首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Multiple factors including host–microbiota interaction could contribute to the conversion of healthy mucosa to sporadic precancerous lesions. An imbalance of the gut microbiota may be a cause or consequence of this process.

Aim

The goal was to investigate and analyze the composition of gut microbiota during the genesis of precancerous lesions of colorectal cancer.

Methods

To analyze the composition of gut microbiota in the genesis of precancerous lesions, a rat model of 1, 2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) was established. The feces of these rats and healthy rats were collected for 16S rRNA sequencing.

Results

The diversity and density of the rat intestinal microbiota were significantly different between ACF-bearing and non-bearing group. ACF were induced in rats treated with DMH and showed increased expression of the inflammatory cytokines IL-6, IL-8, and TNF-α. Firmicutes was the most predominant phylum in both ACF-bearing and non-bearing group, followed by Bacteroidetes. Interestingly, although the density of Bacteroidetes decreased from the fifth week to the 17th week in both groups, it was significantly reduced in ACF-bearing group at the 13th week (P?<?0.01). At the genus level, no significant difference was observed in the most predominant genus, Lactobacillus. Instead, Bacteroides and Prevotella were significantly less abundant (P?<?0.01), while Akkermansia was significantly more abundant (P?<?0.05) in ACF-bearing group at the 13th week.

Conclusion

Imbalance of the intestinal microbiota existed between ACF-bearing and non-bearing rats, which could be used as biomarker to predict the genesis of precancerous lesions in the gut.
  相似文献   

2.

Background

Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed.

Aim

We attempted to clarify the difference in the gut environment between mice administrated several experimental diets.

Methods

Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator.

Results

Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the Firmicutes phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of Clostridiales, while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium Parabacteroides goldsteinii in the phylum Bacteroidetes. In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17.

Conclusions

The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis.
  相似文献   

3.

Background

Bilophila wadsworthia is a major member of sulfidogenic bacteria in human gut, it was originally recovered from different clinical specimens of intra-abdominal infections and recently was reported potentially linked to different chronic metabolic disorders. However, there is still insufficient understanding on its detailed function and mechanism to date.

Methods

A B. wadsworthia strain was isolated from fresh feces of a latent autoimmune diabetes in adults patient and we investigated its pathogenicity by oral administration to specific-pathogen-free mice. Tissue samples and serum were collected after sacrifice. Stool samples were collected at different time points to profile the gut microbiota.

Results

Bilophila wadsworthia infection resulted in the reduction of body weight and fat mass, apparent hepatosplenomegaly and elevated serum inflammatory factors, including serum amyloid A and interleukin-6, while without significant change of the overall gut microbiota structure.

Conclusions

These results demonstrated that higher amount of B. wadsworthia caused systemic inflammatory response in SPF mice, which adds new evidence to the pathogenicity of this bacterium and implied its potential role to the chronic inflammation related metabolic diseases like diabetes.
  相似文献   

4.

Aims/hypothesis

Dipeptidyl peptidase 4 (DPP-4) inhibitors are agents designed to increase the half-life of incretins. Although they are administered orally, little is known about their effects on the gut microbiota and functions, despite the fact that some bacteria present in the gut microbiota exhibit DPP-4-like activity. Our objective was to study the impact of the DPP-4 inhibitor vildagliptin on gut functions and the intestinal ecosystem in a murine model of obesity induced by a Western diet (WD).

Methods

Twenty seven male C57BL/6J mice were randomised to receive a control diet, a WD (45% kJ from fat and 17% kJ from sucrose) or a WD + vildagliptin (0.6 mg/ml in drinking water) for 8 weeks.

Results

Vildagliptin significantly reduced DPP-4 activity in the caecal content and faeces. Vildagliptin impacted on the composition of the gut microbiota and its metabolic activity. It mainly decreased Oscillibacter spp. (a direct effect independent of DPP-4 activity was shown on cultured O. valericigenes), increased Lactobacillus spp. and propionate, and reduced the ligands of Toll-like receptors 2 and 4. Vildagliptin protected against the reductions in crypt depth and ileal expression of antimicrobial peptides induced by the WD. In the liver, the expression of immune cell populations (Cd3g and Cd11c [also known as Itgax]) and cytokines was decreased in the WD + vildagliptin-fed mice compared with the WD-fed group. Ex vivo exposure of precision-cut liver slices to vildagliptin showed that this response was not related to a direct effect of the drug on the liver tissue.

Conclusions/interpretation

Our study is the first to consider the DPP-4-like activity of the gut microbiota as a target of DPP-4 inhibition. We propose that vildagliptin exerts beneficial effects at the intestinal level in association with modulation of gut microbiota, with consequences for hepatic immunity. If relevant in humans, this could open new therapeutic uses of DPP-4 inhibition to tackle gut dysfunctions in different pathophysiological contexts.

Data availability

The sequences used for analysis can be found in the MG-RAST database under the project name MYNEWGUT3.
  相似文献   

5.

Aims/hypothesis

Despite the current pandemic of metabolic diseases, our understanding of the diverse nature of the development of metabolic alterations in people who eat a high-fat diet (HFD) is still poor. We recently demonstrated a cardio-metabolic adaptation in mice fed an HFD, which was characterised by a specific gut and periodontal microbiota profile. Since the severity of hepatic disease is characterised by specific microRNA (miRNA) signatures and the gut microbiota is a key driver of both hepatic disease and miRNA expression, we analysed the expression of three hepatic miRNA and studied their correlation with hepatic triacylglycerol content and gut microbiota.

Methods

Two cohorts of C57BL/6 4-week-old wild-type (WT) male mice (n?=?62 and n?=?96) were fed an HFD for 3 months to provide a model of metabolic adaptation. Additionally 8-week-old C57BL/6 mice, either WT or of different genotypes, with diverse gut microbiota (ob/ob, Nod1, Cd14 knockout [Cd14KO] and Nod2) or without gut microbiota (axenic mice) were fed a normal chow diet. Following which, glycaemic index, body weight, blood glucose levels and hepatic triacylglycerol levels were measured. Gut (caecum) microbiota taxa were analysed by pyrosequencing. To analyse hepatic miRNA expression, real-time PCR was performed on total extracted miRNA samples. Data were analysed using two-way ANOVA followed by the Dunnett’s post hoc test, or by the unpaired Student’s t test. A cluster analysis and multivariate analyses were also performed.

Results

Our results demonstrated that the expression of miR-181a, miR-666 and miR-21 in primary murine hepatocytes is controlled by lipopolysaccharide in a dose-dependent manner. Of the gut microbiota, Firmicutes were positively correlated and Proteobacteria and Bacteroides acidifaciens were negatively correlated with liver triacylglycerol levels. Furthermore, the relative abundance of Firmicutes was negatively correlated with hepatic expression of miR-666 and miR-21. In contrast, the relative abundance of B. acidifaciens was positively correlated with miR-21.

Conclusions/interpretation

We propose the involvement of hepatic miRNA, liver triacylglycerols and gut microbiota as a new triad that underlies the molecular mechanisms by which gut microbiota governs hepatic pathophysiology during metabolic adaptation to HFD.
  相似文献   

6.

Purpose of Review

Accumulating evidence suggests that gut microbiota affect the development and function of the immune system and may play a role in the pathogenesis of autoimmune diseases. The purpose of this review is to summarize recent studies reporting gastrointestinal microbiota aberrations associated with the systemic sclerosis disease state.

Recent Findings

The studies described herein have identified common changes in gut microbial composition. Specifically, patients with SSc have decreased abundance of beneficial commensal genera (e.g., Faecalibacterium, Clostridium, and Bacteroides) and increased abundance of pathobiont genera (e.g., Fusobacterium, Prevotella, Erwinia). In addition, some studies have linked specific genera with the severity of gastrointestinal symptoms in systemic sclerosis.

Summary

More research is needed to further characterize the gastrointestinal microbiota in systemic sclerosis and understand how microbiota perturbations can affect inflammation, fibrosis, and clinical outcomes. Interventional studies aimed at addressing/correcting these perturbations, either through dietary modification, pro/pre-biotic supplementation, or fecal transplantation, may lead to improved outcomes for patients with systemic sclerosis.
  相似文献   

7.

Purpose of Review

Colonization resistance refers to the innate defense provided by the indigenous microbiota against colonization by pathogenic organisms. We aim to describe how this line of defense is deployed against Clostridium difficile and what the implications are for interventions directed by Antimicrobial Stewardship Programs.

Recent Findings

The indigenous microbiota provides colonization resistance through depletion of nutrients, prevention of access to adherence sites within the gut mucosa, production of inhibitory substances, and stimulation of the host’s immune system. The ability to quantify colonization resistance could provide information regarding periods of maximal vulnerability to colonization with pathogens and also allow the identification of mechanisms of restoration of colonization resistance. Methods utilized to determine the composition of the gut microbiota include sequencing technologies and measurement of concentration of specific bacterial metabolites.

Summary

Use of innovations in the quantification of colonization resistance can expand the role of Antimicrobial Stewardship from prevention of disruption of the indigenous microbiota to restoration of colonization resistance.
  相似文献   

8.

Background

Recently, problems associated with proton pump inhibitor (PPI) use have begun to surface. PPIs influence the gut microbiota; therefore, PPI use may increase the risk of enteric infections and cause bacterial translocation. In this study, we investigated fecal microbiota composition, fecal organic acid concentrations and pH, and gut bacteria in the blood of the same patients before and after PPI use.

Methods

Twenty patients with reflux esophagitis based on endoscopic examination received 8 weeks of treatment with PPIs. To analyze fecal microbiota composition and gut bacteria in blood and organic acid concentrations, 16S and 23S rRNA-targeted quantitative RT-PCR and high-performance liquid chromatography were conducted.

Results

Lactobacillus species were significantly increased at both 4 and 8 weeks after PPI treatment compared with bacterial counts before treatment (P?=?0.011 and P?=?0.002, respectively). Among Lactobacillus spp., counts of the L. gasseri subgroup, L. fermentum, the L. reuteri subgroup, and the L. ruminis subgroup were significantly increased at 4 and 8 weeks after treatment compared with counts before treatment. Streptococcus species were also significantly increased at 4 and 8 weeks after PPI treatment compared with counts before treatment (P?<?0.01 and P?<?0.001, respectively). There was no significant difference in the total organic acid concentrations before and after PPI treatment. Detection rates of bacteria in blood before and after PPI treatment were 22 and 28%, respectively, with no significant differences.

Conclusions

Our quantitative RT-PCR results showed that gut dysbiosis was caused by PPI use, corroborating previous results obtained by metagenomic analysis.
  相似文献   

9.

Purpose of Review

Obesity and diabetes are worldwide epidemics. There is also a growing body of evidence relating the gut microbiome composition to insulin resistance. The purpose of this review is to delineate the studies linking gut microbiota to obesity, metabolic syndrome, and diabetes.

Recent findings

Animal studies as well as proof of concept studies using fecal transplantation demonstrate the pivotal role of the gut microbiota in regulating insulin resistance states and inflammation.

Summary

While we still need to standardize methodologies to study the microbiome, there is an abundance of evidence pointing to the link between gut microbiome, inflammation, and insulin resistance, and future studies should be aimed at identifying unifying mechanisms.
  相似文献   

10.

Background

There are a limited number of studies investigating the type of serum proteins capable of differentiating intraductal papillary mucinous neoplasms from benign or malignant diseases of the pancreas.

Aims

To select proteins able to differentiate intraductal papillary mucinous neoplasms from benign and malignant pancreatic disease using semiquantitative proteomics.

Methods

Serum samples were obtained from 74 patients (19 with type II intraductal papillary mucinous neoplasms, 8 with type I/III intraductal papillary mucinous neoplasms, 24 with chronic pancreatitis, 23 with pancreatic ductal adenocarcinomas) and 21 healthy subjects. Small proteins and peptides were assayed by matrix-assisted laser desorption/ionization for the detection of differentially abundant species possibly related to tumor onset. Serum pancreatic amylase, lipase, carcinoembryonic antigen and carbohydrate antigen 19-9 (CA 19-9) were also assayed.

Results

Twenty-six of 84 peaks detected were dysregulated (7 more abundant and 19 less abundant in the type II intraductal papillary mucinous neoplasms, p < 0.05). Of the differentially abundant peaks, 17 were commonly dysregulated (3 peaks more abundant and 13 less abundant in type II intraductal papillary mucinous neoplasms, and one at  m/z = 9961 at variance), indicating a protein fingerprint shared by types I/III and type II intraductal papillary mucinous neoplasms and pancreatic ductal adenocarcinomas.

Conclusions

These results suggest that our approach can be used to differentiate type II intraductal papillary mucinous neoplasms from type I/III neoplasms, and type II intraductal papillary mucinous neoplasms from pancreatic ductal adenocarcinomas.
  相似文献   

11.

Purpose

There is a high incidence of abnormal sphenoid sinus changes in patients with pituitary apoplexy (PA). Their pathophysiology is currently unexplored and may reflect an inflammatory or infective process. In this preliminary study, we characterised the microbiota of sphenoid sinus mucosa in patients with PA and compared findings to a control group of surgically treated non-functioning pituitary adenomas (NFPAs).

Methods

In this prospective observational study of patients undergoing trans-sphenoidal surgery for PA or NFPA, sphenoid sinus mucosal specimens were microbiologically profiled through PCR-cloning of the 16S rRNA gene.

Results

Ten patients (five with PA and five with NFPAs) with a mean age of 51 years (range 23–71) were included. Differences in the sphenoid sinus microbiota of the PA and NFPA groups were observed. Four PA patients harboured Enterobacteriaceae (Enterobacter spp., N = 3; Escherichia coli, N = 1). In contrast, patients with NFPAs had a sinus microbiota more representative of health, including Staphylococcus epidermidis (N = 2) or Corynebacterium spp. (N = 2).

Conclusions

PA may be associated with an abnormal sphenoid sinus microbiota that is similar to that seen in patients with sphenoid sinusitis.
  相似文献   

12.

Purpose of Review

The microbiome is the term that describes the microbial ecosystem that cohabits an organism such as humans. The microbiome has been implicated in a long list of immune-mediated diseases which include rheumatoid arthritis, ankylosing spondylitis, and even gout. The mechanisms to account for this effect are multiple. The clinical implications from observations on the microbiome and disease are broad.

Recent Findings

A growing number of microbiota constituents such as Prevotella copri, Porphyromonas gingivalis, and Collinsella have been correlated or causally related to rheumatic disease. The microbiome has a marked effect on the immune system. Our understanding of immune pathways modulated by the microbiota such as the induction of T helper 17 (Th17) cells and secretory immunoglobulin A (IgA) responses to segmented filamentous bacteria continues to expand. In addition to the gut microbiome, bacterial communities of other sites such as the mouth, lung, and skin have also been associated with the pathogenesis of rheumatic diseases.

Summary

Strategies to alter the microbiome or to alter the immune activation from the microbiome might play a role in the future therapy for rheumatic diseases.
  相似文献   

13.

Background

The role of microbiota in Crohn’s disease (CD) is increasingly recognized. However, most of the reports are from Western populations. Considering the possible variation from other populations, the aim of this study was to describe the microbiota profile in children with CD in Saudi Arabia, a non-Western developing country population.

Results

Significantly more abundant genera in children with CD included Fusobacterium, Peptostreptococcus, Psychrobacter, and Acinetobacter; whereas the most significantly-depleted genera included Roseburia, Clostridium, Ruminococcus, Ruminoclostridium, Intestinibacter, Mitsuokella, Megasphaera, Streptococcus, Lactobacillus, Turicibacter, and Paludibacter. Alpha diversity was significantly reduced in stool (p?=?0.03) but not in mucosa (p?=?0.31). Beta diversity showed significant difference in community composition between control and CD samples (p?=?0.03).

Conclusion

In this developing country, we found a pattern of microbiota in children with CD similar to Western literature, suggesting a role of recent dietary lifestyle changes in this population on microbiota structure.
  相似文献   

14.

Purpose

To determine the burden of antifungal resistance in fungi over the last 10 years.

Methods

Performance of a semi-nationwide surveillance on antifungal resistance.

Results

We observed a low frequency of azole resistance in Aspergillus fumigatus, a moderate increase of echinocandin resistance in yeasts, and a stable amphotericin B activity in yeasts and molds. Posaconazole resistance in Aspergillus terreus occurred in a few isolates.

Conclusion

The burden of resistance in fungi seems to be low in Tyrol, Austria.
  相似文献   

15.

Background

Disseminated nocardiosis is a rare disease mostly occurring in immunocompromised patients.

Methods

We report a case of disseminated nocardiosis in a diabetic patient with both pulmonary and cutaneous involvement. Nocardia elegans was isolated and identified using the 16s ribosomal RNA gene sequence data.

Results

Clinical improvement was observed within 3 months after initiation of antimicrobial treatment with oral doxycycline, trimethoprim-sulfamethoxazole and intravenous penicillin, but the patient died 5 months later after arbitrary discontinuation of the treatment.

Conclusions

This is the first case report of disseminated nocardiosis caused by Nocardia elegans in China.
  相似文献   

16.

Background

After an environmental disaster, the affected community is at increased risk for persistent abdominal pain but mechanisms are unclear. Therefore, our study aimed to determine association between abdominal pain and poor water, sanitation and hygiene (WaSH) practices, and if small intestinal bacterial overgrowth (SIBO) and/or gut dysbiosis explain IBS, impaired quality of life (QOL), anxiety and/or depression after a major flood.

Results

New onset abdominal pain, IBS based on the Rome III criteria, WaSH practices, QOL, anxiety and/or depression, SIBO (hydrogen breath testing) and stools for metagenomic sequencing were assessed in flood victims. Of 211 participants, 37.9% (n = 80) had abdominal pain and 17% (n = 36) with IBS subtyped diarrhea and/or mixed type (n = 27 or 12.8%) being the most common. Poor WaSH practices and impaired quality of life during flood were significantly associated with IBS. Using linear discriminant analysis effect size method, gut dysbiosis was observed in those with anxiety (Bacteroidetes and Proteobacteria, effect size 4.8), abdominal pain (Fusobacteria, Staphylococcus, Megamonas and Plesiomonas, effect size 4.0) and IBS (Plesiomonas and Trabulsiella, effect size 3.0).

Conclusion

Disturbed gut microbiota because of environmentally-derived organisms may explain persistent abdominal pain and IBS after a major environmental disaster in the presence of poor WaSH practices.
  相似文献   

17.
18.

Background

Recent advances in next-generation sequencing technologies have enabled comprehensive analysis of the gut microbiota, which is closely linked to the health of the host. Consequently, several studies have explored the factors affecting gut microbiota composition. In recent years, increasing number of dog owners are feeding their pets a natural diet i.e., one consisting of bones, raw meat (such as chicken and beef), and vegetables, instead of commercial feed. However, the effect of these diets on the microbiota of dogs (Canis lupus familiaris) is unclear.

Methods and results

Six dogs fed a natural diet and five dogs fed a commercial feed were selected; dog fecal metagenomic DNA samples were analyzed using the Illumina MiSeq platform. Pronounced differences in alpha and beta diversities, and taxonomic composition of the core gut microbiota were observed between the two groups. According to alpha diversity, the number of operational taxonomic units, the richness estimates, and diversity indices of microbiota were significantly higher (p < 0.05) in the natural diet group than in the commercial feed group. Based on beta diversity, most samples clustered together according to the diet type (p = 0.004). Additionally, the core microbiota between the two groups was different at the phylum, family, and species levels. Marked differences in the taxonomic composition of the core microbiota of the two groups were observed at the species level; Clostridium perfringens (p = 0.017) and Fusobacterium varium (p = 0.030) were more abundant in the natural diet group.

Conclusions

The gut microbiota of dogs is significantly influenced by diet type (i.e., natural diet and commercial feed). Specifically, dogs fed a natural diet have more diverse and abundant microbial composition in the gut microbiota than dogs fed a commercial feed. In addition, this study suggests that in dogs fed a natural diet, the potential risk of opportunistic infection could be higher, than in dogs fed a commercial feed. The type of diet might therefore play a key role in animal health by affecting the gut microbiota. This study could be the basis for future gut microbiota research in dogs.
  相似文献   

19.

Background

The intestinal microbiota plays a crucial role in the maintenance of gut homeostasis. Changes in crosstalk between the intestinal epithelial cells, immune cells and the microbiota are critically involved in the development of inflammatory bowel disease. In the experimental mouse model, the development of colitis induced by dextran sulfate sodium (DSS) promotes overgrowth of the opportunistic yeast pathogen Candida glabrata. Conversely, fungal colonization aggravates inflammatory parameters. In the present study, we explored the effect of C. glabrata colonization on the diversity of the gut microbiota in a DSS-induced colitis model, and determined the impact of soluble β-glucans on C. glabrata-host interactions.

Results

Mice were administered a single inoculum of C. glabrata and were exposed to DSS treatment for 2 weeks in order to induce acute colitis. For β-glucan treatment, mice were administered with soluble β-glucans purified from C. glabrata (3?mg per mouse), orally and daily, for 5 days, starting on day 1. The number of C. glabrata colonies and changes in microbiota diversity were assessed in freshly collected stool samples from each tagged mouse, using traditional culture methods based on agar plates. An increase in Escherichia coli and Enterococcus faecalis populations and a reduction in Lactobacillus johnsonii and Bacteroides thetaiotaomicron were observed during colitis development. This decrease in L. johnsonii was significantly accentuated by C. glabrata overgrowth. Oral administration of β-glucans to mice decreased the overgrowth of aerobic bacteria and IL-1β expression while L. johnsonii and B. thetaiotaomicron populations increased significantly. β-glucan treatment increased IL-10 production via PPARγ sensing, promoting the attenuation of colitis and C. glabrata elimination.

Conclusions

This study shows that the colonic inflammation alters the microbial balance, while β-glucan treatment increases the anaerobic bacteria and promotes colitis attenuation and C. glabrata elimination.
  相似文献   

20.

Background

The intestinal microbiome plays an essential role in the development of chronic inflammatory diseases, such as inflammatory bowel disease (IBD) or metabolic disorders.

Objectives

What is the pathophysiological role of the intestine as an interface between bacterial and host functions?

Methods

Recent findings related to intestinal function and microbe–host interactions in the context of inflammatory and metabolic disorders are reviewed.

Results and conclusions

Changes in gut microbiota composition and function (dysbiosis) are associated with a variety of different pathologies. Dysbiosis in combination with the loss of gut barrier and immune functions are shared in inflammatory and metabolic disorders. Causal mechanisms for the interaction of dysbiotic microbial communities in the gut and disease onset require additional clinical and experimental validation including prospective cohort and gnotobiotic animal studies. Fecal microbiota transplantation and targeted microbial therapies are promising strategies for clinical intervention; however many questions need to be addressed including disease-specific selection of donor microbiota or synthetic bacterial consortia, application strategies and risk evaluation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号