首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
In the present investigation we examined the role of ATP-sensitive potassium (KATP) channel activity in modulating carotid baroreflex (CBR)-induced vasoconstriction in the vasculature of the leg. The CBR control of mean arterial pressure (MAP) and leg vascular conductance (LVC) was determined in seven subjects (25 ± 1 years, mean ± s.e.m. ) using the variable-pressure neck collar technique at rest and during one-legged knee extension exercise. The oral ingestion of glyburide (5 mg) did not change mean arterial pressure (MAP) at rest (86 versus 89 mmHg, P > 0.05), but did appear to increase MAP during exercise (87 versus 92 mmHg, P = 0.053). However, the CBR–MAP function curves were similar at rest before and after glyburide ingestion. The CBR-mediated decrease in LVC observed at rest (∼39%) was attenuated during exercise in the exercising leg (∼15%, P < 0.05). Oral glyburide ingestion partially restored CBR-mediated vasoconstriction in the exercising leg (∼40% restoration, P < 0.05) compared to control exercise. These findings indicate that KATP channel activity modulates sympathetic vasoconstriction in humans and may prove to be an important mechanism by which functional sympatholysis operates in humans during exercise.  相似文献   

6.
Vasoconstrictor responsiveness to acute sympathetic stimulation declines with advancing age in resting skeletal muscle. The purpose of the present study was to determine if age-related reductions in sympathetic vasoconstrictor responsiveness also occur in exercising skeletal muscle. Thirteen younger (20–30 years) and seven older (62–74 years) healthy non-endurance-trained men performed cycle ergometer exercise at ∼60 % of peak oxygen uptake while leg blood flow (femoral vein thermodilution), mean arterial blood pressure (radial artery catheter), and plasma adrenaline and noradrenaline concentrations were measured. After steady state was reached (i.e. ∼4 min), acute sympathetic stimulation was achieved by immersing a hand in ice water for 2–4 min (cold pressor test, CPT). CPT tended to cause a larger increase in mean arterial blood pressure in older men (older (O): 16 ± 3 mmHg; younger (Y): 10 ± 2 mmHg) during exercise, but increases in arterial noradrenaline were similar (O: 2.56 ± 0.96 nM; Y: 1.98 ± 0.40 nM). However, the older men demonstrated a larger percentage reduction in exercising leg vascular conductance (leg blood flow/mean arterial pressure) during CPT compared to younger men (O: -13.6 ± 3.1%; Y: -1.5 ± 4.3%; P = 0.04). Leg blood flow tended to increase in the younger men, but not in the older men ( P = 0.10). These results suggest, in contrast to what has been observed in resting skeletal muscle, that vasoconstrictor responsiveness to sympathetic stimulation is not reduced, but may be augmented in exercising muscle of healthy older humans. This could reflect a reduced ability of local substances (e.g. nitric oxide) to impair vasoconstriction in response to sympathetic stimulation during exercise in older humans.  相似文献   

7.
Arterial spin labeling (ASL) techniques are now recognized as valid tools for providing accurate measurements of cerebral and cardiac perfusion. The labeling process used with most ASL techniques creates two problems, magnetization transfer (MT) effects and arterial transit time effects, that require compensation. The compensation process limits time resolution and hinders absolute quantification. MT effects are particularly problematic in skeletal muscle because they are large and change rapidly during exercise. The protocol presented here was developed specifically for quantification of perfusion in exercising skeletal muscle. The ASL technique that was implemented, FAWSETS, eliminates MT effects and arterial transit times. Localized, single-voxel perfusion measurements were acquired from rat hind limbs at rest, during ischemia and during three different levels of stimulated exercise. The results demonstrate sufficient sensitivity to determine the time constants for perfusion changes at onset of, and during recovery from, exercise and to distinguish the differences in the amplitude of the perfusion response to different levels of exercise. Additional measurements were conducted to demonstrate insensitivity to MT effects. The exercise protocol is easily adaptable to phosphorous magnetic resonance measurements, allowing the possibility to acquire local measurements of perfusion and metabolism from the same tissue in future experiments.  相似文献   

8.
9.
10.
Sympathetic vasoconstriction is normally attenuated in exercising muscles of young men and women. Recent evidence indicates that such modulation, termed functional sympatholysis, may be impaired in older men. Whether a similar impairment occurs in older women, and what role oestrogen deficiency might play in this impairment, are not known. Based on the strong positive correlation between circulating oestrogen levels and functional sympatholysis previously reported in female rats, we hypothesized that sympatholysis would be impaired in oestrogen-deficient postmenopausal women, and that this impairment would be reversed by oestrogen replacement. To test these hypotheses, we measured vasoconstrictor responses in the forearms of pre- and postmenopausal women using near infrared spectroscopy to detect decreases in muscle oxygenation in response to reflex activation of sympathetic nerves evoked by lower body negative pressure (LBNP). In eight premenopausal women, LBNP decreased muscle oxygenation by 20 ± 1% in resting forearm, but only by 3 ± 2% in exercising forearm  ( P < 0.05)  . In contrast, in eight postmenopausal women, LBNP decreased muscle oxygenation by 15 ± 3% in resting forearm, and by 12 ± 4% in exercising forearm  ( P > 0.05)  . After 1 month of transdermal oestradiol replacement in these women, the normal effect of exercise to blunt sympathetic vasoconstriction was restored (rest, −19 ± 3%; exercise, −2 ± 3%;   P < 0.05  ). These data indicate that functional sympatholysis is impaired in oestrogen-deficient postmenopausal women. The effect of short-term unopposed oestrogen replacement to correct this impairment implicates a role for oestrogen in the sympathetic neural control of muscle haemodynamics during exercise.  相似文献   

11.
This study describes the integrated sympathetic/metabolic control of capillary pressure (Pc) and filtration in cat skeletal muscle as studied during graded exercise and superimposed graded (2, 6 and 16 Hz) vasoconstrictor nerve excitation. The applied technique permitted simultaneous analysis of the underlying changes of resistance in the whole vascular bed (RT) and in its large-bore arterial resistance vessels (greater than 25 microns), small arterioles (less than 25 microns) and veins. Graded exercise per se caused graded increases in capillary pressure, which at heavy work exceeded the resting control value by 12.2 mmHg, in turn leading to marked loss of plasma fluid by filtration. Sympathetic nerve stimulation was much more efficient in lowering capillary pressure during exercise than at rest, in spite of an exercise-induced marked attenuation of the vasoconstrictor response (RT). The sympathetically evoked capillary pressure fall per unit resistance increase was larger the greater the degree of exercise vasodilation, implying a highly nonlinear relation between capillary pressure and RT and also between the more direct determinant of capillary pressure the post- to precapillary resistance ratio, and RT. Strenuous exercise in vivo is known to be associated with a markedly increased reflex sympathetic discharge to exercising muscle which has been a puzzling feature in view of its untoward restriction of the exercise hyperaemia response. To the extent the present results are representative for this in vivo situation, they suggest that sympathetic discharge to exercising muscle, in spite of some flow restricting effect, might serve a highly beneficial function, causing effective protection against excessive work-induced rise of capillary pressure and harmful plasma fluid loss into the extravascular space of working muscle.  相似文献   

12.
13.
Average capillary pressure (Pc) close to the venous end (fluid equilibrium point) of the exchange vessels (denoted Pc,v), arterial (PA) and venous pressure, and the rate of net transcapillary fluid flux were continuously recorded in sympathectomized muscle during 30 min of graded exercise and for 30 min in the post-exercise period. Regional changes in colloid osmotic pressure (pi pl) and total osmolality in plasma, the latter reflecting work-induced interstitial hyperosmolality, were measured at intervals. In the control state at rest with a Starling fluid equilibrium, Pc,v averaged 17.6 +/- 0.8 mmHg. Exercise caused a rapid transcapillary plasma fluid loss, the net driving pressure for which in the initial phase of heavy work was 58 mmHg (transcapillary fluid flux divided by the capillary filtration coefficient). This comprised an increase in Pc,v of 16 mmHg, a nonprotein osmotic force (Posm) related to exercise-induced tissue hyperosmolality corresponding to 46 mmHg and an opposing force established by a raised pi pl of 4 mmHg. A theoretical analysis indicated that the main fraction of the osmotic fluid loss passed through transcellular ultrapores and only a minor part through conventional small pores. In spite of the fact that Pc remained high throughout the exercise period, the outward fluid flux gradually declined and a Starling equilibrium was re-established 23 min after the commencement of heavy exercise. This was explained by a gradual decline of Posm and apparently also by a secondary increase in tissue pressure (Pif) and/or a decrease in interstitial colloid osmotic pressure (pi if). Net fluid absorption occurred in the post-exercise period as a result of a gradual decrease in Pc, reversed transcapillary Posm and also maintained high Pif and/or low pi if. Exercise (even light) abolished normal Pc autoregulation, implying that the filtration component of net transcapillary fluid flux becomes distinctly modulated if PA is altered.  相似文献   

14.
15.
Concentrations of glycogen, glucose, glucose-6-phosphate and lactate in the lateral vastus muscle were measured in seven subjects before and after dynamic muscle exercise at a work load of 75% of each subject's maximal working capacity, and with and without intravenous administration of the beta 1-selective beta-adrenoceptor blocking agent, atenolol. Pulmonary oxygen uptake was measured during exercise. Heart rate and arterial blood pressure were measured throughout the study. Arterial concentrations of glucose, lactate and free fatty acids were measured at rest and during exercise. The muscle concentration of glycogen and the extent of glycogen depletion with exercise were not influenced by the beta 1-adrenoceptor blocker. Similarly, there was no change in the muscle concentrations of glucose, glucose-6-phosphate and lactate. Heart rate decreased at rest and during exercise. Arterial blood pressure was not influenced by beta-blockade. Pulmonary oxygen uptake decreased by 6.5%. The exercise induced rise in arterial blood concentration of free fatty acids was abolished by beta 1-selective beta-blockade. It is concluded that the decrease in lactate release from exercising muscles during beta 1-adrenoceptor blockade seen in other studies cannot be explained by an impaired breakdown of muscle glycogen. It may be inferred, however, that a reduced availability of free fatty acids in the exercising muscles during beta 1-selective (and non-selective) beta-blockade may enhance the combustion of pyruvic acid and thereby decrease the production of lactate.  相似文献   

16.
17.
18.
Carotid baroreflex (CBR) function was examined in five men and three women (25 ± 1 years) using the variable-pressure neck collar technique at rest and during dynamic, one-legged knee extension exercise at 7 W and 25 W. The CBR exhibited control of leg vascular conductance (LVC) at rest and during exercise in both an exercising leg (EL) and a non-exercising leg (NEL) across a wide range of pressures from +40 Torr neck pressure (NP) to −80 Torr neck suction (NS). Specifically, increases in LVC (% change) in response to NS were no different across −20 to −80 Torr in either EL or NEL compared to rest, P > 0.05. However, CBR-mediated decreases in percentage LVC in response to NP were attenuated in EL at both 7 W (16 ± 1%) and 25 W (12 ± 1%) compared to rest (40 ± 3%; P < 0.05) as well as compared to responses in the NEL (36 ± 6% at 7 W and 36 ± 7% at 25 W; P < 0.05). This decrease in vascular responsiveness in EL was associated with a reduction in the gain of the percentage muscle sympathetic nerve activity (%MSNA)–%LVC relationship compared to rest ( P < 0.05). Collectively, these data indicate that, despite a clear attenuation of the vascular response to MSNA in the exercising leg, CBR-mediated changes in mean arterial pressure were no different between rest and exercise.  相似文献   

19.
20.
Metabolic characteristics of fibre types in human skeletal muscle.   总被引:14,自引:0,他引:14  
Muscle biopsy samples were obtained from healthy subjects in order to evaluate quantitative differences in single fibres of substrate (glycogen and triglyceride) and ion concentrations (Na+ and K+) as well as enzyme activity levels (succinate-dehydrogenase, SDH; phosphofructokinase, PFK; 3-hydroxyacyl-CoA-dehydrogenase, HAD; myosin ATPase) between human skeletal muscle fibre types. After freeze drying of the muscle specimen fragments of single fibres were dissected out and stained for myofibrillar-ATPase with preincubations at pH's of 10.3, 4.6, 4.35. Type I ("red") and II A,B, and C ("white") fibres could then be identified. Glycogen content was the same in different fibres, whereas triglyceride content was highest in Type I fibres (2-3 X Type II). No significant differences were observed for Na+ and K+ between fibre types. The activity for the enzymes studied were quite different in the fibre types (SDH and HAD, Type I is approximately 1.5 X Type II; PFK Type I is approximately 0.5 X Type II, Myosin ATPase Type I is approxiamtely 0.4 X Type II). The subgroups of Type II fibres were distinguished by differences in both SDH and PFK activities (SDH, Type II C is greater than A is greater than B; PFK, Type II B is greater than A is approximately C). It is concluded that contractile and metabolic characteristics of human skeletal fibres are very similar to many other species. One difference, however, appears to be than no Type II fibres have an oxidative potential higher than Type I fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号