首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was characterized in human lung cells isolated from peripheral lung specimens obtained from 12 subjects during clinically indicated lobectomy. NNK biotransformation was assessed in preparations of isolated unseparated cells (cell digest), as well as in preparations enriched in alveolar type II cells, and alveolar macrophages. Metabolite formation was expressed as a percentage of the total recovered radioactivity from [5-(3)H]NNK and its metabolites per 10(6) cells per 24 h. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was the major metabolite formed in all lung cell preparations examined, and its formation ranged from 0.50 to 13%/10(6) cells/24 h. Formation of alpha-carbon hydroxylation end-point metabolites (bioactivation) and pyridine N-oxidation metabolites (detoxification), ranged from non-detectable to 0.60% and from non-detectable to 1.5%/10(6) cells/24 h, respectively, reflecting a large degree of intercellular and inter-individual variability in NNK metabolism. Formation of the alpha-hydroxylation end-point metabolite 4-hydroxy-1-(3-pyridyl)-1-butanol (diol) was consistently higher in alveolar type II cells than in cell digest or alveolar macrophages (0.0146 +/- 0.0152, 0.0027 +/- 0.0037 and 0.0047 +/- 0.0063%/10(6) cells/24 h, respectively; n = 12; P < 0.05). SKF-525A was used to examine cytochrome P450 contributions to the biotransformation of NNK. SKF-525A inhibited keto reduction of NNK to NNAL by 85, 86 and 74% in cell digest, type II cells, and macrophages, respectively (means of 11 subjects, P < 0.05). Type II cell incubates treated with SKF-525A formed significantly lower amounts of total alpha-hydroxylation metabolites compared with type II cells without SKF-525A (0.0776 +/- 0.0841 versus 0.1694 +/- 0. 2148%/10(6) cells/24 h, respectively; n = 11; P < 0.05). The results of this first study examining NNK biotransformation in freshly isolated human lung cells indicate that NNK metabolism is subject to a large degree of inter-individual and intercellular variability, and suggest a role for P450s in human lung cell NNK metabolism. Both alveolar type II cells and alveolar macrophages may be potential target cells for NNK toxicity based on their alpha-carbon hydroxylation capabilities. In addition, carbonyl reduction of NNK to NNAL is SKF-525A sensitive in human lung cells.  相似文献   

3.
The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone(NNK) is a potent carcinogen in laboratory animals. In the presentstudy, in vitro transformation of spontaneously immortal hamsterpancreatic duct cells following exposure to 20 mM NNK for 1,3,5and 7 days is described. NNK imparted a dose-dependent and time-dependenttoxicity to pancreatic duct cells in vitro. After NNK treatment,duct cells were grown either in complete duct medium (CDM) orin the absence of bovine pituitary extract, epidermal growthfactor and Nu-seruin (incomplete duct medium, 1DM). Additionof NNK to the culture for 1 and 3 days did not affect the growthof the cells, whereas exposure of the cells for 5 and 7 dayswas inhibitory. One and 3 day NNK-treated cells were able togrow in the absence of growth factors and serum immediatelyafter the treatment without any inhibition of growth. Untreatedcells grew as a monolayer consisting of tightly packed polygonalcells with single nuclei. NNK treated cells also grew as a monolayerwith numerous mitotic figures and multi-nucleated large cells.The doubling time between the untreated (16 h) and NNK-treatedcells (14 h) was not significantly different prior to injectioninto the nude mice. NNK treated cells grown in 1DM displayedanchorage independency in soft-agar. The tumorigenicity of theuntreated and NNK treated cells (5x106) was determined in nudemice. One and 3 day NNK-treated cells grown in CDM producedwell-differentiated, mucinous tumors with a lower frequency(2/4 sites) and longer duration, but produced tumors at a higherfrequency (4/4 sites) and shorter duration when grown in IDM.Five and 7 day NNK-treated cells grown in CDM did not produceany tumors; however, they produced tumors when grown in CDMfollowed by IDM (5/8 and 6/8 sites) with a shorter durationin nude mice. Analysis of DNA for k-ras mutation at codons 12,13 and 61 showed G–A transition at codon 12 of the k-rasoncogene in tumor cells of 1 and 3 day NNK treatment. No mutationwas detected in tumor cells from 5 and 7 day treatment.  相似文献   

4.
Lamoureux  J; Castonguay  A 《Carcinogenesis》1997,18(10):1979-1984
The N-nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen present in tobacco and tobacco smoke. Carbonyl reduction, alpha-carbon hydroxylation (activation) and N- oxidation of the pyridyl ring (detoxification) are the three main pathways of metabolism of NNK. In this study, metabolism of NNK was studied with lung and liver microsomes from F344 rats, Syrian golden hamsters and pigs and cloned flavin-containing monooxygenases (FMOs) from human and rabbit liver. Thermal inactivation at 45 degrees C for 2 min reduced FMO S-oxygenating activity but did not affect N-oxidation of NNK, leading to the conclusion that FMOs are not implicated in the detoxification of NNK. Detoxification of NNK was not increased by n- octylamine or by incubation at pH 8.4, supporting the conclusion that FMOs are not involved in the metabolism of NNK. SKF-525A (1 mM) significantly reduced N-oxidation and alpha-carbon hydroxylation, suggesting that these two pathways were catalyzed by cytochromes P450. Metabolism of NNK was lower with lung microsomes than with liver microsomes. Inhibition of metabolism of NNK by SKF-525A was also observed with rat lung microsomes, leading to the conclusion that cytochromes P450 are involved in pulmonary metabolism of NNK. Cloned FMOs did not metabolize NNK. In conclusion, cytochromes P450 rather than FMOs are involved in N-oxidation of NNK. The high capacity of hamster liver microsomes to activate NNK does not correlate with the resistance of this tissue to NNK-induced hepatocarcinogenesis.   相似文献   

5.
Kim Y  Liu XS  Liu C  Smith DE  Russell RM  Wang XD 《Cancer letters》2006,234(2):209-219
Research into dietary chemoprevention against lung carcinogenesis has been limited by the lack of appropriate animal models that closely mimic smoking-related human lung cancer. Ferrets (Mustela putorius furo) have been used to study the biologic activities of carotenoids against smoke-induced lung lesions, but this model has yet to be thoroughly established and validated. To determine the appropriateness of the ferret as a model for human lung cancer, we have performed a 6-month in vivo study in ferrets exposed to both tobacco smoke and a carcinogen (4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone, NNK) found in cigarette smoke. Results showed that six out 12 ferrets exposed to both NNK injection and cigarette smoke developed grossly identifiable lung tumors whereas none of nine ferrets from the sham treatment group developed any lung lesions. The histopathological types of these tumors (squamous cell carcinoma, adenosquamous carcinoma and adenocarcinoma) in ferret lungs are very similar to those in humans. In addition, 10 out of 12 ferrets exposed to both NNK and cigarette smoke developed preneoplastic lesions (squamous metaplasia, dysplasia, and atypical adenomatous hyperplasia) with complex growth patterns whereas the sham group did not show any of these lesions. Furthermore, the expression of proliferating cellular nuclear antigen increased markedly in both gross tumors and preneoplastic lesions in the lungs. In summary, the development of both preneoplastic lesions and gross lung tumors in ferrets provides an excellent and unique model for studying lung cancer chemoprevention with agents such as carotenoids, and for studying the molecular mechanism of carcinogenesis in the earlier stages of smoke-related lung cancer.  相似文献   

6.
7.
Urinary metabolites of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides, termed total NNAL, have recently been shown to be good predictors of lung cancer risk, years before diagnosis. We sought to determine the contribution of several genetic polymorphisms to total NNAL output and inter-individual variability. The study subjects were derived from the Harvard/Massachusetts General Hospital Lung cancer case-control study. We analyzed 87 self-described smokers (35 lung cancer cases and 52 controls), with urine samples collected at time of diagnosis (1992-1996). We tested 82 tagging SNPs in 16 genes related to the metabolism of NNK to total NNAL. Using weighted case status least squares regression, we tested for the association of each SNP with square-root (sqrt) transformed total NNAL (pmol per mg creatinine), controlling for age, sex, sqrt packyears and sqrt nicotine (ng per mg creatinine). After a sqrt transformation, nicotine significantly predicted a 0.018 (0.014, 0.023) pmol/mg creatinine unit increase in total NNAL for every ng/mg creatinine increase in nicotine at p < 10E-16. Three HSD11B1 SNPs and AKR1C4 rs7083869 were significantly associated with decreasing total NNAL levels: HSD11B1 rs2235543 (p = 4.84E-08) and rs3753519 (p = 0.0017) passed multiple testing adjustment at FDR q = 1.13E-05 and 0.07 respectively, AKR1C4 rs7083869 (p = 0.019) did not, FDR q = 0.51. HSD11B1 and AKR1C4 enzymes are carbonyl reductases directly involved in the single step reduction of NNK to NNAL. The HSD11B1 SNPs may be correlated with the functional variant rs13306401 and the AKR1C4 SNP is correlated with the enzyme activity reducing variant rs17134592, L311V.  相似文献   

8.
BACKGROUND: In the United States, Blacks who smoke cigarettes have a higher mean blood concentration of the nicotine metabolite cotinine than White smokers. It has not been determined whether there are racial differences in the exposure to the cigarette smoke carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and in the detoxification of NNK metabolites. METHODS: A community-based cross-sectional survey of 69 Black and 93 White smokers was conducted in lower Westchester County, New York. Information on smoking and lifestyle habits was collected and urinary concentrations of several tobacco smoke biomarkers were compared, including the NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronide (NNAL-Gluc). A frequency histogram and probit plot of NNAL-Gluc:NNAL ratios were constructed to determine slow and rapid glucuronidation phenotypes. RESULTS: The mean concentrations of total NNAL, urinary cotinine, plasma cotinine, and thiocyanate were significantly higher in Black men than in White men for each cigarette smoked. In women, the only biomarker that was significantly elevated in Blacks was plasma cotinine. A higher proportion of White versus Black women was categorized as "rapid" glucuronidators (two-tailed exact test, P = 0.03). In men, there were no significant differences in NNAL-Gluc:NNAL phenotypes. CONCLUSIONS: The higher rates of lung carcinoma in black men may be due in part to a higher level of exposure to tobacco smoke carcinogens.  相似文献   

9.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potenttobacco-specific nitrosamine in animals and has been suggestedto play a role in human tobacco-related cancers. Our previousstudy demonstrated that cytochrome P450 (P450) 1A2 catalyzesthe formation of 4-hydroxy-1-(3-pyridyl)-1-butanone (keto alcohol)(an  相似文献   

10.
目的:研究烟草特异亚硝胺4-甲基亚硝胺-1-(3-吡啶)-1-丁酮〔4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone,NNK〕诱发昆明小鼠发生肺癌及纳米硒对肺癌的防治作用。方法:用单次腹腔注射NNK(500μmol/kg)制成昆明小鼠肺癌模型,观察8个月后肺癌发生率和肺肿瘤灶结节数,并进行病理诊断。在注射NNK后第1、3、7、15和30天测定腹腔巨噬细胞  相似文献   

11.
L Liu  A Castonguay 《Carcinogenesis》1991,12(7):1203-1208
(+)-Catechin is a plant flavonoid which decreases the mutagenicity of several mutagens and carcinogens. In this study, we have investigated how (+)-catechin could inhibit the metabolism and DNA damage induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific carcinogen. Addition of 5 to 1000 microM (+)-catechin to rat hepatocytes cultured with 4.5 mM NNK caused a concentration-dependent reduction of alpha-carbon hydroxylation which is the activation pathway of NNK. Under the same conditions, (+)-catechin had a less significant effect on pyridine N-oxidation, which is a deactivation pathway. Reduction of the carbonyl group of NNK was not inhibited by (+)-catechin. We had previously shown that NNK induced single-strand breaks (SSBs) in primary culture of hepatocytes. In this study, we observed that 1.0 mM (+)-catechin inhibited the DNA SSBs induced by 1 mM NNK by 31%. With 1 mM N-nitrosodimethylamine, the inhibition of DNA SSBs was 30%. We concluded that (+)-catechin selectively inhibits the enzymes involved in the activation of NNK. Rats were gavaged with (+)-catechin (1.5 mmol/kg), injected s.c. 1 h later with NNK (0.39 mmol/kg) and killed 4 h after NNK treatment. (+)-Catechin significantly reduced DNA SSBs induced by NNK. Rats were injected s.c. with 0.39 mmol/kg NNK. (+)-Catechin reduced the methylation of liver DNA at the O6-guanine and N-7 guanine sites by 28 and 34% respectively. These results demonstrate that (+)-catechin inhibits the formation of DNA-damaging intermediates by selectively impairing the enzymatic activation of NNK. They suggest that (+)-catechin could be an effective preventive agent against NNK hepatocarcinogenicity.  相似文献   

12.
Z Guo  T J Smith  H Ishizaki  C S Yang 《Carcinogenesis》1991,12(12):2277-2282
Several previous studies have suggested that cytochrome P450IIB1 is involved in the bioactivation of the tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in rats as well as in mouse lung microsomes. The present investigation was undertaken to study the metabolism of NNK by purified cytochrome P450IIB1 in a reconstituted system. The metabolites 4-hydroxy-4-(3-pyridyl) butyric acid (hydroxy acid), 4-oxo-4-(3-pyridyl) butyric acid (keto acid), 4-oxo-4-(3-pyridyl) butanol (keto aldehyde), 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone (NNK-N-oxide) and 4-oxo-4-(3-pyridyl)-1-butanol (keto alcohol) were quantitated by HPLC. The results showed that, in addition to alpha-hydroxylations, cytochrome P450IIB1 also catalyzed the formation of NNK-N-oxide efficiently, and to a certain extent, the conversion of NNK primary hydroxylation metabolites (keto aldehyde and keto alcohol) to secondary metabolites (keto acid and hydroxy acid). Cytochrome b5 at a ratio of 1:1 or 2:1 to P450IIB1 had no significant effect on the metabolic activities and profiles of NNK. The apparent Km values for the formation of keto aldehyde, NNK-N-oxide and keto alcohol were respectively 191.2, 131.4 and 318.0 microM with corresponding apparent Vmax values of 89.7, 295.5 and 333.3 pmol/min/nmol P450, indicating that hydroxylation at the alpha-methyl position is preferred over the alpha-methylene position. Measurement of formaldehyde, a product derived from the alpha-methyl hydroxylation, was developed as a convenient method to study NNK metabolism. Thiourea activated cytochrome P450IIB1-catalyzed NNK metabolism significantly. Phenethyl isothiocyanate, an inhibitor of NNK-induced lung carcinogenesis, inhibited P450IIB1-catalyzed NNK demethylation in a concentration-dependent manner. This work demonstrates that purified P450IIB1 can catalyze the conversion of NNK to most of its oxidative metabolites.  相似文献   

13.
14.
The nicotine-derived tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, is one of the most potent and abundant procarcinogens found in tobacco and tobacco smoke, and glucuronidation of its major metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), is an important mechanism for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone detoxification. Substantial interindividual variability in urinary NNAL glucuronide formation has been observed in smokers and tobacco chewers. To determine whether genetic variations may play a role in this interindividual variability, NNAL-glucuronidating activities were analyzed in 78 human liver microsomal specimens and compared with the prevalence of missense polymorphisms in the two major NNAL-glucuronidating enzymes UGT1A4 and UGT2B7. In vitro assays using liver microsomal specimens from individual subjects demonstrated a 70- and 50-fold variability in NNAL-N-Gluc and NNAL-O-Gluc formation, respectively, and a 20-fold variability in the ratio of NNAL-N-Gluc:NNAL-O-Gluc formation. Microsomes from subjects with a homozygous polymorphic UGT1A4(24Thr)/UGT1A4(24Thr) genotype exhibited a significantly higher (P < 0.05) level of NNAL-N-Gluc activity compared with microsomes from subjects with the wild-type UGT1A4(24Pro)/UGT1A4(24Pro) genotype, and a significantly higher (P < 0.05) number of subjects with liver microsomes having high NNAL-N-Gluc formation activity contained the UGT1A4(24Thr)/UGT1A4(24Thr) genotype. Microsomes from subjects with the homozygous polymorphic UGT2B7(268Tyr)/UGT2B7(268Tyr) genotype exhibited a significantly lower level (P < 0.025) of NNAL-O-Gluc activity when compared with microsomes from subjects with the wild-type UGT2B7(268His)/UGT2B7(268His) genotype, and a significantly (P < 0.05) higher number of subjects with liver microsomes having low NNAL-O-Gluc formation activity contained the UGT2B7(268Tyr)/UGT2B7(268Tyr) genotype. These data suggest that the UGT1A4 codon 24 and UGT2B7 codon 268 polymorphisms may be associated with altered rates glucuronidation and detoxification of NNAL in vivo.  相似文献   

15.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and nitrosonornicotine (NNN) were administered to lacZ mice (MutaMouse) at equal concentrations in drinking water (2 weeks at 0.1 followed by 2 weeks at 0.2 mg/ml) over a 4 week period, for a total estimated dose of 615 mg/kg) and mutagenesis in a number of organs was measured. For mutagenesis induced by NNK the potency order was: liver > lung> pooled oral tissues kidney > esophagus > tongue. The mutant fraction varied from approximately 6 to 40 mutants per 10(-5) plaque forming units This corresponds to approximately 2-13 times the background levels. A somewhat different pattern was observed with NNN, where the order was liver > esophagus oral tissue approximately tongue > lung > kidney. The potency of NNK was about twice that of NNN in liver and lung, but somewhat less in aerodigestive tract tissue. When compared with results previously obtained for a similar administered dose of benzo[a]pyrene, NNK was approximately 10-100% as mutagenic in the corresponding organs. Reported target organs for carcinogenesis by NNN and NNK in rodents were targets for mutagenesis, but mutagenesis was also observed at other sites, suggesting that these sites are initiated. The effect of green tea consumption on mutagenesis by NNK was also investigated. Green tea reduced mutagenesis by approximately 15-50% in liver, lung, pooled oral tissue and esophagus.  相似文献   

16.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is a chiral compound, and the primary metabolite of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a major carcinogen in tobacco smoke. The goal of the present work was to study the pharmacokinetics and stereoselective metabolism and tissue retention of NNK and NNAL in the rat. Groups of rats were dosed with [5-(3)H]NNK (n = 3) or racemic [5-(3)H]NNAL (n = 3) at a target dose of 8.45 micromol/kg and were killed at selected time points for tissue collection. Separate groups of rats (n =5 per group) received the same dose of either NNK or NNAL and serial sampling of blood, bile and urine was carried out over 24 h. All samples were analyzed by C(18) reversed-phase HPLC with gradient elution and radioflow detection. A gas chromatograph-thermal energy analyzer (GC-TEA) was used to separate the (R)-/(S)-NNAL enantiomers. Racemic NNAL and NNK had large volumes of distribution (321 +/- 137 ml for NNK and 2772 +/- 1423 ml for NNAL) and similar total body clearances (12.8 +/- 2.0 ml/min for NNK and 8.6 +/- 2.6 ml/min for NNAL). The results indicated that the enantiomers of NNAL are stereoselectively metabolized and excreted. The glucuronide of (R)-NNAL, ((R)-NNAL-Gluc) was identified as the major metabolite in the bile after administration of either NNK or NNAL. (R)-NNAL was the major NNAL enantiomer in the bile or urine samples. At 24 h after racemic NNAL administration, NNAL comprised an average of 75.4% of total radioactivity in the lung with an (S)-/(R)-ratio of >20. The stereoselective localization of (S)-NNAL to lung tissue may contribute to the lung selectivity of NNK carcinogenesis. The present studies suggest a need to look beyond metabolic activation as the sole mechanism for lung carcinogenesis.  相似文献   

17.
NNK, a nicotine-derived nitrosamine, is a potent lung carcinogen that generates electrophilic intermediates capable of damaging DNA. The effects of NNK on the immune response, which may facilitate lung carcinogenesis, are poorly understood. Alveolar macrophages (AM), a key cell in the maintenance of lung homeostasis, metabolize NNK via two major metabolic activation pathways: alpha-methylhydroxylation and alpha-methylenehydroxylation. We have shown previously that NNK inhibits the production of interleukin-12 (IL-12) and tumor necrosis factor (TNF), but stimulates the production of IL-10 and prostaglandin E(2) (PGE(2)) by AM. In the present study, we investigated the contribution of each activation pathway in the modulation of AM function. We used two precursors, 4-[(acetoxymethyl)-nitrosamino]-1-(3-pyridyl)-1-butanone (NNKOAc) and N-nitro(acetoxymethyl)methylamine (NDMAOAc), which generate the reactive electrophilic intermediates [4-(3-pyridyl)-4-oxo-butanediazohydroxide and methanediazohydroxide, respectively] in high yield and exclusively. Rat AM cell line, NR8383, was stimulated and treated with different concentrations of NNKOAc or NDMAOAc (12, 25 and 50 microM). Mediator release was measured in cell-free supernatants. NNKOAc significantly inhibited the production of IL-10, IL-12, TNF and nitric oxide but increased the release of PGE(2) and cyclooxygenase-2 expression suggesting that the alpha-methylhydroxylation pathway might be responsible for NNK modulation of AM cytokine release. In contrast, NDMAOAc did not modulate AM mediator production. However, none of these precursors, alone or in combination, could explain the stimulation of AM IL-10 production by NNK. Our results suggest that the alpha-methylhydroxylation of NNK leading to DNA pyridyloxobutylation also modulates cytokine production in NNK-treated AM.  相似文献   

18.
The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces lung tumors in rats, mice, and hamsters, and metabolic activation is required for the carcinogenicity. 2-Phenethyl isothiocyanate (PEITC), whose precursor gluconasturtiin (a glucosinolate) occurs in cruciferous vegetables, has been found to inhibit carcinogenesis by NNK. The purpose of the study was to investigate the enzymes involved in the metabolism of NNK in lung microsomes and to elucidate the mechanisms of inhibition of NNK metabolism by isothiocyanates. NNK metabolism in lung microsomes (isolated from female A/J mice) resulted in the formation of formaldehyde, 4-hydroxy-1-(3-pyridyl)-1-butanone (keto alcohol), 4-oxo-4-(3-pyridyl)butyric acid (keto acid), 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone, and 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanol, displaying apparent Km values of 5.6, 5.6, 9.2, 4.7, and 2540 microM, respectively. Higher Km values in the formation of formaldehyde and keto alcohol were also observed. When cytochrome P-450 inhibitors [2-(diethylamino)ethyl 2,2-diphenylpentenoate] hydrochloride (100 microM), carbon monoxide (90%), and 9-hydroxyellipticine (10 microM) were used, NNK metabolism was inhibited by each 70, 100, and 30%, respectively. Methimazole (1 mM), an inhibitor of the flavin-dependent monooxygenase, inhibited the formation of 4-(methyl-nitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol by 20%, but had no effect on the formation of keto alcohol. Inhibitory antibodies against cytochromes P-450IIB1 and -2, P-450IA1, and P-450IA2 inhibited the formation of keto alcohol by 25, 15, and 0%, respectively. Administration of PEITC at doses of 5 and 25 mumol/mouse 2 h before sacrifice produced a 40 and 70% decrease in microsomal NNK metabolism, respectively. PEITC and 3-phenylpropyl isothiocyanate exhibited a mixed type of inhibition, and the competitive component of inhibition had apparent Ki values of 90 and 30 nM, respectively. Preincubation of PEITC in the presence of a NADPH-generating system did not result in a further decrease in the formation of NNK metabolites, indicating that the metabolism of PEITC was not required for the inhibition. When a series of isothiocyanates with varying alkyl chain length (phenyl isothiocyanate, benzyl isothiocyanate, PEITC, 3-phenylpropyl isothiocyanate, and 4-phenylbutyl isothiocyanate) were used, the potency of the inhibition increased with the increase in chain length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
In all species where it has been tested, the tobacco-specificnitrosamine 4-(methylnitrosainino)-l-(3-pyridyl)-l-butanone(NNK) has been shown to be a potent carcinogen, and NNK andother nitrosamines may play a role in human tobacco-relatedcarcinogenesis. Purified rat CYP2B1 has been shown to metabolizeNNK, and the CYP2B1 gene is expressed constitutively in ratlung. The objectives of this study were to test the capacityof CYP2B1, synthesized from a rat hepatic cDNA in Ad293 cells,to metabolize NNK, and to define the type and the proportionsof the final metabolites produced. Ad293 cells were transfectedwith a CYP2B1 expression vector (pMT2-2Bl), or with a controlvector and incubated in culture medium containing [3H]NNK, afterwhich -carbon hydroxylation and pyridine N-oxidation metaboliteswere identified by HPLC analysis and quantitated by scintillationcounting. pMT2-2Bl-transfected cells were capable of catalyzing-carbon hydroxylation and pyridine N-oxidation of NNK, althoughthe reduction product 4-(methylnitrosamino)-l-(3-pyridyIH)-butan-l-ol(NNAL)was the major metabolite formed in cells regardless of transfectiontreatment. The total amount of -carbon hydroxylation metabolitesproduced by pMT2-2Bl-transfected cells was greater than thatof pyridine N-oxidation metabolites. However, pMT2-2Bl transfectedcells produced sim; ten-fold more pyridine N-oxidation metabolitesand only two-fold more -carbon hydroxylation metabolites thancontrol cells. Furthermore, the amount of NNAL-N-oxide was muchlower than that of NNK-N-oxide in the medium of pMT2–2Bl-transfectedcells, even though the amount of available NNAL, resulting fromcarbonyl reduction of NNK, was very high; this suggests thatNNAL is poorly N-oxidized by CYP2B1 compared to NNK. These resultsshow that within living cells NNK was metabolized by CYP2B1via both the pyridine N-oxidation and -carbon hydroxylationpathways. However, CYP2B1 preferentially catalyzed pyridineN-oxidation, which is considered to be a deactivation reaction.  相似文献   

20.
The rat lung and nasal cavity are two target organs for carcinogenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In order to characterize further the enzymes involved in the bioactivation of NNK, detailed kinetic and inhibitory studies were conducted with rat lung and nasal mucosa microsomes, and the results were compared with previous studies. The enzymes in rat lung microsomes catalyzed the alpha-hydroxylation, pyridine N-oxidation and carbonyl reduction of NNK. The apparent Km for the formation of the NNK-derived keto aldehyde, NNK-N-oxide, the NNK-derived keto alcohol and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol were 28.8, 10.4, 7.0 and 178.1 microM respectively. In rat nasal microsomes, alpha-hydroxylation was the predominant pathway and the rate was approximately 200 times higher than that in lung microsomes. The apparent Kms for keto aldehyde and keto alcohol formation in rat nasal microsomes were 9.6 and 10.1 microM respectively. The cytochrome P450 inhibitors metyrapone and carbon monoxide markedly inhibited the metabolism of NNK in both rat lung and nasal microsomes. In rat lung microsomes, alpha-naphthoflavone and monospecific antibodies against P450s 1A2, 2A1 and 2B1 inhibited the formation of keto aldehyde by 39, 46, 64 and 23% respectively. In rat nasal microsomes, alpha-naphthoflavone and antibodies against P450s 1A2, 2A1 and 3A inhibited the metabolism of NNK by 80, 35, 20 and 14% respectively. The results indicate that cytochromes P450 play a major role in the metabolic activation of NNK in rat lung and nasal microsomes, and that there are tissue-related differences in NNK metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号