首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periodontitis is a bacterially-induced oral inflammatory disease that is characterised by tissue degradation and bone loss. Porphyromonas gingivalis is a gram negative bacterial species highly associated with the pathogenesis of chronic periodontitis. Receptor activator of nuclear factor-kB ligand (RANKL) induces bone resorption whilst osteoprotegerin (OPG) is a decoy receptor that blocks this process. Cyclooxygenase-2 (COX-2) is an enzyme responsible for the production of prostaglandin (PGE)2, which is a major inflammatory mediator of bone resorption. Mitogen-activated protein kinases (MAPK) are intracellular signalling molecules involved in various cell processes, including inflammation. This study aimed to investigate the effect of P. gingivalis on MAPKs and their involvement in the regulation of RANKL, OPG and COX-2 expression in bone marrow stromal cells. P. gingivalis challenge resulted in the phosphorylation of primarily the p38 MAPK. RANKL and COX-2 mRNA expressions were up-regulated, whereas OPG was down-regulated by P. gingivalis. The p38 synthetic inhibitor SB203580 abolished the P. gingivalis-induced RANKL and COX-2 expression, but did not affect OPG. Collectively, these results suggest that the p38 MAPK pathway is involved in the induction of RANKL and COX-2 by P. gingivalis, providing further insights into the pathogenic mechanisms of periodontitis.  相似文献   

2.
Although Candida albicans has been isolated from periodontal pockets, its relationship to periodontitis is unclear. In this study, we investigated the effect of C. albicans on the adhesion and invasion of Ca9-22, a human gingival epithelial cell line, and human gingival fibroblasts by Porphyromonas gingivalis. Heat-killed C. albicans and water-soluble mannoprotein-β-glucan complex from C. albicans (CAWS) did not enhance P. gingivalis adhesion or upregulate the expression of β1 integrin and ICAM-1, which are required for P. gingivalis invasion; both the epithelial cells and fibroblasts expressed dectin-1, which recognizes components of the C. albicans cell wall. However, pretreatment of Ca9-22 cells and human gingival fibroblasts with heat-killed C. albicans or CAWS significantly enhanced P. gingivalis invasion. These results suggest that C. albicans may exacerbate infectious disease by enhancing the invasion of host cells by anaerobic bacteria.  相似文献   

3.
Porphyromonas gingivalis is highly implicated in the pathogenesis of periodontitis, which is characterized by the destruction of periodontal connective tissues and the supporting alveolar bone. Receptor Activator of NF-kappaB Ligand (RANKL) stimulates bone resorption, whereas osteoprotegerin (OPG) blocks its action, and this bi-molecular system is implicated in periodontitis. The aim of this work was (a) to investigate the regulation of RANKL and OPG gene expression in human periodontal ligament (PDL) cells and gingival fibroblasts (GF), in response to P. gingivalis culture supernatants, by quantitative real-time PCR and (b) to attempt to identify putative virulence factors involved in this process. The results indicated that P. gingivalis induced RANKL and reduced OPG mRNA expression by the studied cells, resulting in an increased RANKL/OPG expression ratio. Heat-inactivation of P. gingivalis resulted in significant reduction of RANKL mRNA expression. A Lys-gingipain mutant strain did not affect, whereas an Arg-gingipain mutant strain further enhanced RANKL mRNA expression, compared to their parental wild-type strain. In conclusion, P. gingivalis up-regulates the RANKL/OPG expression ratio in GF and PDL cells, denoting an enhanced osteoclastogenic potential by the cells. The component mainly responsible for RANKL induction appears to be proteinaceous, and it may be regulated by the Arg-gingipains.  相似文献   

4.
Passive immunization with the monoclonal antibody 61BG1.3 selectively prevents colonization by Porphyromonas gingivalis in humans (Booth V, Ashley FP, Lehner T. Infect Immun 1996; 64:422-7). The protective MoAb recognizes the j3 component of the RI protease of P. gingivalis which is formed by proteolytic processing of a polyprotein precursor termed PrpRl. This subunit is both a haemagglutinin and an antigen which is recognized by sera from patients with periodontitis. In this study the relationship was investigated between a colonization epitope which is recognized by the MoAb 61BG1.3, a haemagglutinating and B cell epitope which are recognized by sera from patients with periodontitis. B cell epitopes were mapped by Western blotting with a series of truncated recombinant polypeptides spanning the adhesion domain within residues 784–1130 of PrpRl and by ELISA using a panel of synthetic peptides spanning the same sequence. The epitope which is recognized by the protective MoAb was mapped within residues 907–931 of PrpRl, while serum responses of patients were directed predominantly to the adjacent carboxy-terminal sequence within residues 934–1042. The haemagglutinating epitope was mapped to residues 1073–1112. In view of our previous findings that the MoAb 61BG1.3 prevents colonization of P. gingivalis in vivo and inhibits haemagglutination, these two epitopes may be in proximity in the native protein. Active or passive immunization strategies which target the protective or haemagglutinating epitopes of the adhesion domain of PrpRl may provide a means of preventing infection with P. gingivalis.  相似文献   

5.
Aminoacylhistidine dipeptidase (EC 3.4.13.3; also Xaa-His dipeptidase, carnosinase, or PepD) catalyzes the cleavage and release of an N-terminal amino acid, which is usually a neutral or hydrophobic residue, from an Xaa-His dipeptide or degraded peptide fragment. PepD enzyme is found extensively in prokaryotes and eukaryotes, and belongs to the metallopeptidase family M20, a part of the metallopeptidase H (MH) clan. Carnosine is a naturally occurring dipeptide (β-alanyl-l-histidine) present in mammalian tissues that has protective functions in addition to anti-oxidant and free-radical scavenging roles. During bacterial infections, degradation of l-carnosine via carnosinase or PepD-like enzymes may enhance the destructive potential of bacteria, resulting in a pathological impact. This process has been proposed to act in an anti-oxidant manner in vivo. In the present study, the recombinant PepD protein encoded by Porphyromonas gingivalis TDC60 pepD was generated and biochemically characterized. In addition, a recombinant dipeptidase enzyme was found to function not only as an alanine-aminopeptidase, but also as a carnosinase. Furthermore, when carnosine was used as substrate for PepD, the transition metals, Mn2+, Fe2+, Co2+, and Ni2+ stimulated the hydrolyzing activity of rPepD with β-alanine and l-histidine. Based on its metal ion specificity, we propose that this enzyme should not only be termed l-aminopeptidase, but also a carnosinase.  相似文献   

6.
The up-regulation of the B7-H1 receptors in host cells might influence the chronicity of inflammatory disorders that frequently precede the development of human cancers. B7-H1 expression has been detected in the majority of human cancers, leading to anergy and apoptosis of activated T cells, and enabling tumor cells to overcome host response. Porphyromonas gingivalis (P. gingivalis), a putative periodontal pathogen, is an etiologic agent of periodontitis and expresses a variety of virulence factors. In this study, the expression of B7-H1 and B7-DC receptors on squamous cell carcinoma cells SCC-25 and BHY and primary human gingival keratinocytes (PHGK) was analyzed after infection with two virulent P. gingivalis strains in vitro. After 48 h, the cells were stained with antibodies for human B7-H1 and B7-DC and further analyzed by flow cytometry. RNA was extracted and gene expression of B7-H1 or B7-DC was quantified by real time PCR. After infection with P. gingivalis, both B7-H1 and B7-DC receptors were up-regulated.The mean fluorescence intensity (MFI) increased from 4.5 to 9.9 (B7-H1) and from 6.9 to 15.0 (B7-DC) (p < 0.05, respectively) in SCC-25 cells. PHGK showed an increase from 4.8 to 12.4 (B7-H1) and from 5.5 to 15.6 (B7-DC) (p < 0.05, respectively). Streptococcus salivarius K12, a commensal bacterium, caused no up-regulation. After 24 h, the expression of B7H1 and B7-DC mRNA in infected cells, normalized to GAPDH and in relation to non-infected cells, was 6.4 fold (B7-H1) and 8.6 fold (B7-DC) higher. In PHGK B7-H1/DC mRNA expression increased 8.2 fold (B7-H1) and 5.9 fold (B7DC) (p < 0.05) respectively. The results of the study demonstrate that in contrast to S. salivarius K12 virulent P. gingivalis strains are able to induce the expression of the B7-H1 and B7-DC receptors in squamous carcinoma cells and human gingival keratinocytes, which might facilitate immune evasion by oral cancers.  相似文献   

7.
Hemin-binding protein 35 (HBP35) in Porphyromonas gingivalis is one of the outer membrane proteins and has been reported to be a non-fimbrial coaggregation factor. In this study, a P. gingivalis HBP35-deficient mutant (MD774) was constructed from wild-type strain FDC381 by insertion mutagenesis in order to provide a better understanding of this protein's role in coaggregation. The intact cells and vesicles in FDC381 were found to have strong aggregation activities with Gram-positive bacteria. But neither the vesicles nor the intact cells showed aggregation activity in MD774. In addition, MD774 reduced autoaggregation activity. Immunoblot analysis of MD774 showed the presence of a non-maturated 45-kDa fimbrillin protein. Electron microscopy showed that the MD774 had no long fimbriae on the cell surface. Arg- and Lys-gingipain activity in MD774 was significantly decreased, compared with FDC381. Real-time RT-PCR demonstrated a significant reduction in the expression of gingipain-associated genes rgpA, rgpB, and kgp. In conclusion, we suggest that the reduction in coaggregation was caused by the combined reduction of a variety of molecules, including HBP35, gingipains, and fimbriae. Our results suggest that the HBP35 protein directly influences not only coaggregation as an adhesion molecule but also indirectly influences the expression of other coaggregation factors.  相似文献   

8.
Several reports have demonstrated a possible association of periodontal infections with coronary heart disease (CHD) by elevated antibody titre to periodontopathic bacteria in CHD patients compared with non-diseased controls. Although each periodontopathic bacterium may vary in virulence for periodontitis and atherosclerosis, antibody response to multiple bacteria in CHD patients has not been understood fully. Therefore, serum levels of antibody to 12 periodontopathic bacteria together with other atherosclerotic risk markers were compared among 51 patients with CHD, 55 patients with moderate to severe chronic periodontitis and 37 healthy individuals. The antibody response was the most prevalent for Porphyromonas gingivalis, a major causative organism, in CHD as well as periodontitis patients. However, antibody positivity was different between CHD and periodontitis if the response was analysed for two different strains of P. gingivalis, namely FDC381 and Su63. While periodontitis patients were positive for both P. gingivalis FDC381 and Su63, a high frequency of antibody positivity for P. gingivalis Su63 but not for FDC381 was observed in CHD patients. The results indicate that the presence of particular periodontopathic bacteria with high virulence may affect atherogenesis. Identifying the virulence factors of P. gingivalis Su63 may gain insight into the new therapeutic modality for infection-induced deterioration of atherosclerosis.  相似文献   

9.
Aspiration pneumonia is a common cause of death in older people, and the pathophysiology is a chronic respiratory failure with a mild airway inflammation. In this study, we established a mild inflammatory pneumonia model using Porphyromonas gingivalis (Pg) pathogen-infected mice. It elucidated the effects of Pg-infected pneumonia on proinflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin-6 (IL-6), and IL-1beta production in both lung tissue and serum. We also elucidated production of soluble (s) TNF receptor (R) s, because TNF-alpha is considered to be a dominant inflammatory mediator. Lung TNF-alpha levels significantly increased at 2 h after infection, and rapidly returned to basal level at 24 h. Consistent with increase of TNF-alpha, remarkable increase of sTNFR2 but not sTNFR1 was detected in lung tissue from 2 to 72 h. Interestingly, sTNFR2/sTNFR1 ratio was significantly enhanced at 2 h in serum. In addition, lung IL-1beta and IL-6 levels also significantly increased from 2 to 24 h. Importantly, we found that IL-6 levels in serum reflected its local level. These results may suggest that systemically produced sTNFR2 and IL-6 could be a key role to modulate proinflammatory activities of TNF-alpha in Pg-induced lung inflammation simulated aspiration pneumonia.  相似文献   

10.
11.
12.
Porphyromonas gingivalis, the major etiologic agent of chronic periodontitis, produces a broad spectrum of virulence factors, including outer membrane vesicles. In this study, we investigated the capacity of P. gingivalis vesicles to promote the shedding or cleavage of the lipopolysaccharide (LPS) receptor CD14 from the surface of human U937 macrophage-like cells. SDS-PAGE/Western immunoblotting analysis of gingival crevicular fluid samples from patients affected by moderate or advanced periodontitis revealed the presence of soluble CD14 and CD14 fragments, thus supporting the hypothesis of an in vivo shedding and cleavage of CD14 receptors. Flow cytometry analysis of macrophage-like cells treated with a vesicle-containing culture supernatant of P. gingivalis showed a significant decrease in the binding of anti-human CD14 to the cell surface. However, no accumulation of soluble CD14 or immunoreactive CD14 fragments in the assay supernatant could be demonstrated by ELISA. Treatment of macrophage-like cells with various concentrations of P. gingivalis vesicles substantially suppressed TNF-alpha production triggered by Escherichia coli LPS. This suppressive effect was much less important using heat-treated vesicles or in the presence of leupeptin, a gingipain inhibitor, during the treatment. Recombinant human CD14 receptors were found to be susceptible to proteolytic degradation by P. gingivalis vesicles. A purified Arg-gingipain preparation produced much more degradation than a Lys-gingipain preparation. This study provides evidence that P. gingivalis outer membrane vesicles contribute to the loss of membrane-bound CD14 receptors and that gingipains degrade this LPS receptor. Such a phenomenon, which results in an hyporesponsiveness of macrophages to LPS stimulation, may contribute to an increased capacity of P. gingivalis, and other periodontopathogens, to evade the host immune system mechanisms.  相似文献   

13.
Infection with Salmonella enterica serovar Typhimurium (S. Typhimurium) causes a severe and lethal systemic disease in mice, characterized by poor activation of the adaptive immune response against Salmonella-derived antigens. Recently, we and others have reported that this feature relies on the ability of S. Typhimurium to survive within murine dendritic cells (DCs) and avoid the presentation of bacteria-derived antigens to T cells. In contrast, here we show that infection of murine DCs with either S. Typhi or S. Enteritidis, two serovars adapted to different hosts, leads to an efficient T-cell activation both in vitro and in vivo. Accordingly, S. Typhi and S. Enteritidis failed to replicate within murine DCs and were quickly degraded, allowing T-cell activation. In contrast, human DCs were found to be permissive for survival and proliferation of S. Typhi, but not for S. Typhimurium or S. Enteritidis. Our data suggest that Salmonella host restriction is characterized by the ability of these bacteria to survive within DCs and avoid activation of the adaptive immune response in their specific hosts.  相似文献   

14.
Periodontitis is a polymicrobial infection caused by selected gram-negative bacteria including Porphyromonas gingivalis. Host cell invasion by P. gingivalis has been proposed as a possible mechanism of pathogenesis in periodontitis. The aim of the present study was to assess the influence of periodontopathogens on P. gingivalis invasion of gingival epithelial cells in polymicrobial infection. P. gingivalis was tested for its ability to invade a human gingival epithelial cell line Ca9-22 in co-infection with periodontopathogens, using an antibiotic protection assay. Among the pathogens tested, only Fusobacterium nucleatum demonstrated the ability to significantly promote P. gingivalis invasion (P < 0.01). This increased invasion was confirmed by confocal scanning laser microscopy utilizing a dual labeling technique. In contrast, co-infection with Aggregatibacter actinomycetemcomitans or Tannerella forsythia attenuated P. gingivalis invasion. The fusobacterial enhancement of host cell invasion was not observed in co-incubation with other periodontopathogens tested. These results suggested that complex synergistic or antagonistic physiologic mechanisms are intimately involved in host cell invasion by P. gingivalis in polymicrobial infection.  相似文献   

15.
IL-8 mRNA in human gingival epithelial cells (HGECs) is up-regulated by Fusobacterium nucleatum, and up-/down-regulated by Porphyromonas gingivalis in a complex interaction in the early stages (< or = 4 h) after infection. The mechanisms involved in this regulation in response to F. nucleatum and/or P. gingivalis infection, and identification of co-regulated cytokine genes, are the focus of this investigation. Heat, formalin or protease treatment of F. nucleatum cells attenuated the IL-8 mRNA up-regulation. NF-kappaB, mitogen-activated protein kinase (MAPK) p38 and MAPK kinase/extracellular signal-regulated kinase (MEK/ERK) pathways were involved in IL-8 mRNA induction by F. nucleatum. Pretreatment of P. gingivalis with heat, formalin or protease enhanced IL-8 mRNA induction. NF-kappaB, MARK p38, and MEK/ERK pathways were also involved in this induction. In contrast, down-regulation of IL-8 mRNA by P. gingivalis involved MEK/ERK, but not NF-kappaB or MAPK p38 pathways. cDNA arrays analysis revealed that mRNA down-regulation by P. gingivalis is a specific reaction that only a number of genes, e.g. IL-1beta, IL-8, macrophage inflammatory protein-2alpha, and migration inhibitory factor-related protein-14, are affected based on examination of 278 cytokine/receptor genes. These data indicate that F. nucleatum and P. gingivalis trigger specific and differential gene regulation pathways in HGECs.  相似文献   

16.
17.
The intestinal mucosa represents a challenging environment for CD8+ T cells, which must tolerate nutrient antigens and commensal microorganisms while responding efficiently to pathogens. Consequently, specific regulatory mechanisms apply for CD8+ T cells in the intestinal environment, which should also be reflected in a tissue-specific gene expression profile of these cells. This study investigates whether such tissue-specific gene expression can be observed in CD8+ T cells primed during bacterial infection. To identify intestine-specific gene expression in conventional CD8alphabeta+ T cells, mice were infected with Listeria monocytogenes expressing ovalbumin (LmOVA). Using OVA257-264 tetramers, specific CD8+ T cells were sorted from spleen, liver and the small intestinal mucosa, and RNA samples from these cells were compared using microarrays. This approach allowed the identification of differences in gene expression in a highly defined CD8+ T-cell population with identical antigen specificity generated during infection. One group of genes with reduced expression in the intestinal mucosa comprised members of the C-type lectin-like natural killer receptor (NKR) family. Fluorescence-activated cell sorting analysis was used to assess protein expression of NKR. NKR expression on CD8+ T cells from the intestinal mucosa was dependent on the route of listeria application and consequently on the site of T-cell priming. Retinoic acid influenced NKR expression consistent with an imprinting of the NKR expression profile in intestine-associated lymphoid tissues. In contrast, NKR expression was largely independent from intestinal flora. Our results demonstrate that in the intestinal mucosa, conventional CD8alphabeta+ T cells lack NKR expression and thereby lose responsiveness to NKR ligands, which otherwise could possibly cause adverse activation or inhibition of T cells in this environment.  相似文献   

18.
19.
目的探讨丝裂原活化蛋白激酶(MAPK)信号通路在卵巢癌细胞(SKOV3)诱导CD8+Treg分化过程中的作用。方法建立SKOV3与健康人CD8+T细胞体外共培养体系,设置CD8+T细胞单独培养组为对照组。共培养5 d后,收集各组CD8+T细胞,荧光定量PCR和流式细胞术检测CD8+T细胞中Treg相关标志物(CD25、Foxp3、CD28)的表达率;功能抑制试验检测两组CD8+T细胞对nave CD4+T细胞增殖能力的影响;Western blot检测MAPK通路相关蛋白(ERK/p-ERK、JNK/p-JNK、P38 MAPK/p-P38 MAPK)的表达水平;P38 MAPK特异性抑制剂SB203580预处理CD8+T细胞后,评价CD8+T细胞中Treg相关标志物(CD25、Foxp3、CD28)的表达变化。结果共培养组CD8+T细胞中CD25及Foxp3表达率均显著高于对照组(P0.05),CD28表达率显著低于对照组(P0.05);共培养组CD8+T细胞相比对照组,抑制nave CD4+T细胞的增殖力增强;Western blot结果显示,共培养组p-P38 MAPK的表达水平显著高于对照组(P0.05),SB203580预处理后CD8+T细胞中Treg相关标志物表达率均下调。结论卵巢癌细胞通过活化CD8+T细胞的P38 MAPK信号通路诱导具有抑制作用的CD8+Treg的生成,促进肿瘤进展。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号