  相似文献   

5.
Summary We examined modulation of transmission in short-latency, distal hindlimb cutaneous reflex pathways during fictive locomotion in 19 decerebrate cats. Fictive stepping was produced either by electrical stimulation of the mesencephalic locomotor region (MLR) or by administration of Nialamide and 1-DOPA to acutely spinalized animals. Postsynaptic potentials (PSPs) produced by electrical stimulation of low threshold afferents (< 2.5 times threshold) in the superficial peroneal (SP), sural, saphenous or medial plantar nerves were recorded intracellularly from various extensor (n = 28) and flexor (n = 24) motoneurons and averaged throughout the step cycle, together with voltage responses to intrasomatic constant current pulses (in order to monitor relative cell input resistance). Each motoneuron studied displayed rhythmic background oscillations in membrane potential and correlated variations in input resistance. The average input resistance of extensor motoneurons was lowest during mid-flexion, when the cells were relatively hyperpolarized and silent. Conversely, average input resistance of flexor motoneurons was highest during mid-flexion, when they were depolarized and active. The amplitude of the minimum-latency excitatory components of PSPs produced by cutaneous nerve stimulation were measured from computer averaged records representing six subdivisions of the fictive step cycle. Oligosynaptic EPSP components were consistently modulated only in the superficial peroneal responses in flexor motoneurons, which exhibited enhanced amplitude during the flexion phase. With the other skin nerves tested (sural, saphenous, and plantar), no consistent patterns of modulation were observed during fictive locomotion. We conclude that transmission through some, but not all, oligosynaptic excitatory cutaneous pathways is enhanced by premotoneuronal mechanisms during the flexion phase of fictive stepping in several cat hindlimb motor nuclei. The present results suggest that the patterns of interaction between the locomotor central pattern generator and excitatory cutaneous reflex pathways depend on the source of afferent input and on the identity of the target motoneuron population.  相似文献   

6.
1. Presynaptic activity of identified primary afferents from flexor, extensor, and bifunctional hindlimb muscles was studied with intra-axonal recordings during fictive locomotion. Fictive locomotion appeared spontaneously in decorticate cats (n = 9), with stimulation of the mesencephalic locomotor region (n = 4), and in spinal cats injected with clonidine or nialamide and L-DOPA (n = 4). Representative flexor and extensor muscle nerves, recorded to monitor the locomotor pattern and dorsal rootlets of the sixth and seventh lumbar segments, were recorded simultaneously to monitor dorsal root potentials (DRPs). 2. From responses to muscle stretches and, in some instances, twitch contractions of the parent muscle, 75% of the single units examined were putatively identified as spindle afferents (40/53). On the basis of conduction velocity and stimulation threshold, 73% of these were further classified as group I fibers (29/40), the rest as group II fibers. 3. All units (n = 53 with resting potential more negative than -45 mV) showed fluctuations of their membrane potential (up to 1.5 mV) at the rhythm of the fictive locomotion. Subsequent averaging of these fluctuations over several cycles revealed that 89% of all units displayed a predominant wave of depolarization during the flexor phase, followed by a trough of repolarization. In 79% of the units, there was also a second, usually smaller, depolarization during the extensor phase. The relative size of each wave of depolarization could vary with different episodes of fictive locomotion in the same unit and among various afferents from the same muscle in the same experiment. 4. The firing frequency of some afferents from the ankle flexor tibialis anterior (5/16) and the bifunctional muscle posterior biceps-semitendinosus (4/15) was phasically modulated along the fictive step cycle. The maximum frequency always occurred during the flexor phase, i.e., during the largest depolarization of the unit. Because of the absence of phasic sensory input in the curarized animal, we assume that the phasic discharges were generated within the spinal cord and antidromically propagated. Phasic firing was never encountered in afferents from extensor muscles such as triceps surae (0/15) and vastus lateralis (0/4). 5. The results demonstrate that the pattern of rhythmic depolarization accompanying fictive locomotion is similar for the majority of flexor, extensor, and bifunctional group I (and possibly group II) muscle spindle primary afferents. They further indicate that there is a specific phasic modulation of antidromic firing for some flexor and bifunctional muscle spindle afferents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We have examined the linkage between patterns of activity in several hindlimb motor pools and the modulation of oligosynaptic cutaneous reflex pathways during fictive locomotion in decerebrate unanesthetized cats to assess the notion that such linkages can shed light on the structure of the central pattern generator (CPG) for locomotion. We have concentrated attention on the cutaneous reflex pathways that project to the flexor digitorum longus (FDL) motor pool because of that muscle's unique variable behavior during normal and fictive locomotion in the cat. Differential locomotor control of last-order excitatory interneurons in pathways from low-threshold cutaneous afferents in the superficial peroneal and medial plantar afferents to FDL motoneurons is fully documented for the first time. The qualitative patterns of differential control are shown to remain the same whether the FDL muscle is active in early flexion, as usually found, or during the extension phase of fictive locomotion, which is less common during fictive stepping. The patterns of motor pool activity and of reflex pathway modulation indicate that the flexion phase of fictive locomotion has distinct early versus late components. Observations during "normal" and unusual patterns of fictive stepping suggest that some aspects of locomotor pattern formation can be separated from rhythm generation, implying that these two CPG functions may be embodied, at least in part, in distinct neural organizations. The results are discussed in relation to a provisional circuit diagram that could explain the experimental findings.  相似文献   

8.
Commissural interneurons in the lamprey coordinate activity of the hemisegmental oscillators to ensure proper left-right alternation during swimming. The activity of interneuronal axons at the ventral commissure was studied together with potential target motoneurons during fictive locomotion in the isolated lamprey spinal cord. To estimate the unperturbed activity of the interneurons, axonal recordings were chosen because soma recordings inevitably will affect the level of membrane depolarization and thereby spike initiation. Of 227 commissural axons recorded during locomotor activity, 14 produced inhibitory and 3 produced excitatory postsynaptic potentials (PSPs) in target motoneurons. The axons typically fired multiple spikes per locomotor cycle, with approximately 10 Hz sustained frequency. The average shortest spike interval in a burst corresponded to an instantaneous frequency of approximately 50 Hz for both the excitatory and inhibitory axons. The maximum number of spikes per locomotor cycle was inversely related to the locomotor frequency, in accordance with previous observations in the spinal hemicord preparation. In axons that fired multiple spikes per cycle, the mean interspike intervals were in the range in which the amplitude of the slow afterhyperpolarization (sAHP) is large, providing further support for the role of the sAHP in spike timing. One hundred ninety-five axons (86%) fired rhythmically during fictive locomotion, with preferred phase of firing distributed over either the segmental locomotor burst phase (40% of axons) or the transitional phase (between bursts; 60%). Thus in lamprey commissural interneurons, we found a broad distribution of firing rates and phases during fictive locomotion.  相似文献   

9.
Input-resistance changes during fictive locomotion were monitored in a variety of extensor and flexor hindlimb alpha-motoneurons in precollicular, postmammillary decerebrate cats induced to "walk" by electrical stimulation of the mesencephalic locomotor region (MLR). Using intracellular recording techniques and injected hyperpolarizing current pulses, the changes in the motoneuron input resistance recorded at the motoneuron soma were examined during nonlocomoting control periods as well as during the depolarized and hyperpolarized phases of the membrane potential oscillations (locomotor drive potentials, or LDPs) of fictive locomotion. In 28 of the 52 motoneurons examined, no change in the input resistance between the control and locomotor periods was observed. The remainder of the cells displayed a decrease (less than 20%) in input resistance when fictive stepping commenced. Over 80% of all the motoneurons depolarized (mean depolarization 4 mV), whereas only one LG motoneuron hyperpolarized (2 mV) with the onset of stimulation of the MLR. The remaining motoneurons did not display such changes. In 43 out of 52 motoneurons examined, no significant change in the input resistance could be observed between the depolarized and hyperpolarized phases of the step cycle. A decrease in the input resistance during the depolarized phase of the LDP was observed in four LG motoneurons, whereas five other motoneurons (2 LG, 1 TA, 1 PB, and 1 ST) displayed an increased input resistance during the depolarized phase compared with the hyperpolarized phase of locomotion. The data are consistent with the presence of an excitatory synaptic input alternating with an inhibitory input to the motoneuron during the fictive step cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
It has been previously shown that phasic stimulation of group I afferents from ankle and knee extensor muscles may entrain and/or reset the intrinsic locomotor rhythm; these afferents are thus acting on motoneurones through the spinal rhythm generators. It was also concluded that the major part of these effects originates from Golgi tendon organ Ib afferents. Transmission in this pathway to lumbar motoneurones has now been investigated during fictive locomotion in spinal cats injected with nialamide and l-DOPA, and in decerebrate cats with stimulation of the mesencephalic locomotor region. In spinal cats injected with nialamide and l-DOPA, it was possible to evoke long-latency, long-lasting reflexes upon stimulation of high threshold afferents before spontaneous fictive locomotion commenced. During that period, stimulation of ankle and knee extensor group I afferents evoked oligosynaptic excitation of extensor motoneurones, rather than the classical Ib inhibition. Furthermore, a premotoneuronal convergence (spatial facilitation) between this group I excitation and the crossed extensor reflex was established. During fictive locomotion, in both preparations, the transmission in these group I pathways was phasically modulated within the step cycle. During the flexor phase, the group I input cut the depolarised (active) phase in flexor motoneurones and evoked EPSPs in extensor motoneurones; during the extensor phase, the group I input evoked smaller EPSPs in extensor motoneurones and had virtually no effect on flexor motoneurones. The above results suggest that the group I input from extensor muscles is transmitted through the spinal rhythm generator and more particularly, through the extensor half-centre. The locomotor-related group I excitation had a central latency of 3.5–4.0 ms. The excitation from ankle extensors to ankle extensors remained after a spinal transection at the caudal part of L6 segment; the interneurones must therefore be located in the L7 and S1 spinal segments. Candidate interneurones for mediating these actions were recorded extracellularly in lamina VII of the 7th lumbar segment. Responses to different peripheral nerve stimulation (high threshold afferents and group I afferents bilaterally) were in concordance with the convergence studies in motoneurones. The interneurones were rhythmically active in the appropriate phases of the fictive locomotor cycle, as predicted by their response patterns. The synaptic input to, and the projection of these candidate interneurones must be fully identified before their possible role as components of the spinal locomotor network can be evaluated.  相似文献   

11.
An obstacle contacting the dorsal surface of a cat's hind foot during the swing phase of locomotion evokes a reflex (the stumbling corrective reaction) that lifts the foot and extends the ankle to avoid falling. We show that the same sequence of ipsilateral hindlimb motoneuron activity can be evoked in decerebrate cats during fictive locomotion. As recorded in the peripheral nerves, twice threshold intensity stimulation of the cutaneous superficial peroneal (SP) nerve during the flexion phase produced a very brief excitation of ankle flexors (e.g., tibialis anterior and peroneus longus) that was followed by an inhibition for the duration of the stimulus train (10-25 shocks, 200 Hz). Extensor digitorum longus was always, and hip flexor (sartorius) activity was sometimes, inhibited during SP stimulation. At the same time, knee flexor and the normally quiescent ankle extensor motoneurons were recruited (mean latencies 4 and 16 ms) with SP stimulation during fictive stumbling correction. After the stimulus train, ankle extensor activity fell silent, and there was an excitation of hip, knee, and ankle flexors. The ongoing flexion phase was often prolonged. Hip extensors were also recruited in some fictive stumbling trials. Only the SP nerve was effective in evoking stumbling correction. Delivered during extension, SP stimulus trains increased ongoing extensor motoneuron activity as well as increasing ipsilateral hip, knee, and ankle hindlimb flexor activity in the subsequent step cycle. The fictive stumbling corrective reflex seems functionally similar to that evoked in intact, awake animals and involves a fixed pattern of short-latency reflexes as well as actions evoked through the lumbar circuitry responsible for the generation of rhythmic alternating locomotion.  相似文献   

12.
Summary The reflex regulation of stepping is an important factor in adapting the step cycle to changes in the environment. The present experiments have examined the influence of muscle proprioceptors on centrally generated rhythmic locomotor activity in decerebrate unanesthetized cats with a spinal transection at Th12. Fictive locomotion, recorded as alternating activity in hindlimb flexor and extensor nerves, was induced by administration of nialamide (a monoamine oxidase inhibitor) and L-DOPA. Brief electrical stimulation of group I afferents from knee and ankle extensors were effective in resetting fictive locomotion in a coordinated fashion. An extensor group I volley delivered during a flexor burst would abruptly terminate the flexor activity and initiate an extensor burst. The same stimulus given during an extensor burst prolonged the extensor activity while delaying the appearance of the following flexor burst. Intracellular recordings from motoneurones revealed that these actions were mediated at premotoneuronal levels resulting from a distribution of inhibition to centres generating flexor bursts and excitation of centres generating extensor bursts. These results indicate that extensor group I afferents have access to central rhythm generators and suggest that this may be of importance in the reflex regulation of stepping. Experiments utilizing natural stimulation of muscle receptors demonstrate that the group I input to the rhythm generators arises mainly from Golgi tendon organ Ib afferents. Thus an increased load of limb extensors during the stance phase would enhance and prolong extensor activity while simultaneously delaying the transition to the swing phase of the step cycle.  相似文献   

13.
Summary Efferent discharges in muscle nerves of the four limbs were recorded simultaneously during spontaneous fictive locomotion in thalamic cats with the goal of understanding how the central nervous system controls interlimb coordination during stepping. The onset of the bursts of activity in the nerve of a selected flexor muscle in each limb allowed the temporal and the phase relationships between the fictive step cycle of a pair of limbs to be determined. Our main results are the following: 1) the fictive step cycles of the two forelimbs are always strictly alternated whereas the phasing of the step cycles of either the two hindlimbs or pairs of homolateral or diagonal limbs is more variable; 2) the time interval between the onsets of the flexor bursts of one of the two pairs of diagonal limbs is independent of the step cycle duration; 3) distinct patterns of interlimb coordination exist during fictive locomotion; a small number of patterns of coordination involving all four limbs, which correspond to the walking and the trotting gaits in the intact cat, occur very frequently. The results demonstrate that the central nervous system deprived of phasic afferent inputs from the periphery has the capacity to generate most of the patterns of interlimb coordination which occur during real locomotion. They further support the view that the central pattern of interlimb coordination essentially results from diagonal interactions between a forelimb generator for locomotion and a hindlimb one.Abbreviations CD step cycle duration - LF left forelimb - LH left hindlimb - m slope of correlation curve - N number of step cycles - r correlation coefficient - RF right forelimb - RH right hindlimb - Ti time interval  相似文献   

14.
Reflex actions of muscle afferents in hindlimb flexor nerves were examined on ipsilateral motoneurone activity recorded in peripheral nerves during midbrain stimulation-evoked fictive locomotion and during fictive scratch in decerebrate cats. Trains of stimuli (15–30 shocks at 200 Hz) were delivered during the flexion phase at intensities sufficient to activate both group I and II afferents (5 times threshold, T ). In many preparations tibialis anterior (TA) nerve stimulation terminated ongoing flexion and reset the locomotor cycle to extension (19/31 experiments) while extensor digitorum longus (EDL) stimulation increased and prolonged the ongoing flexor phase activity (20/33 preparations). The effects of sartorius, iliopsoas and peroneus longus muscle afferent stimulation were qualitatively similar to those of EDL nerve. Resetting to extension was seen only with higher intensity stimulation (5 T ) while ongoing flexor activity was often enhanced at group I intensity (2 T ) stimulation. The effects of flexor nerve stimulation were qualitatively similar during fictive scratch. Reflex reversals were consistently observed in some fictive locomotor preparations. In those cases, EDL stimulation produced a resetting to extension and TA stimulation prolonged the ongoing flexion phase. Occasionally reflex reversals occurred spontaneously during only one of several stimulus presentations. The variable and opposite actions of flexor afferents on the locomotor step cycle indicate the existence of parallel spinal reflex pathways. A hypothetical organization of reflex pathways from flexor muscle afferents to the spinal pattern generator networks with competing actions of group I and group II afferents on the flexor and extensor portions of this central circuitry is proposed.  相似文献   

15.
In cat and humans, contact between an obstacle and the dorsum of the foot evokes the stumbling corrective reaction (reflex) that lifts the foot to avoid falling. This reflex can also be evoked by short trains of stimuli to the cutaneous superficial peroneal (SP) nerve in decerebrate cats during the flexion phase of fictive locomotion. Here we examine intracellular events in hindlimb motoneurons accompanying stumbling correction. SP stimulation delivered during the flexion phase excites knee flexor motoneurons at short latency [minimum excitatory postsynaptic potential (EPSP) latency 1.8 ms; mean 2.7 ms]. Although a similar short latency excitation occurs in ankle extensors (mean latency, 2.8 ms), recruitment is delayed until successive shocks in the stimulus train overcome the locomotor-related hyperpolarization of ankle extensors. In ankle flexor motoneurons, SP stimulation evokes an inhibition (mean latency, 2.7 ms) that briefly reduces or stops their firing during the flexion phase. There is a phase-dependent modulation of SP-evoked EPSP amplitude as well as latency during locomotion. However, the more obvious change in SP reflex pathways with the onset of fictive locomotion is the reduced inhibition of ankle extensor motoneurons and the increased inhibition of ankle flexors. These results show that the characteristic pattern of hindlimb motoneuron activation during SP nerve-evoked stumbling correction results from 1) di- and trisynaptic excitation of knee flexor and ankle extensor motoneurons; 2) increased inhibitory postsynaptic potentials in ankle flexors and a suppression of inhibition in extensors, 3) sculpting of the short-latency SP postsynaptic effects by motoneuron membrane potential, and 4) longer latency excitatory effects that are likely evoked by lumbar interneurons involved in the generation of fictive locomotion.  相似文献   

16.
Summary The contribution of Renshaw cell (RC) activity to the production of fictive locomotion in the mesencephalic preparation was examined using the nicotinic antagonist mecamylamine (MEC). After the i.v. administration of 3 doses of MEC (1.0 mg/kg) the following observations were made: 1) ventral root (VR) evoked discharge of RCs was decreased by up to 87.7%, 2) recurrent inhibitory postsynaptic potentials recorded in alpha motoneurons were greatly reduced or abolished, and 3) the rhythmic firing of RCs during the fictive step cycle was abolished in 83% of the cells examined. Locomotor drive potentials (LDPs) in motoneurons persisted during the fictive step cycle after MEC administration. Bursts of motoneuron firing during each fictive step cycle were characterized by increased frequency and number of spikes after MEC, although the burst duration was unaltered for similar step cycle lengths. A greater number and frequency of spikes per burst was also observed in Ia inhibitory interneurons (IaINs), which remained rhythmically active after MEC administration. It is concluded that Renshaw cells are not an integral part of the spinal central pattern generator for locomotion, nor do they control the timing of the motoneuron or IaIN bursts of firing during fictive locomotion. The data are consistent with a role for RCs in limiting the firing rates of motoneurons and IaINs during each burst.  相似文献   

17.
Acute low spinal and curarized cats injected with noradrenergic agonists i.v. can elicit an efferent burst pattern which can be recorded in muscle nerve filaments and can be referred to as “fictive locomotion”. This study investigates the effect that feedback, arising from movements in the hip joint, can exert on the central network generating fictive locomotion. The central network is uncoupled from generating any active movements by curarization. The motor pattern could be entrained by applying sinusoidal hip movements, even when a very extensive denervation of the leg had been performed leaving only some of the muscles around the hip and the hip joint innervated. During flexion movements, efferents to different flexor muscles became active and during movements in the reverse direction (extension), efferents to extensors were active. With an increasing movement frequency the onsets of both flexor and extensor bursts were delayed in the movement cycle. The duration of the extensor bursts varied markedly with the movement cycle, whereas pure flexors changed less in burst duration. The frequency range within which the efferent burst activity was entrained in a strict 1:1 relation to the movement varied between 5 to 70% above and below the resting burst period. In preparations with a narrow 1:1 range, a “relative coordination” was encountered outside this range. The flexor burst duration was in these cases dependent on where in the hip movement cycle the bursts appeared.  相似文献   

18.
Acute low spinal and curarized cats injected with noradrenergic agonists i.v. can elicit an efferent burst pattern which can be recorded in muscle nerve filaments and can be referred to as "fictive locomotion". This study investigates the effect that feedback, arising from movements in the hip joint, can exert on the central network generating fictive locomotion. The central network is uncoupled from generating any active movements by curarization. The motor pattern could be entrained by applying sinusoidal hip movements, even when a very extensive denervation of the leg had been performed leaving only some of the muscles around the hip and the hip joint innervated. During flexion movements, efferents to different flexor muscles became active and during movements in the reverse direction (extension), efferents to extensors were active. With an increasing movement frequency the onsets of both flexor and extensor bursts were delayed in the movement cycle. The duration of the extensor bursts varied markedly with the movement cycle, whereas pure flexors changed less in burst duration. The frequency within which the efferent burst activity was entrained in a strict 1:1 relation to the movement varied between 5 to 70% above and below the resting burst period. In preparations with a narrow 1:1 range, a "relative coordination" was encountered outside this range. The flexor burst duration was in these cases dependent on where in the hip movement cycle the bursts appeared.  相似文献   

19.
This review examines the proposition that state-dependent modulation of transmission through spinal reflex pathways can be used as an investigative tool to reveal details about the organization of spinal interneurons into functional circuits. The first set of examples includes the use of spinal and supraspinal lesions, as well as the administration of the drug l-dihydroxyphenylalanine (l-DOPA), to produce different, relatively stable ”states” of the central nervous system (CNS), revealing previously unsuspected spinal pathways activated by the flexor reflex afferents (FRA). The second set of examples deals with the use of fictive locomotion and scratching to investigate the organization of oligosynaptic excitatory and inhibitory reflex pathways from cutaneous and muscle afferents. As in the first set of examples, several hitherto unknown reflex pathways have been found only during the flexion or extension phases of rhythmic locomotion, which are regarded as different CNS states. Differences in the patterns of control can be used to infer the existence of distinct sets of reflex pathway interneurons that have remarkably precise input/output relations. Received: 4 February 1999 / Accepted: 19 April 1999  相似文献   

20.
1. Cutaneous primary afferents were recorded intracellularly during fictive locomotion in decorticated cats with the goal of improving our understanding of how locomotor networks might centrally control the transmission in cutaneous pathways at a presynaptic level. 2. Identified cutaneous axons from superficialis peroneal nerve (SP) or tibialis posterior nerve (TP) were recorded intracellularly together with the electroneurograms (ENGs) of representative flexor and extensor muscle nerves of the hindlimb as well as dorsal root potential from L6 or L7 (DRP). Fictive locomotion occurred spontaneously after decortication (n = 12) or was induced by stimulation of the mesencephalic locomotor region (MLR) (n = 6). 3. The results revealed that all cutaneous axons (82 units with resting potential greater than 45 mV) showed fluctuations of their membrane potential (greater than or equal to 0.5 mV) at the rhythm of the fictive locomotion. The characteristics of fluctuation patterns, common to all cutaneous units, consisted of two depolarization waves per cycle: one related to the flexor activity, the other related to the extensor activity. The flexor-related depolarization was followed by a sharp trough of membrane repolarization. The extensor-related depolarization usually overlapped partly with the flexor-depolarization of the following cycle. The relative size of each depolarization could vary among different afferents of the same nerve in the same animal. Hence, maximal depolarization could occur in different parts of the locomotor cycle, but, for the majority of units (82%), it occurred during the flexor activity. These results were similar for SP and TP units. 4. Twenty percent of the units were discharging with a constant or irregular frequency. Phasic antidromic discharges related to locomotor ENGs were rarely encountered (5/82 units). 5. Linear regression analysis of the temporal relationships between fluctuations of membrane potential of cutaneous axons and locomotor bursts over several cycles showed that the timing of presynaptic events in cutaneous afferents is related to the events of the locomotor output. However, the same type of analysis showed that the amplitude of axonal depolarizations and the amplitude of flexor and extensor locomotor bursts could vary independently. Tight temporal relationships were also found between the depolarizations recorded in cutaneous units and the fluctuations recorded at the dorsal root level (DRP). 6. Based on the assumption that the locomotor fluctuations of cutaneous membrane potential are mediated through the primary afferent depolarization (PAD) pathways associated with presynaptic inhibition, it is proposed that the central pattern generator for locomotion (CPG) could phasically control the efficacy of transmission of cutaneous pathways at a presynaptic level as part of the locomotor program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号