共查询到5条相似文献,搜索用时 0 毫秒
1.
R.P. Vertes 《Neuroscience》1984,11(3):651-668
The origins of projections within the medial forebrain bundle from the lower brainstem were examined with the horseradish peroxidase technique. Labeled cells were found in at least 15 lower brainstem nuclei following injections of a conjugate or horseradish peroxidase and wheat germ agglutinin at various levels of the medial forebrain bundle. Dense labeling was observed in the following cell groups (from caudal to rostral): A1 (above the lateral reticular nucleus); A2 (mainly within the nucleus of the solitary tract); a distinct group of cell trailing ventrolaterally from the medial longitudinal fasciculus at the level of the rostral pole of the inferior olive; raphe magnus; nucleus incertus; dorsolateral tegmental nucleus (of Castaldi); locus coeruleus; nucleus subcoeruleus; caudal part of the dorsal (lateral) parabrachial nucleus; and raphe pontis. Distinct but light labeling was seen in raphe pallidus and obscurus, nucleus prepositus hypoglossi, nucleus gigantocellularis pars ventralis, and the ventral (medial) parabrachial nucleus. Sparse labeling was observed throughout the medullary and caudal pontine reticular formation. Several lower brainstem nuclei were found to send strong projections along the medial forebrain bundle to very anterior levels of the forebrain. They were: A1, A2, raphe magnus (rostral part), nucleus incertus, dorsolateral tegmental nucleus, raphe pontis and locus coeruleus. With the exception of the locus coeruleus, attention has only recently been directed to the ascending projections of most of the nuclei mentioned above. Evidence was reviewed indicating that fibers from lower brainstem nuclei with ascending medial forebrain bundle projections distribute to widespread regions of the forebrain.It is concluded from the present findings that several medullary cell groups are capable of exerting a direct effect on the forebrain and that the medial forebrain bundle is the major ascending link between the lower brainstem and the forebrain. 相似文献
2.
G A Bishop 《Neuroscience》1984,11(2):487-496
Electrophoretic injections of horseradish peroxidase were made in different parts of the rat inferior olivary complex using a ventral approach. Data from these injections provide anatomical evidence for the existence of a projection to the inferior olive which takes origin from reticular nuclei in the brainstem. The majority of reticulo-olivary neurons are located in the nucleus raphe obscurus and nucleus raphe pallidus. Other reticular nuclei which contribute to this projection include the nucleus reticularis ventralis and nucleus reticularis gigantocellularis. Analysis of injections confined to specific parts of the olivary complex reveals a topographical pattern in the reticulo-olivary projection. Caudal parts of the complex receive input primarily from the nucleus reticularis ventralis. As more rostral and medial parts of the inferior olive are included in the injection, there is concomitant shifting of labeled neurons to the nucleus reticularis gigantocellularis and the raphe nuclei. The reticulo-olivary neurons may serve several non-mutually exclusive roles in olivary circuitry. They may be the source of serotonin and/or substance P to the nucleus. Physiologically, they may provide the inhibitory input observed in the nucleus. Finally, some of these neurons may be the brainstem relay of the lateral funiculus and dorsolateral funiculus spino-olivo-cerebellar pathway proposed by Larson and his co-workers (J. Physiol., Lond. 203, 611-640, 641-649). 相似文献
3.
The aim of the present study was to assess (1) whether the various brain areas known to send projections to the neostriatum of the rat (neocortex, thalamus, substantia nigra, ventral tegmental area and dorsal raphe nucleus) project to all parts of this structure, and (2) whether the subcortical projections show a topical organization. For these purposes, small deposits of horseradish peroxidase were delivered by iontophoretic application, so that the whole extent of the caudatoputamen could be covered in a total of 40 rats.Labeled cortical cells were present mainly in lamina V, and showed a roughly topographical organization. Small numbers of labelled cells were observed in the basal nucleus of the amygdala after injections into the dorsal and central parts of the caudatoputamen. The cells of origin of thalamic afferents to the neostriatum were found not only in the intralaminar nuclei, but also in various other anterior, ‘midline’, and posterior nuclei (e.g. the medial part of the medial geniculate body). In the thalamostriatal projection a topical organization was demonstrated, consisting of oblique thalamic zones, which cross the borders of several thalamic nuclei and project to different parts of the neostriatum. In the substantia nigra and ventral tegmental area many retrogradely labelled cells were present. This nigrostriatal projection appears to be organized along an oblique longitudinal neostriatal axis. The nucleus raphes dorsalis was labelled most abundantly after caudal and ventrolateral injections into the caudatoputamen.It is concluded that, despite the homogeneous cytoarchitectonic structure of the caudatoputamen in the rat, this brain area is rather heterogeneous as regards its afferent connections. In fact each part of the neostriatum receives a specific and unique combination of afferents. The main changes in the input of the neostriatum appear to occur along an oblique longitudinal axis, from the most rostromedial and dorsal part to the caudolateral and ventral part. Such a topographical organization suggests that the neostriatum is likely to be involved in very complex integrative functions involving several brain areas. 相似文献
4.
Extra-hypothalamic afferent inputs to the supraoptic nucleus area of the rat as determined by retrograde and anterograde tracing techniques 总被引:3,自引:0,他引:3
To detect neuronal cell bodies whose axon projects to the hypothalamic supraoptic nucleus, small volumes (10-50 nl) of 30% horseradish peroxidase or 2% fast blue solutions were pressure-injected into the area of one supraoptic nucleus of rats. Both dorsal and ventral approaches to the nucleus were used. In animals where the injection site extended beyond the limits of the supraoptic nucleus, retrogradely labelled cell bodies were found in many areas of the brain, mainly in the septum, the nucleus of the diagonal band of Broca and ventral subiculum in the limbic system; the dorsal raphe nucleus, the locus coeruleus, the nucleus of the dorsal tegmentum, the dorsal parabrachial nucleus, the nucleus of the solitary tract and the catecholaminergic A1 region in the brain stem; in the subfornical organ and the organum vasculosum of the lamina terminalis, as well as in the median preoptic nucleus. In contrast, when the site of injection was apparently restricted to the supraoptic nucleus, labelling was only clearcut in the two circumventricular organs, the median preoptic nucleus, the nucleus of the solitary tract and the A1 region. Injections of wheat germ agglutinin coupled with horseradish peroxidase (60-80 nl of a 2.5% solution) made in the septum and in the ventral subiculum anterogradely labelled fibers coursing in an area immediately adjacent to the supraoptic nucleus but not within it. In contrast, labelling within the nucleus was found following anterograde transport of tracer deposited in the A1 region and in an area that includes the nucleus of the solitary tract. Neurones located in the perinuclear area were densely labelled by small injections into the supraoptic nucleus; they may represent a relay station for some afferent inputs to the supraoptic nucleus. These results suggest that the supraoptic nucleus is influenced by the same brain areas which project to its companion within the magnocellular system, the paraventricular nucleus. 相似文献
5.
Efferent projections of the zona incerta were examined in the rat using the autoradiographic and horseradish peroxidase methods, with special reference to the cytoarchitectonic structure of the zona incerta.Autoradiographic experiments showed that the incertofugal fiber systems reach ipsilaterally to the thalamus (lateral dorsal, central lateral, ventral lateral geniculate, parafascicular, subparafascicular and reuniens nuclei, and posterior nuclear complex), to the hypothalamus (dorsal, lateral and posterior hypothalamic areas), to the tectum (medial pretectal area, deep pretectal and pretectal nuclei, superior colliculus and periaqueductal gray) and to the midbrain tegmentum, pons and medulla oblongata (subcuneiform, cuneiform and red nuclei, nuclei of the posterior commissure and Darkschewitsch, interstitial nucleus of Cajal, pedunculopontine tegmental nucleus, oral and caudal pontine reticular nuclei, nucleus raphe magnus, gigantocellular reticular nucleus, pontine gray and inferior olivary complex). Contralaterally, incertal efferent fibers reach to the zona incerta.Cells of origin of the incertofugal fiber systems to the tectum, thalamus, tegmentum and spinal cord were examined using the retrograde horseradish peroxidase method. Cells of origin of the incertotectal pathway are located mainly in the ventral and caudal parts of the zona incerta and partly in the antero-polar, dorsal and postero-polar parts. Cells projecting to the thalamus (at least to the lateral dorsal and central lateral nuclei) are situated in the ventral and caudal parts of the zona incerta, but they are rare in the other incertal structures. Cells of origin of the incertotegmental system are located mainly in the dorsal, magnocellular and caudal parts and partly in the antero- and postero-polar parts, but they are not situated in the ventral part. Cells of the magnocellular part project more caudally to the medulla oblongata and spinal cord than those of the other parts of the zona incerta. Forel's field contains many cells projecting to the tegmentum.The results provide good evidence that the cells of origin of efferent projections are topographically organized and are related to cytoarchitectonic areas within the zona incerta. 相似文献