首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kruzich PJ  See RE 《Brain research》2000,875(1-2):35-43
A widely postulated mechanism of action for the atypical profile of many novel antipsychotic drugs (APDs) is their relatively high affinity for 5-HT(2) receptors. The present study investigated motor function and striatal dopamine (DA) efflux and metabolism in rats given 21 daily injections of drugs that differed in 5-HT(2) affinity. These drugs included: risperidone (high 5-HT(2A/2C)/high D(2)), clozapine (high 5-HT(2A/2C)/low D(2)), haloperidol (low 5-HT(2A/2C)/high D(2)), haloperidol+ritanserin (selective 5-HT(2A/2C)), or vehicle. Rats injected with haloperidol (0.5 mg/kg) or haloperidol+ritanserin (0.5 mg/kg and 1.0 mg/kg, respectively) showed extreme catalepsy on day 1, but significantly decreased catalepsy when tested again on days 7 and 21. Acute or subchronic risperidone (0.05 or 0.5 mg/kg), clozapine (20 mg/kg), or vehicle did not induce significant catalepsy. Microdialysis performed 24 h after the last injection demonstrated that rats treated with risperidone, clozapine, or vehicle showed similar increases in DA efflux and metabolism following an acute injection of a selective DA D(2/3) antagonist (raclopride, 0.5 mg/kg). DA efflux showed an attenuated response to raclopride in the haloperidol alone group; this effect was less apparent in the haloperidol+ritanserin group. However, both of these groups showed a similar tolerance effect to the raclopride-induced increase in DA metabolites. These results suggest that the profile seen after subchronic risperidone more closely resembles clozapine than haloperidol. While ritanserin reduced the tolerance-like effects of haloperidol on striatal DA efflux, the overall results demonstrate that potent 5-HT(2) blockade alone may not entirely account for the distinctive profile of novel APDs.  相似文献   

2.
The effects of chronic treatment with typical and atypical antipsychotics on acquisition, working memory, motor activity, and rat tardive dyskinesia (TD) were studied in 3- and 18-month-old Sprague-Dawley rats. Acquisition and working memory were studied in eight-arm radial mazes. TD liability of antipsychotic drugs (APD) was evaluated in rat model of TD in which spontaneous repetitive jaw movements (RJM) occur during withdrawal from neuroleptic treatment. Motor behavior was assessed using the traverse beam test. D1 and D2 receptor occupancy was determined in the rat brain during treatment with typical and atypical antipsychotics. Chronic administration of clozapine, haloperidol, and risperidone impaired acquisition of the eight-arm radial maze in both young and aging rats while olanzapine had no effect. Retention tests showed that aging rats made more errors than the adults and that the antipsychotics haloperidol and risperidone significantly impaired retention in both age groups. Evaluation of motor behavior revealed that typical and atypical antipsychotics used in comparable doses in young rats had no effect on motor behavior, whereas in aging rats performance was impaired by clozapine, haloperidol, and risperidone but not by olanzapine. RJM responses were increased during washout from haloperidol treatment in young and aging rats whereas olanzapine, clozapine, and risperidone had no effect. D2 receptor occupancy in haloperidol- and risperidone-treated rats was above 70% while olanzapine and clozapine receptor occupancy was below 70%, which is the threshold for the appearance of extrapyramidal syndrome (EPS) and TD.  相似文献   

3.
The antipsychotics haloperidol and risperidone are widely used in the therapy of schizophrenia. The former drug mainly acts on the dopamine (DA) D(2) receptor whereas risperidone binds to both DA and serotonin (5HT) receptors, particularly in the neurons of striatal and limbic structures. Recent evidence suggests that neurotrophins might also be involved in antipsychotic action in the central nervous system (CNS). We have previously reported that haloperidol and risperidone significantly affect brain nerve growth factor (NGF) level suggesting that these drugs influence the turnover of endogenous growth factors. Brain-derived neurotrophic factor (BDNF) supports survival and differentiation of developing and mature brain DA neurons. We hypothesized that treatments with haloperidol or risperidone will affect synthesis/release of brain BDNF and tested this hypothesis by measuring BDNF and TrkB in rat brain regions after a 29-day-treatment with haloperidol or risperidone added to chow. Drug treatments had no effects on weight of brain regions. Chronic administration of these drugs, however, altered BDNF synthesis or release and expression of TrkB-immunoreactivity within the brain. Both haloperidol and risperidone significantly decreased BDNF concentrations in frontal cortex, occipital cortex and hippocampus and decreased or increased TrkB receptors in selected brain structures. Because BDNF can act on a variety of CNS neurons, it is reasonable to hypothesize that alteration of brain level of this neurotrophin could constitute one of the mechanisms of action of antipsychotic drugs. These observations also support the possibility that neurotrophic factors play a role in altered brain function in schizophrenic disorders.  相似文献   

4.
Many studies suggest that the 5-HT6 receptors are involved, along with other 5-HT receptors, in the pathophysiology and pharmacotherapy of schizophrenia. It is a putative therapeutic target of atypical antipsychotic drugs, notably clozapine, as well as some other psychotropic agents. Preferential potentiation of dopamine (DA) efflux in the medial prefrontal cortex (mPFC) and hippocampus (HIP) has been suggested to contribute to the ability of atypical antipsychotic drugs (APDs), e.g. clozapine, risperidone, olanzapine and ziprasidone, to improve cognitive function in schizophrenia. The present study demonstrated that SB-399885, a selective 5-HT6 receptor antagonist, at doses of 3 and 10 mg/kg, had no effect on cortical DA release in freely moving rats. However, both doses of SB-399885 slightly but significantly increased DA release in the HIP. Of particular interest, SB-399885, 3 mg/kg, significantly potentiated the ability of a typical antipsychotic drug haloperidol, a D2 receptor antagonist, at a dose of 0.1 mg/kg, to increase DA release in the HIP but not the mPFC. The atypical antipsychotic drug risperidone, a multireceptor antagonist, which lacks 5-HT6 receptor antagonist properties, at doses of 0.1, 0.3 and 1.0 mg/kg, produced a bell-shaped dose response effect on DA efflux in the mPFC and HIP. SB-399885 potentiated risperidone (1.0 mg/kg)-induced DA efflux in both regions. The increase in the HIP, but not the mPFC, DA efflux by 0.3 mg/kg risperidone was also potentiated by SB-399885, 3 mg/kg. These results suggest that the combined blockade of 5-HT6 and D2 receptors may contribute to the potentiation of haloperidol- and risperidone-induced DA efflux in the mPFC or HIP. The present data provides additional evidence in support of a possible therapeutic role for 5-HT6 receptor antagonism, as an addition on therapy, to enhance cognitive function in schizophrenia.  相似文献   

5.
The effect of antipsychotic treatment on basal and phencyclidine (PCP)-induced heat shock protein-70 (hsp70) mRNA expression was studied in the rat striatum and in the prefrontal cortex. Abaperidone, a novel drug with an atypical antipsychotic profile, was compared, at pharmacologically equivalent doses, with the atypical antipsychotics clozapine and risperidone and also with haloperidol, a classical antipsychotic. Abaperidone and clozapine reduced basal hsp70 mRNA expression in the rat striatum and in the prefrontal cortex. No change in either region was found after haloperidol, whereas risperidone reduced hsp70 mRNA in the striatum but not in the prefrontal cortex. The N-methyl-D-aspartate (NMDA) receptor antagonist PCP significantly elevated hsp70 mRNA levels in the prefrontal cortex, an elevation that was potentiated by haloperidol and prevented by all of the atypical antipsychotics tested. Since hsp70 has been associated to some schizophrenia symptoms, we suggest that reduced hsp70 in the prefrontal cortex, a cortical area that plays a critical role in the etiology of many schizophrenia symptoms, may be linked to an atypical profile of antipsychotics, such as clozapine, and possibly also abaperidone.  相似文献   

6.
OBJECTIVE: Clozapine, the prototype of atypical antipsychotics, remains unique in its efficacy in the treatment of refractory schizophrenia. Its affinity for dopamine D(4) receptors, serotonin 5-HT(2A) receptor antagonism, effects on the noradrenergic system, and its relatively moderate occupancy of D(2) receptors are unlikely to be the critical mechanism underlying its efficacy. In an attempt to elucidate the molecular/synaptic mechanism underlying clozapine's distinctiveness in refractory schizophrenia, the authors studied the in vivo D(1) and D(2) receptor profile of clozapine compared with other atypical antipsychotics. METHOD: Positron emission tomography with the radioligands [(11)C]SCH23390 and [(11)C]raclopride was used to investigate D(1) and D(2) receptor occupancy in vivo in 25 schizophrenia patients receiving atypical antipsychotic treatment with clozapine, olanzapine, quetiapine, or risperidone. RESULTS: Mean striatal D(1) occupancies ranged from 55% with clozapine to 12% with quetiapine (rank order: clozapine > olanzapine > risperidone > quetiapine). The striatal D(2) occupancy ranged from 81% with risperidone to 30% with quetiapine (rank order: risperidone > olanzapine > clozapine > quetiapine). The ratio of striatal D(1)/D(2) occupancy was significantly higher for clozapine (0.88) relative to olanzapine (0.54), quetiapine (0.41), or risperidone (0.31). CONCLUSIONS: Among the atypical antipsychotics, clozapine appears to have a simultaneous and equivalent occupancy of dopamine D(1) and D(2) receptors. Whether its effect on D(1) receptors represents agonism or antagonism is not yet clear, as this issue is still unresolved in the preclinical arena. This distinctive effect on D(1)/D(2) receptors may be responsible for clozapine's unique effectiveness in patients with schizophrenia refractory to other typical and atypical antipsychotics.  相似文献   

7.
BACKGROUND: Conventional and atypical antipsychotics have different affinities for D2 receptors, and these receptors are principally located in the striatum. Given that this cerebral structure was previously found to play a major role in procedural learning, the antipsychotic treatment in schizophrenia may be determinant for the procedural learning profile of these patients. OBJECTIVE: The current study was aimed at verifying whether procedural learning differs in patients with schizophrenia treated with conventional antipsychotics and patients treated with atypical antipsychotics. METHOD: Forty-five patients with schizophrenia were divided into 3 different groups according to their pharmacologic treatment: (1) haloperidol, a classical neuroleptic with high D2 receptor affinity; (2) clozapine, an atypical neuroleptic with practically no D2 receptor affinity; and (3) risperidone, an atypical neuroleptic that nevertheless shows high D2 receptor affinity. Patients were compared to 35 control subjects on a visuomotor procedural learning task (mirror drawing). RESULTS: All patients were able to learn the task. However, those treated with haloperidol showed some degree of learning impairment, while those treated with clozapine or risperidone did not show this impairment. In addition, performance per se, regardless of the learning, was found to be affected in the haloperidol and risperidone, but not in the clozapine groups. CONCLUSION: Procedural learning in schizophrenia may be differentially affected, depending on the pharmacologic profiles of the antipsychotics used for the treatment of this illness.  相似文献   

8.
The effects of acute administration of sertindole on DA output were examined in the shell part of the nucleus accumbens (NACS) and the striatum (STR), areas which are associated with limbic functions and motor control, respectively, by using in vivo differential normal pulse voltammetry in rats. The effect of sertindole was compared to those obtained with the reference antipsychotic drugs clozapine and haloperidol, new generation antipsychotics represented by risperidone, olanzapine, ziprasidone, quetiapine, and aripiprazole, as well as, with those of preferential D2/3, D4, 5-HT1A, 5-HT2A, 5-HT2C, alpha1, and alpha2 receptor ligands. In similarity with the new generation antipsychotics, sertindole preferentially increase DA output in the NACS as compared to the STR whereas the opposite was true for haloperidol. The regional specific effect of the partial D2 receptor agonist aripiprazole was mainly driven by a decrease in striatal rather that by an increase in accumbal DA output. The selective 5-HT2A and D4 receptor antagonists MDL100,151 and Lu 38-012, respectively, both preferentially increased DA output in the NACS. Thus, the present results are in line with the hypothesis that 5-HT2A receptor antagonism is of importance for the observed limbic selectivity of new generation antipsychotics and, in turn, to their favorable clinical profile especially as regards extrapyramidal side effects (EPS) liability. For some compounds, blockade of D4 receptors may also play a role in this regard.  相似文献   

9.
Summary. The neurotoxicity of conventional antipsychotic drugs has emerged as a potential pathogenic event in extrapyramidal side effects (EPS) and in their limited efficacy for negative-cognitive symptoms in schizophrenic patients. The atypical antipsychotics, recently developed, have superior therapeutic efficacy to treat not only positive symptoms but negative symptoms and cognitive dysfunctions with much lower potentials of side effects, although the influence of atypical antipsychotics on the regulation of neuronal survival has been less investigated. It is important to clarify the effects of typical and atypical antipsychotics on neuronal survival and their contributions to the therapeutic development and understanding of the pathophysiology of schizophrenia. We measured the neurotoxicity of two antipsychotic drug treatments, haloperidol and risperidone, in primary cultured rat cortical neurons. Immunoblotting and pharmacological agent analyses were used to determine the signal transduction changes implicated in the mechanisms of the neurotoxicity. Haloperidol induced apoptotic injury in cultured cortical neurons, but risperidone showed weak potential to injure the neurons. Treatment with haloperidol also led the reduction of phosphorylation levels of Akt, and activated caspase-3. The D2 agonist bromocriptine and 5-HT2A antagonist, ketanserin attenuated the haloperidol-induced neuronal toxicity. Moreover, brain-derived neurotrophic factor (BDNF) reduced the caspase-3 activity and protected neurons from haloperidol-induced apoptosis. BDNF also reversed the reduced levels of phosphorylation of Akt caused by treatment with haloperidol. Haloperidol but not risperidone induces caspase-dependent apoptosis by reducing cellular survival signaling, which possibly contributes to the differential clinical therapeutic efficacy and expression of side effects in schizophrenia.  相似文献   

10.
Brain-derived neurotrophic factor signals and dopaminergic function in the brain are strongly associated, and research on BDNF in schizophrenia may enhance our insights on the pathophysiological mechanisms of this disease. In the present study we aimed to investigate the possible association between serum BDNF levels and schizophrenic relapses and the possible differential effects of treatment with typical and atypical antipsychotics on serum BDNF levels in the same group of patients. We measured serum BDNF levels in 47 patients with schizophrenia during a relapse and again 6 weeks after administration of antipsychotic treatment (14 on risperidone, 18 on haloperidol, 10 on olanzapine and five on amisulpride) and in 44 healthy volunteers. Patients with schizophrenia showed reduced serum BDNF levels in relation to healthy volunteers at study entry. No significant differences were revealed in BDNF serum levels after 6 weeks of antipsychotic treatment in the patients compared to their own levels at study entry. However, serum BDNF was significantly increased in the subgroup receiving olanzapine compared to the other antipsychotics. Our findings may indicate a differential effect of olanzapine on BDNF levels compared to haloperidol, risperidone, and amisulpride.  相似文献   

11.
The aim of this study was to examine the effects of different doses of typical antipsychotics, chlorpromazine (0.25-1 mg/kg) and haloperidol (0.25-1 mg/kg), and atypical antipsychotics, clozapine (0.5-2 mg/kg), olanzapine (0.25-1 mg/kg), risperidone (0.5-2 mg/kg), sulpiride (10-40 mg/kg) and dopamine D1 antagonist, SCH 23390 (0.25-1 mg/kg) on feeding behavior at different time intervals after acute administration. The study further investigated the central dopamine and serotonergic receptor involvement in clozapine-induced hyperphagia using SKF 38393, quinpirole and quipazine. Then, the authors also examined the effect of subchronic treatment for 21 days with fluoxetine on clozapine-induced hyperphagia and modulation of body weight and fat pad weights. The feeding behavior was assessed in nondeprived mice by presenting the palatable chow to different groups of mice in glass petri dishes and recording the food consumed at different time intervals. After acute administration, significant (P<.05) increase in food intake was observed at different time intervals with different doses of both typical and atypical antipsychotics. Further, clozapine-induced hyperphagia was significantly (P<.05) reversed after treatment with SKF 38393 (dopamine D1 agonist), quinpirole (dopamine D2 agonist) and quipazine (5-HT1B, 5-HT2 and 5-HT3 agonist). In subchronic study, treatment with fluoxetine (10 mg/kg) significantly (P<.05) antagonized the increase in body weight and food intake induced by clozapine (2 mg/kg). The current investigations underscore the reported increases in food intake and body weight gain observed with antipsychotics. The study further confirms the involvement of dopamine D1, D2 and serotonergic receptor involvement in clozapine-mediated hyperphagia. Further, the serotonergic agents may prove useful to counteract antipsychotic-induced obesity.  相似文献   

12.
1. The aim of the present study was to evaluate the contribution of serotonin (5-HT) and dopamine (DA) receptor antagonism to the distinct inhibitory effects of the atypical antipsychotics clozapine and risperidone on SNR neurons, we have shown previously. 2. Utilizing extracellular recordings in the SNR in chloral hydrate anaesthetized rats, raclopride, a selective DA D2/D3 receptor antagonist and LY 53857, a 5-HT2A:2c receptor antagonist were studied separately and in combination for their effects on the firing rate of the SNR neurons. 3. Both raclopride and LY 53857 induced a slight but significant increase in the firing rate of the SNR neurons in a limited dose range. 4. Upon pretreatment with a single dose of raclopride, LY 53857 induced a dose-dependent inhibitory effect on the firing rate of the SNR neurons. 5. Concurrent 5-HT2 and moderate DA D2 receptor antagonism can mimic the in vivo effects of the atypical antipsychotics clozapine and risperidone on the firing rate of SNR neurons.  相似文献   

13.
Typical antipsychotics (haloperidol) give rise to severe motor side-effects while atypical antipsychotics like clozapine do not. Action at several neurotransmitter receptors have been implicated. To identify the critical mechanisms involved we synthesized an 8-C1 isomer of clozapine which showed an equivalent affinity to clozapine on multiple receptors (5-HT1A, 5-HT2, D1, D4, M1) but differed in having a 10-fold higher affinity at the dopamine D2/3 receptor. When tested in a series of animal models indicative of the typical/atypical distinction (catalepsy, striatal gene-induction, prolactin elevation) isoclozapine lost atypical properties and behaved like a typical antipsychotic. Simultaneous in vivo receptor occupancy studies confirmed that alterations in D2 receptor occupancy were most closely related to loss of atypicality by clozapine's isomer isoclozapine. The implications for the design of future antipsychotics is discussed.  相似文献   

14.
We investigated whether the two output pathways of the striatum are differently affected by the novel atypical drug risperidone and the conventional typical antipsychotic drug haloperidol. To this end, changes in mRNA levels of preproenkephalin-A, preproenkephalin-B, and preprotachykinin were determined in the rat striatum following chronic drug treatment for 14 days, using quantitative in situ hybridization. Furthermore, we studied the contribution of the dopamine D2 and serotonin 5-HT2A antagonist components of risperidone in establishing its effects on neuropeptide mRNA levels in the striatum. The results showed that both risperidone and haloperidol had major effects on the preproenkephalin-A mRNA and thus on the indirect striatal output route, whereas they had minor effects on preproenkephalin-B and preprotachykinin mRNA, contained by the direct output route. When both drugs were administered in the same dose, preproenkephalin-A mRNA was much more elevated by haloperidol than by risperidone. However, when doses of risperidone and haloperidol were modified to attain comparable dopamine D2 receptor occupancy, the drugs had comparable effects on preproenkephalin-A mRNA levels. It was further found that 5-HT2A/C receptor blockade with ritanserin had only modest effects on preproenkephalin-B and preprotachykinin mRNA levels and did not affect preproenkephalin-A mRNA levels. We conclude that risperidone and haloperidol, administered in the same dose, differently affect the striatal output routes. Furthermore, the results suggest that the effects of risperidone on neuropeptide mRNA levels are fully accounted for by its D2 antagonism and that no indication exists for a role of 5-HT2A receptor blockade in this action. Synapse 28:302–312, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF) is active during a critical developmental period and likely influences the neuroplasticity of schizophrenia. This study longitudinally examined the effects of atypical antipsychotics on serum BDNF levels in schizophrenic patients. Specifically, this study measured serum BDNF levels in 53 patients with paranoid schizophrenia during a relapse and again 4 weeks following the administration of antipsychotic treatment (with risperidone in 32 cases, and clozapine in 21 cases). BDNF levels remained unchanged relative to study entry after 4 weeks of atypical antipsychotic treatment. However, serum BDNF was significantly increased in the subgroup receiving risperidone compared to that receiving clozapine, albeit only in the 15 male subjects and not in the 17 females. These results suggest that gender might significantly influence the antipsychotic treatment of schizophrenia from the perspective of BDNF. These findings may also indicate that the treatment with atypical antipsychotic agents differentially affects BDNF levels.  相似文献   

16.
We have investigated the potential role of neurotrophic factors in antipsychotic drug action by examining the effects of antipsychotic and psychotropic treatments on the mRNA expression of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and their receptors, trkB and trkC, respectively, in rat brain. Neither acute nor chronic clozapine treatment significantly affected the expression of these mRNAs in any brain area investigated, except for a decrease in trkB expression in the granule cells of the olfactory bulb. We then examined the effects of the psychotropic agent MK-801. MK-801 (5 mg/kg; 4h) significantly increased BDNF mRNA in the entorhinal cortex, but did not influence NT-3, trkB, or trkC expression in any brain area except for the olfactory bulb. The induction of BDNF mRNA by MK-801 was attenuated by pre-treatment (1 h prior to MK-801 administration) with the antipsychotics, clozapine (25 mg/kg) and haloperidol (2 mg/kg), but not with the antidepressant desipramine (15 mg/kg). Finally, we confirmed that the effects of MK-801 on BDNF mRNA were reflected in the respective changes in BDNF protein levels: MK-801 significantly increased anti-BDNF reactivity in the entorhinal cortex (126 ± 7% of control) while concomitantly decreasing in the hippocampus (71 ± 2% of control). These data do not support the hypothesis that neurotrophins play an important role in antipsychotic drug action, but rather suggest that induction of BDNF in the entorhinal cortex may play a significant role in the psychotropic action of MK-801.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.  相似文献   

18.
Shortly after the introduction of the first neuroleptics a serotonin hypothesis of schizophrenia has been proposed. But neuroleptics in animals and in man were found to produce effects more consistently related to inhibition of the dopaminergic than of any other type of neurotransmission. However, two early neuroleptics, pipamperone and clozapine, act pharmacologically more on 5-HT2 than on D2 receptors. Both have a distinct clinical profile and low EPS liability. The development of selective 5-HT2-antagonists, devoid of LSD-like properties, resulted in a first compound, ritanserin. Clinically, the highly specific 5-HT2-antagonism of ritanserin improves dysthymia, increases slow wave sleep and supports classical neuroleptic treatment by decreasing negative symptoms and EPS. These properties, being valuable by themselves, have been associated to dopamine D2-antagonism in the new antipsychotic risperidone, which is an extremely potent 5-HT2-antagonist. At doses of 5 mg daily risperidone acts on both negative and positive symptoms of schizophrenia in the virtual absence of EPS.  相似文献   

19.
A widely postulated mechanism of action for the atypical profile of many novel antipsychotic drugs (APDs) is their relatively high affinity for 5-HT2 receptors. The present study investigated motor function and striatal dopamine (DA) efflux and metabolism in rats given 21 daily injections of drugs that differed in 5-HT2 affinity. These drugs included: risperidone (high 5-HT2A/2C/high D2), clozapine (high 5-HT2A/2C/low D2), haloperidol (low 5-HT2A/2C/high D2), haloperidol+ritanserin (selective 5-HT2A/2C), or vehicle. Rats injected with haloperidol (0.5 mg/kg) or haloperidol+ritanserin (0.5 mg/kg and 1.0 mg/kg, respectively) showed extreme catalepsy on day 1, but significantly decreased catalepsy when tested again on days 7 and 21. Acute or subchronic risperidone (0.05 or 0.5 mg/kg), clozapine (20 mg/kg), or vehicle did not induce significant catalepsy. Microdialysis performed 24 h after the last injection demonstrated that rats treated with risperidone, clozapine, or vehicle showed similar increases in DA efflux and metabolism following an acute injection of a selective DA D2/3 antagonist (raclopride, 0.5 mg/kg). DA efflux showed an attenuated response to raclopride in the haloperidol alone group; this effect was less apparent in the haloperidol+ritanserin group. However, both of these groups showed a similar tolerance effect to the raclopride-induced increase in DA metabolites. These results suggest that the profile seen after subchronic risperidone more closely resembles clozapine than haloperidol. While ritanserin reduced the tolerance-like effects of haloperidol on striatal DA efflux, the overall results demonstrate that potent 5-HT2 blockade alone may not entirely account for the distinctive profile of novel APDs.  相似文献   

20.
Serotonin receptors: their key role in drugs to treat schizophrenia   总被引:31,自引:0,他引:31  
Serotonin (5-HT)-receptor-based mechanisms have been postulated to play a critical role in the action of the new generation of antipsychotic drugs (APDs) that are usually referred to as atypical APDs because of their ability to achieve an antipsychotic effect with lower rates of extrapyramidal side effects (EPS) compared to first-generation APDs such as haloperidol. Specifically, it has been proposed by Meltzer et al. [J. Pharmacol. Exp. Ther. 251 (1989) 238] that potent 5-HT2A receptor antagonism together with weak dopamine (DA) D2 receptor antagonism are the principal pharmacologic features that differentiate clozapine and other apparent atypical APDs from first-generation typical APD. This hypothesis is consistent with the atypical features of quetiapine, olanzapine, risperidone, and ziprasidone, which are the most common treatments for schizophrenia in the United States and many other countries, as well as a large number of compounds in various stages of development. Subsequent research showed that 5-HT1A agonism may be an important consequence of 5-HT2A antagonism and that substitution of 5-HT1A agonism for 5-HT2A antagonism may also produce an atypical APD drug when coupled with weak D2 antagonism. Aripiprazole, the most recently introduced atypical APD, and a D2 receptor partial agonist, may also owe some of its atypical properties to its net effect of weak D2 antagonism, 5-HT2A antagonism and 5-HT1A agonism [Eur. J. Pharmacol. 441 (2002) 137]. By contrast, the alternative "fast-off" hypothesis of Kapur and Seeman [Am. J. Psychiatry 158 (2001) 360] applies only to clozapine and quetiapine and is inconsistent with the "slow" off rate of most atypical APDs, including olanzapine, risperidone and ziprasidone. 5-HT2A and 5-HT1A receptors located on glutamatergic pyramidal neurons in the cortex and hippocampus, 5-HT2A receptors on the cell bodies of DA neurons in the ventral tegmentum and substantia nigra and GABAergic interneurons in the cortex and hippocampus, and 5-HT1A receptors in the raphe nuclei are likely to be important sites of action of the atypical APDs. At the same time, evidence has accumulated for the important modulatory role of 5-HT2C and 5-HT6 receptors for some of the effects of some of the current APDs. Thus, 5-HT has joined DA as a critical target for developing effective APDs and led to the search for novel drugs with complex pharmacology, ending the exclusive search for single-receptor targets, e.g., the D3 or D4 receptor, and drugs that are selective for them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号