首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low birth weight (BW) has been associated with poor bone health in adulthood. The aim of this study was to investigate the association between BW and bone mass and metabolism in adult BW‐discordant monozygotic (MZ) twins. A total of 153 BW–extremely discordant MZ twin pairs were recruited from the Danish Twin Registry. Serum vitamin D (25‐hydroxyvitamin D [25OHD]) and bone turnover markers (BTMs) amino‐terminal propeptide of type I procollagen (P1NP), pyridinoline cross‐linked carboxyterminal telopeptide of type I collagen (1CTP), and cross‐linked C‐telopeptide (CTX) were quantified. Femoral neck (FN), total hip (TH), lumbar spine (LS), and whole‐body (WB) bone mineral density (BMD) (ie, FN‐BMD, TH‐BMD, LS‐BMD, and WB‐BMD, respectively) were measured using dual‐energy X‐ray absorptiometry (DXA). Twins were studied as single individuals using regression analyses with or without adjustment for height, weight, age, sex, and intrapair correlation. Within‐pair differences were assessed using Student's t test and fixed‐regression models. BW was not associated with BTMs, LS‐BMD, TH‐BMD, FN‐BMD, or WB‐BMD, but BW was associated with WB‐BMC, and WB‐Area after adjustments. Compared to the co‐twin, twins with the highest BW were heavier and taller in adulthood (mean differences ± SD): 3.0 ± 10.5 kg; 1.6 ± 2.6 cm; both p < 0.001). Within‐pair analyses showed that LS‐BMD, TH‐BMD, and FN‐BMD tended to be higher in twins with highest BW (for all: mean difference 0.01 ± 0.1 g/cm2; p = 0.08, 0.05, and 0.10, respectively). No difference was observed after adjustment for adult body size. Intrapair differences in BW were not associated with differences in any of the biochemical parameters or BMD. Small differences between twins in BMD were explained by dissimilarities in body size. These results suggest that BW and adult bone metabolism are unrelated. © 2013 American Society for Bone and Mineral Research.  相似文献   

2.
Osteoporosis has been described in animal models of mucopolysaccharidosis (MPS). Whether clinically significant osteoporosis is common among children with MPS is unknown. Therefore, cross-sectional data from whole body (WB; excluding head) and lumbar spine (LS) bone mineral density (BMD) compared with sex-, chronologic age–, and ethnicity-matched healthy individuals (Zage), height-for-age (HAZ) Z-score (ZHAZ) and bone mineral content (BMC) measured by dual-energy X-ray absorptiometry (DXA) in 40 children with MPS were analyzed. A subset of these children (n = 24) was matched 1:3 by age and sex to a group of healthy children (n = 72) for comparison of BMC adjusted for Tanner stage, race, lean body mass, height, and bone area. Low BMD Z-score was defined as Z-score of −2 or less. In children with MPS, 15% had low WB Zage and 48% had low LS Zage; 0% and 6% had low WB ZHAZ and low LS ZHAZ, respectively. Adjusted WB BMC was lower in MPS participants (p = 0.009). In conclusion, children with MPS had deficits in WB BMC after adjustments for stature and bone area. HAZ adjustment underestimated bone deficits (i.e., overestimated WB BMD Z-scores) in children with MPS likely owing to their abnormal bone shape. The influence of severe short stature and bone geometry on DXA measurements must be considered in children with MPS to avoid unnecessary exposure to antiresorptive treatments.  相似文献   

3.
Changes in body fatness may impact the accuracy of dual energy X-ray absorptiometry (DXA) measures of bone mineral content (BMC) and bone mineral density (BMD). The aim of this study was to determine if DXA can accurately assess BMC and BMD with changes in exogenous fat (lard) placed to simulate weight change. Whole body (WB), lumbar spine (LS), and proximal femur (PF) DXA scans (Hologic QDR 4500A) were performed on 30 elderly (52-83 yr) and 60 young (18-40 yr) individuals (i.e., 45 females and 45 males) of varying body mass index (mean+/-standard deviation: 26.1+/-4.9 kg/m2). When scans were repeated with lard packets (2.54 cm thick, 25.4x17.8 cm, 1 kg), WB BMD decreased 1.1% and 1.6% after chest and thigh packet placement, respectively (p=0.001), PF BMD increased 0.7% (p=0.02) and LS BMD decreased 1.6% (p=0.001) primarily due to a 2.2% reduction in LS BMC (p<0.001). Initial LS BMC and trunk mass were related to error in LS BMC measures due to lard-loading (r=0.64 and 0.45, respectively, p<0.001). We conclude that on average simulated weight change minimally impacts PF bone measures and moderately impacts WB and LS bone measures; however, individual variability in measurement error was noteworthy and may be impacted by body thickness.  相似文献   

4.

Summary

Whether infant vitamin D supplementation may have long-term bone benefits is unclear. In this study, breastfed infants who received vitamin dosages greater than 400 IU/day did not have higher bone mineralization at 3 years. This study provides important data to inform pediatric public health recommendations for vitamin D.

Introduction

North American health agencies recommend breastfed infants should be supplemented with 400 IU of vitamin D/day to support bone health. Few studies examined the long-term benefits of early life vitamin D supplementation on bone mineralization. The objective of this study was to determine if a dose-response relationship exists between infant vitamin D supplementation, vitamin D status, and bone outcomes at 3 years of age.

Methods

This was a double-blind randomized trial of 132, 1-month-old healthy, breastfed infants from Montréal, Canada, between 2007 and 2010. In this longitudinal analysis, 87 infants (66 %) returned for follow-up at 3 years of age, between 2010 and 2013. At 1 month of age, participants were randomly assigned to receive oral cholecalciferol (vitamin D3) supplements of 400, 800, 1200, or 1600 IU/day until 12 months of age. Lumbar spine vertebrae 1–4 (LS) bone mineral density (BMD), LS and whole body bone mineral content (BMC), and mineral accretion were measured by dual-energy x-ray absorptiometry at 3 years.

Results

At follow-up, the treatment groups were similar in terms of diet, sun exposure, and demographics. There were no significant differences among the groups in LS or whole body BMC, BMD, or accretion. Although, 25(OH)D concentrations were not different among the groups, higher doses (1200 and 1600 IU/day) achieved higher 25(OH)D area under the curve from 1 to 36 months vs. 400 IU/day.

Conclusions

This is the first longitudinal follow-up of an infant vitamin D dose-response study which examines bone mineralization at 3 years of age. Dosages higher than 400 IU/day do not appear to provide additional benefits to the bone at follow-up. Larger studies with more ethnically diverse groups are needed to confirm these results.
  相似文献   

5.
Optimizing bone mass in adulthood is of great importance to prevent the occurrence of osteoporosis in later age. Vitamin D is an essential component of bone health. Low-serum vitamin D is associated with low bone mineral density (BMD), which is an important predictor of fracture risk. However, most cells, apart from renal tubular cells, are exposed to free rather than to total 25-hydroxyvitamin D. Whether free vitamin D would be a better marker than total vitamin D is still under debate. The aim of the present study was to explore the relationships between serum total vitamin D, vitamin D-binding protein (BP), free vitamin D, and bone parameters in a group of young Lebanese women. This study included 88 young female adults aged between 18 and 35?yr. Body composition and BMD were assessed by dual-energy X-ray absorptiometry, and the lumbar spine trabecular bone score was derived. Bone mineral content (BMC) and BMD were measured at the whole body (WB), the lumbar spine (L1–L4), the total hip (TH), and the femoral neck (FN). To evaluate hip bone geometry, dual-energy X-ray absorptiometry scans were analyzed at the FN, the intertrochanteric region, and the femoral shaft by the Hip Structure Analysis program. The cross-sectional area, the index of axial compression strength, and the section modulus (Z), as well as index of bending strength, were measured from bone mass profiles. Composite indices of FN strength (compressive strength index [CSI], bending strength index, and impact strength index [ISI]) were calculated as previously described. Direct measurement of free 25-hydroxyvitamin D concentrations was performed by immunoassay, which detects free vitamin D by ELISA on a microtiter plate. Serum vitamin D BP was measured using a Quantikine ELISA kit, which employed the quantitative sandwich enzyme immunoassay technique. Serum free vitamin D was positively correlated with WB BMC (r?=?0.26, p?<?0.05), WB BMD (r?=?0.29, p?<?0.05), L1–L4 BMD (r?=?0.28, p?<?0.05), TH BMD (r?=?0.34, p?<?0.01), FN BMD (r?=?0.29, p?<?0.05), CSI (r?=?0.24, p?<?0.05), and ISI (r?=?0.28, p?<?0.05). No positive correlations were detected between the total vitamin D level, the vitamin D BPs, and BMD. The positive associations between free vitamin D and several bone variables (WB BMC, WB BMD, L1–L4 BMD, TH BMD, FN BMD, CSI, bending strength index, and ISI) remained significant after adjustment for weight. In conclusion, the current study suggests that the free vitamin D serum level is a stronger positive determinant of bone parameters and hip bone strength indices in young female adults than total serum vitamin D.  相似文献   

6.
Normative bone mineral density (BMD) and bone mineral content (BMC) values for the total body (TB), proximal femur (PF), and antero-posterior lumbar spine (LS) were obtained from a large cross-sectional sample of children and adolescents who were 8–17 years of age. There were 977 scans for the TB, 892 for the PF, and 666 for the LS; bone mineral values were obtained using a HOLOGIC QDR 2000 in array mode. Data are presented for the subregions of the PF (femoral neck, trochanter, intertrochanter, and the total region) and for the LS (L1–L4 and L3). Female and male values for the FN, LS (L1–L4), and the TB were compared across age groups using a two-way ANOVA. In addition, we compared the 17-year-old female values to a separate sample of young adult women (age 21). At all these sites, BMC and BMD increased significantly with age. There was no gender difference in TB BMC until age 14 or in TB BMD until age 16, when male values were significantly greater. Females had significantly greater LS BMC at ages 12 and 13, but by age 17 the male values were significantly greater. Females had significantly greater LS BMD across all age groups, however. Males had significantly greater FN BMC and BMD across all age groups. There were no significant differences in BMC or BMD at any sites between the 17- and 21-year-old women. Received: 29 September 1995 / Accepted: 1 April 1996  相似文献   

7.
The effect of 18 months of training on the ovarian hormone concentrations and bone mineral density (BMD) accrual was assessed longitudinally in 14 adolescent rowers and 10 matched controls, aged 14–15 years. Ovarian hormone levels were assessed by urinary estrone glucuronide (E1G) and pregnanediol glucuronide (PdG) excretion rates, classifying the menstrual cycles as ovulatory or anovulatory. Total body (TB), total proximal femur (PF), femoral neck (FN) and lumbar spine (LS) (L2–4) bone mass were measured at baseline and 18 months using dual-energy X-ray densitometry. Results were expressed as bone mineral content (BMC), BMD and bone mineral apparent density (BMAD). Five rowers had anovulatory menstrual cycles compared with zero prevalence for the control subjects. Baseline TB BMD was significantly higher in the ovulatory rowers, with PF BMD, FN BMD and LS BMD similar for all groups. At completion, the LS bone accrual of the ovulatory rowers was significantly greater (BMC 8.1%, BMD 6.2%, BMAD 6.2%) than that of the anovulatory rowers (BMC 1.1%, BMD 3.9%, BMAD 1.6%) and ovulatory controls (BMC 0.5%, BMD 1.1%, BMAD 1.1%). No difference in TB, PF or FN bone accrual was observed among groups. This study demonstrated an osteogenic response to mechanical loading, with the rowers accruing greater bone mass than the controls at the lumbar spine. However, the exercise-induced osteogenic benefits were less when rowing training was associated with low estrogen and progesterone metabolite excretion. Received: 8 December 1998 / Accepted: 15 March 1999  相似文献   

8.
The aim of this study was to determine the relative importance of lean mass and fat mass on bone mineral density (BMD) in a group of Lebanese postmenopausal women. One hundred ten Lebanese postmenopausal women (aged 65–84 yr) participated in this study. Age and years since menopause were recorded. Body weight and height were measured and body mass index (BMI) was calculated. Body composition (lean mass, fat mass, and fat mass percentage) was assessed by dual-energy X-ray absorptiometry (DXA). Bone mineral content (BMC) of the whole body (WB) and BMD of the WB, the lumbar spine (L1–L4), the total hip (TH), the femoral neck (FN), the ultra distal (UD) Radius, and the 1/3 Radius were measured by DXA. The expressions WB BMC/height and WB BMD/height were also used. Weight, BMI, fat mass, and lean mass were positively correlated to WB BMC, WB BMC/height, WB BMD/height, and to WB, L1–L4, TH, FN, UD Radius, and 1/3 Radius BMD. However, using multiple linear regression analyses, fat mass was more strongly correlated to BMC and to BMD values than lean mass after controlling for years since menopause. This study suggests that fat mass is a stronger determinant of BMC and BMD than lean mass in Lebanese postmenopausal women.  相似文献   

9.
Generally, the incidence of osteoporotic fracture is lower in black populations and in men. These effects of ethnicity and gender may result from differences in peak bone mineral density (PBMD) and bone turnover (BT), which in turn are affected by bone size. Therefore, the aims of this study were to examine the effects of ethnicity and gender on bone mineral density (BMD) and BT in young African-Caribbean and Caucasian adults, and to adjust for the effect of bone size on BMD and BT. BMD was measured at the lumbar spine, L2–L4 (LS), total body (TB) and femoral neck (FN) by dual-energy X-ray absorptiometry in 44 blacks (16 men, 28 women) and 59 whites (28 men, 31 women) ages 20–37 years. We measured serum bone-specific alkaline phosphatase (BAP) and serum osteocalcin (OC) as markers of bone formation and urinary immunoreactive free deoxypyridinoline (ifDpd) and crosslinked N-telopeptide of type I collagen (NTx) as markers of bone resorption. To adjust the data for any differences in bone size, we calculated: (a) bone mineral apparent density (BMAD), an estimated volumetric bone density which attempts to normalize BMD measurements for bone size; and (b) bone resorption markers as a ratio to total body bone mineral content (TB BMC). Two-way analysis of variance was used to compare the effects of race and gender, and to test for any interaction between these two factors. Blacks had higher BMD compared with whites at the TB (p<0.001), LS (p= 0.0001) and FN (p= 0.0005). This increase remained significant at the LS only after calculating BMAD. Men had higher BMD at all sites (except at the LS). This increase was no longer significant at the FN after calculating BMAD, and LS BMAD was actually greater in women (p<0.0001). Blacks and whites had similar concentrations of turnover markers, but men had higher bone turnover markers than women (BAP, p<0.0001; OC, p= 0.002; ifDpd, p= 0.03; NTx, p<0.0001). This increase in bone resorption markers was no longer significant after adjusting for TB BMC (except for NTx in whites). We conclude that the skeletal advantage in blacks during young adulthood is not explained by bone size. However, it seems probable that bone size effects partially explain gender differences in BMD and bone turnover. Received: 2 February 1999 / Accepted: 2 December 1999  相似文献   

10.
Adequate nutrition is needed for the accrual of bone mass during the pre- and postpubertal growth periods. This study aimed to examine the associations between dietary calcium, vitamin D (calciferol), and milk intakes and 25-hydroxyvitamin D [25(OH)D] status and bone mineral content (BMC) and bone mineral density (BMD) in Spanish adolescents, aged 12.5–17.5 yr, participating in the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study (HELENA-CSS). Bone mass was measured with dual-energy X-ray absorptiometry and diet via 2 nonconsecutive 24-h dietary recalls (n = 227; 48% males). A random subsample of 101 adolescents (46% males) had available measures of 25(OH)D. Multiple linear regression was applied. Significant adjusted associations were observed in males, among milk intakes and BMC and BMD. Also in males, whole-body, head, and right arm BMD were positively related to calcium intakes. In females, 25(OH)D was positively related among others to whole-body, subtotal, and left and right arm BMC and BMD. It could be speculated that diet is not a limiting factor of bone mass development in this group of healthy adolescents, and further research on the effect of other factors in addition to diet in a larger sample should be undertaken.  相似文献   

11.

Summary

We provide the first reference values for bone mineral content and bone mineral density according to age and sex in Iranian children and adolescents. The prevalence of hypovitaminosis D was high, and levels of physical activity were low in our sample. Multiple regression analyses showed age, BMI, and Tanner stage to be the main indicators of bone mineral apparent density.

Purpose

Normal bone structure is formed in childhood and adolescence. The potential determinants which interact with genetic factors to influence bone density include gender, nutritional, lifestyle, and hormonal factors. This study aimed to evaluate bone mineral content (BMC) and the bone mineral density (BMD) and factors that may interfere with it in Iranian children.

Methods

In this cross-sectional study, 476 healthy Iranian children and adolescents (235 girls and 241 boys) aged 9–18 years old participated. BMC and BMD of the lumbar spine, femoral neck, and total body were measured by dual-energy X-ray absorptiometry using a Hologic Discovery device, and bone mineral apparent density (BMAD) of the lumbar spine and the femoral neck were calculated.

Results

We present percentile curves by age derived separately for BMC, BMD, and BMAD of the lumbar spine, left femoral neck, and total body excluding the head for boys and girls. Maximum accretion of BMC and BMD was observed at ages of 11–13 years (girls) and 12–15 years (boys).The prevalence of hypovitaminosis D was high and physical activity was low in our participants. However, in multiple regression analyses, age, BMI, and Tanner stage were the main indicators of BMD and BMAD

Conclusion

These normative data aid in the evaluation of bone density in Iranian children and adolescents. Further research to evaluate the evolution of BMD in Iranian children and adolescents is needed to identify the reasons for significant differences in bone density values between Iranian populations and their Western counterparts.  相似文献   

12.
The purpose of this investigation was to study whether prolonged competitive rhythmic gymnastics training influenced bone mineral accrual in premenarcheal girls. Eighty-nine girls (45 rhythmic gymnasts [RG] and 44 untrained controls [UC]) between 7 and 9 years of age were recruited and measured annually for four years (not all participants were measured at every occasion). Dual energy x-ray absorptiometry was used to assess the development of whole body (WB), femoral neck (FN) and lumbar spine (LS) bone mineral content (BMC). In addition, body composition, blood adipokine and jumping performance characteristics were obtained. For longitudinal analyses, hierarchical mixed-effects models were constructed to predict differences in the development of WB, FN and LS BMC between RG and UC groups, while accounting for differences in body composition, blood adipokine and jumping performance values. It appeared that from 8 years of age, RG had lower (p < 0.05) fat mass and leptin values, and higher (p < 0.05) jumping performance measures in comparison with UC girls. Hierarchical mixed-effects models demonstrated that RG had 71.9 ± 12.0, 0.23 ± 0.11 and 1.39 ± 0.42 g more (p < 0.05) WB, FN and LS BMC, respectively, in comparison with UC girls. In addition, WB, FN and LS BMC increased more (p < 0.05) between 7 to 12 years of age in RG girls in comparison with UC. In conclusion, these findings suggest that the prolonged exposure to competitive rhythmic gymnastics trainings in premenarcheal girls is associated with greater bone mineral accrual despite lower body fat mass and leptin values.Key points
  • Study examined long-term association between the exposure to competitive rhythmic gymnastics training and bone mineral accrual at the whole body, femoral neck and lumbar spine sites of the skeleton in premenarcheal rhythmic gymnasts.
  • Prolonged exposure to competitive rhythmic gymnastics training before menarche provides skeletal benefits to bone mineral accrual at all measured skeletal sites despite lowered body fat mass and leptin values.
Key words: Rhythmic gymnastics, premenarcheal girls, bone mineral content, longitudinal development, adipokines, fat mass  相似文献   

13.
The aim of this study was to explore the relationship between maximal oxygen consumption (VO2 max) and bone mineral density (BMD) in a group of young Lebanese adults. Twenty women and 37 men whose ages range from 18 to 32 yr participated in this study. Informed written consent was obtained from the participants. Body weight and height were measured, and body mass index was calculated. VO2 max was determined by direct measurement while exercising on a bicycle ergometer (Siemens-Elema RE 820; Rodby Elektronik AB, Enhorna, Sweden). Whole body bone mineral content (WB BMC), whole body bone mineral density (WB BMD), lumbar spine BMD (L1–L4 BMD), total hip BMD (TH BMD), and femoral neck BMD (FN BMD) were measured by dual-energy X-ray absorptiometry. In women, VO2 max (expressed as L/mn) was positively correlated to WB BMC (r = 0.82; p < 0.001), WB BMD (r = 0.80; p < 0.001), L1–L4 BMD (r = 0.73; p < 0.001), TH BMD (r = 0.80; p < 0.001), and FN BMD (r = 0.85; p < 0.001). In men, VO2 max (expressed as L/mn) was positively correlated to WB BMC (r = 0.57; p < 0.001), WB BMD (r = 0.53; p < 0.001), L1–L4 BMD (r = 0.50; p < 0.001), TH BMD (r = 0.38; p < 0.01), and FN BMD (r = 0.30; p < 0.05). In both sexes, the positive associations between VO2 max and bone variables (BMC and BMD) remained significant after adjustment for age (p < 0.001). This study suggests that VO2 max (L/mn) is a positive determinant of BMC and BMD in young adults. Aerobic power seems to be a determinant of BMC and BMD in young adults.  相似文献   

14.
The purpose of this study was to determine whether race or gender differences in total body bone mineral content (BMC) are evident within the first 18 months of age. Total body bone mineral measurements were obtained on 64 healthy infants 1–18 months of age. There were no significant differences in age, weight, or height between race and gender groups. Taking into account weight and age, both bone mineral density (BMD) and BMC were greater in male infants compared with female infants (both,P=0.02) and BMD was slightly higher in black infants compared with white infants (P=0.07).  相似文献   

15.
Gender, ethnicity, and lifestyle factors affect bone mass acquisition during childhood, thus the need for age- and sex-adjusted Z scores using ethnic-specific data for bone mineral density (BMD) measurement. This study aimed at establishing normative data for BMD in healthy Lebanese children and adolescents. Three hundred sixty-three healthy children aged 10 to 17 years (mean+/-SD: 13.1+/-2.0) were studied. BMD, bone mineral content (BMC), and lean mass were measured by dual-energy X-ray absorptiometry (DXA) using a Hologic 4500A device, and apparent volumetric BMD (BMAD) of the lumbar spine and the femoral neck were calculated. BMD, BMC, and BMAD were expressed by age groups and Tanner stages for boys and girls separately. There was a significant effect of age and puberty on all bone parameters, except at the femoral neck BMAD in boys. BMC and BMD were higher at cortical sites in boys, including subtotal body and hip; whereas, in girls, it was higher at a site more enriched in trabecular bone, namely the lumbar spine. At several skeletal sites, girls had significantly higher BMD adjusted for lean mass than boys. By the end of puberty, adolescents had a mean BMD that was 43-66% higher at the lumbar spine and 25-41% higher at cortical sites than pre-pubertal children, depending on the gender. Mean BMD values in the study group were significantly lower (P<0.01) than Western normative values, with Z scores ranging between -0.2 and -1.1. In both genders, children of lower socioeconomic status tended to have lower BMD than those from a higher socioeconomic background. This study allows additional insight into gender dimorphism in mineral accretion during puberty. It also provides a valuable reference database for the assessment of BMD in children with pubertal or growth disorders who are of Middle Eastern origin.  相似文献   

16.
Risk of osteoporosis in later life may be determined during adolescence and young adulthood. The present study used longitudinal data to examine the accumulation of bone mineral content (BMC) and bone mineral density (BMD) in Caucasian subjects ages 6-36 yr. Growth in BMC and BMD (measured by dual X-ray absorptiometry; Lunar, Madison, WI) of 94 males and 92 females was monitored for a mean period of 4.29 yr. The main findings were that there were no sex differences in BMC or BMD during the prepubertal stage; however, females had significantly higher BMD of the pelvis and BMC and BMD of the spine during puberty, and postpubertal males generally had significantly higher BMC and BMD than their female counterparts. In addition, the longitudinal rate of bone accumulation in both sexes increased rapidly during childhood and adolescence and was nearly complete at the end of puberty. Finally, peak BMC and BMD was achieved between the ages of 20 and 25 and occurred earlier in females than in males. The rates of growth and timing of peak bone mass as reported here define the crucial period during which intervention protocols should be developed for maximizing skeletal mass to prevent the development of osteoporosis.  相似文献   

17.
BACKGROUND: Reduced bone mass and fragility fractures are known complications after transplantation in adults. Far less is known about the skeletal effects of transplantation in children and adolescents. METHODS: This cross-sectional study examined the skeletal status of children (ages 9-18 years) who were at least 1 year post-cardiac (n=13), post-renal (n=8), or post-bone marrow (BMT; n=15) transplantation. Bone mass at total hip, femoral neck, spine (L2-4), and whole body (WB) was determined by dual energy x-ray absorptiometry and compared with age, sex, and ethnic-specific reference data. Standard deviations (z-scores) were calculated for both areal bone mineral density (BMD) and estimated volumetric bone density (bone mineral apparent density [BMAD]). RESULTS: Cardiac transplant patients had significantly lower BMD z-scores compared with the reference population at all skeletal sites. BMT recipients had significantly reduced BMD z-scores at total hip, spine, and WB. Kidney transplant patients had a significantly reduced WB BMD z-score only. Spine BMAD z-scores remained significantly reduced in cardiac and BMT subjects. Three of 36 patients had radiographic evidence of spinal fracture after transplantation. No correlation between steroid dosage and any measure of bone mass was observed. CONCLUSIONS: Cardiac and BMT recipients had reduced BMD at multiple skeletal sites, and renal transplant recipients had reduced WB BMD for age. Deficits in spine bone density persisted after correcting for small bone size using BMAD. Low bone density and the occurrence of vertebral fractures indicate that cardiac, renal, and bone marrow transplantation in children is associated with reduced bone health.  相似文献   

18.
AimsBodyweight is a significant predictor of bone mass. Hormonal factors are thought to play a role in the mechanisms controlling the association of body weight and fat mass with bone mass. Very recently, the orexigenic hormone ghrelin has also been implicated in bone metabolism. In this study we examined the associations of circulating acylated and des-acyl ghrelin concentrations with measures of bone in a group of obese children and adolescents as well as in a group of healthy control children. We also determined whether the associations were independent of body composition, chronological age, gender, Tanner stage, and leptin, glucose, insulin and insulin-like growth factor (IGF)-1 levels.MethodsWe performed a prospective cross-sectional study of 100 obese children [age, 8.9 (8.3 to 9.4); BMI-Standard Deviation Score (SDS), 2.2 (2.0 to 2.3)], and 100 age-matched lean healthy subjects. Fasting insulin, leptin, IGF-1, acylated and total ghrelin were measured by radioimmunoassay. Des-acyl ghrelin values were calculated as total ghrelin minus acylated ghrelin. Whole body (WB) and lumbar spine (LS) BMD, and BMC as well as body composition were assessed by DXA (Hologic QDR-4500W). LS volumetric BMD (BMAD) was estimated using the formula of Katzman (BMC/area1.5), while WB BMC data were expressed as BMC/height.ResultsBackward linear regression analysis was performed for individual groups, with age, gender, Tanner stage, weight, height, body composition (lean and fat mass), acylated ghrelin, des-acyl ghrelin, leptin, glucose, insulin, and IGF-1, entered into the model. In healthy children, acylated ghrelin was a significant and independent negative predictor of WB BMD, and WB BMC/height, while lean mass was positively associated significantly with these bone measures. In contrast, in obese children, a positive significant association was observed between des-acyl ghrelin and WB BMD as well as WB BMC/height, along with lean mass, and to a lesser degree, with fat mass. Acylated as well as des-acyl ghrelin were not significant predictors of LS BMD and LS BMAD in obese as well as control children.ConclusionsThe results of this investigation indicate that the influence of the two distinct isoforms of ghrelin on BMD is mediated by specific body composition parameters in obese and control healthy children.  相似文献   

19.
Musculoskeletal aging in the most resource-limited countries has not been quantified, and longitudinal data are urgently needed to inform policy. The aim of this prospective study was to describe musculoskeletal aging in Gambian adults. A total of 488 participants were recruited stratified by sex and 5-year age band (aged 40 years and older); 386 attended follow-up 1.7 years later. Outcomes were dual-energy X-ray absorptiometry (DXA) (n = 383) total hip areal bone mineral density (aBMD), bone mineral content (BMC), bone area (BA); peripheral quantitative computed tomography (pQCT) diaphyseal and epiphyseal radius and tibia (n = 313) total volumetric BMD (vBMD), trabecular vBMD, estimated bone strength indices (BSIc), cross-sectional area (CSA), BMC, and cortical vBMD. Mean annualized percentage change in bone outcomes was assessed in 10-year age bands and linear trends for age assessed. Bone turnover markers, parathyroid hormone (PTH), and 25-hydroxyvitamin D (25(OH)D) were explored as predictors of change in bone. Bone loss was observed at all sites, with an annual loss of total hip aBMD of 1.2% in women after age 50 years and in men at age 70 years plus. Greater loss in vBMD and BSIc was found at the radius in both men and women; strength was reduced by 4% per year in women and 3% per year in men (p trend 0.02, 0.03, respectively). At cortical sites, reductions in BMC, CSA, and vBMD were observed, being greatest in BMC in women, between 1.4% and 2.0% per annum. Higher CTX and PINP predicted greater loss of trabecular vBMD in women and BMC in men at the radius, and higher 25(OH)D with less loss of tibial trabecular vBMD and CSA in women. The magnitude of bone loss was like those reported in countries where fragility fracture rates are much higher. Given the predicted rise in fracture rates in resource-poor countries such as The Gambia, these data provide important insights into musculoskeletal health in this population. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

20.
The aim of this study was to explore the relation between birth weight and bone mass in a group of adolescent girls. This study included 40 post-menarchal adolescent (aged 13–20 years) girls. Anthropometric characteristics (height and weight) were measured and birth weights were obtained from the obstetric records. Body composition, bone mineral content (BMC) and bone mineral density (BMD) of the whole body (WB) were assessed by dual-energy X-ray absorptiometry (DXA). Calculations of the ratio BMC/height and of the bone mineral apparent density (BMAD) were completed for the WB. Birth weight was positively correlated to BMC and to the ratio BMC/height even after adjusting for weight and maturation index (years since menarche). Finally, birth weight was correlated to BMD even after adjusting for weight. In conclusion, this study suggests that birth weight is an independent determinant of whole body BMC and BMD in adolescent girls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号