首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Li J  Shen L  Lu FR  Qin Y  Chen R  Li J  Li Y  Zhan HZ  He YQ 《Acta pharmacologica Sinica》2012,33(2):242-249

Aim:

To investigate the effects and underlying mechanisms of plumbagin, a naphthoquinone derived from medicinal plant Plumbago zeylanica, on human gastric cancer (GC) cells.

Methods:

Human gastric cancer cell lines SGC-7901, MKN-28, and AGS were used. The cell viability was examined using CCK-8 viability assay. Cell proliferation rate was determined using both clonogenic assay and EdU incorporation assay. Apoptosis was detected via Annexin V/propidium iodide double-labeled flow cytometry. Western blotting was used to assess the expression of both NF-κB-regulated gene products and TNF-α-induced activation of p65, IκBα, and IKK. The intracellular location of NF-κB p65 was detected using confocal microscopy.

Results:

Plumbagin (2.5–40 μmol/L) concentration-dependently reduced the viability of the GC cells. The IC50 value of plumbagin in SGC-7901, MKN-28, and AGS cells was 19.12, 13.64, and 10.12 μmol/L, respectively. The compound (5–20 μmol/L) concentration-dependently induced apoptosis of SGC-7901 cells, and potentiated the sensitivity of SGC-7901 cells to chemotherapeutic agents TNF-αand cisplatin. The compound (10 μmol/L) downregulated the expression of NF-κB-regulated gene products, including IAP1, XIAP, Bcl-2, Bcl-xL, tumor factor (TF), and VEGF. In addition to inhibition of NF-κB p65 nuclear translocation, the compound also suppressed TNF-α-induced phosphorylation of p65 and IKK, and the degradation of IκBα.

Conclusion:

Plumbagin inhibits cell growth and potentiates apoptosis in human GC cells through the NF-κB pathway.  相似文献   

2.

Aim:

To investigate the anti-tumor effects of α-mangostin, a major xanthone identified in the pericarp of mangosteen (Garcinia mangostana Linn), against human gastric adenocarcinoma cells in vitro, and the mechanisms of the effects.

Methods:

Human gastric adenocarcinoma cell lines BGC-823 and SGC-7901 were treated with α-mangostin. The cell viability was measured with MTT assay, and cell apoptosis was examined using flow cytometry and TUNEL assay. The expression of the relevant proteins was detected using Western blot.

Results:

Treatment with α-mangostin (3–10 μg/mL) inhibited the viability of both BGC-823 and SGC-7901 cells in dose- and time-manners. Furthermore, α-mangostin (7 μg/mL) time-dependently increased the apoptosis index of the cancer cells, reduced the mitochondrial membrane potential of the cancer cells, and significantly increased the release of cytochrome c and AIF into cytoplasm. Moreover, the α-mangostin treatment markedly suppressed the constitutive Stat3 protein activation, and Stat3-regulated Bcl-xL and Mcl-1 protein levels in the cancer cells.

Conclusion:

The anti-tumor effects of α-mangostin against human gastric adenocarcinoma cells in vitro can be partly attributed to blockade of Stat3 signaling pathway.  相似文献   

3.
4.

Aim:

Protein L-isoaspartyl O-methyltransferase (PIMT) regulates cell adhesion in various cancer cell lines through activation of integrin αv and the PI3K pathway. The epithelial mesenchymal transition (EMT) enables epithelial cells to acquire the characteristics of mesenchymal cells, and to allow them to migrate for metastasis. Here, we examined the relationship between PIMT and EMT with attached or detached MDA-MB 231 cells.

Methods:

Human breast cancer cell line MDA-MB-231 cells were maintained in a suspension on poly-HEMA in the presence or absence of PIMT siRNA or ERK inhibitor PD98059. The mRNAs and proteins were analyzed using RT-PCR and immunoblotting, respectively.

Results:

During cellular incubation under detached conditions, PIMT, integrin αv and EMT proteins, such as Snail, Slug and matrix metalloproteinase 2 (MMP-2), were significantly increased in correlation with the phosphorylation of ERK1/2. The ERK inhibitor PD98059 (25 μmol/L) strongly suppressed the expression of the proteins and PIMT. Interestingly, PIMT siRNA blocked the phosphorylation of ERK and the expression of the EMT proteins. Additionally, PIMT and ERK phosphorylation were both co-activated by treatment with TGF-β (10 ng/mL) and TNF-α (10 ng/mL).

Conclusion:

A tight cross-regulation exists between ERK and PIMT in regards to their activation and expression during the EMT.  相似文献   

5.

Aim:

Hyperoside (quercetin-3-O-β-D-galactopyranoside) is a flavonol glycoside found in plants of the genera Hypericum and Crataegus, which exhibits anticancer, anti-oxidant, and anti-inflammatory activities. In this study we investigated whether autophagy was involved in the anticancer mechanisms of hyperoside in human non-small cell lung cancer cells in vitro.

Methods:

Human non-small cell lung cancer cell line A549 was tested, and human bronchial epithelial cell line BEAS-2B was used for comparison. The expression of LC3-II, apoptotic and signaling proteins was measured using Western blotting. Autophagosomes were observed with MDC staining, LC3 immunocytochemistry, and GFP-LC3 fusion protein techniques. Cell viability was assessed using MTT assay.

Results:

Hyperoside (0.5, 1, 2 mmol/L) dose-dependently increased the expression of LC3-II and autophagosome numbers in A549 cells, but had no such effects in BEAS-2B cells. Moreover, hyperoside dose-dependently inhibited the phosphorylation of Akt, mTOR, p70S6K and 4E-BP1, but increased the phosphorylation of ERK1/2 in A549 cells. Insulin (200 nmol/L) markedly enhanced the phosphorylation of Akt and decreased LC3-II expression in A549 cells, which were reversed by pretreatment with hyperoside, whereas the MEK1/2 inhibitor U0126 (20 μmol/L) did not blocked hyperoside-induced LC3-II expression. Finally, hyperoside dose-dependently suppressed the cell viability and induced apoptosis in A549 cells, which were significantly attenuated by pretreatment with the autophagy inhibitor 3-methyladenine (2.5 mmol/L).

Conclusion:

Hyperoside induces both autophagy and apoptosis in human non-small cell lung cancer cells in vitro. The autophagy is induced through inhibiting the Akt/mTOR/p70S6K signal pathways, which contributes to anticancer actions of hyperoside.  相似文献   

6.

Aim:

Gemcitabine has been increasingly prescribed for the treatment of gallbladder cancer. However, the response rate is low. The aim of this study is to determine whether icariin, a flavonoid isolated from Epimedi herba, could potentiate the antitumor activity of gemcitabine in gallbladder cancer.

Methods:

Human gallbladder carcinoma cell lines GBC-SD and SGC-996 were tested. Cell proliferation and apoptosis were analyzed using MTT assay and flow cytometry, respectively. The expression of apoptosis- and proliferation-related molecules was detected with Western blotting. Caspase-3 activity was analyzed using colorimetric assay, and NF-κB activity was measured with ELISA. A gallbladder cancer xenograft model was established in female BALB/c (nu/nu) mice. The mice were intraperitoneally administered gemcitabine (125 mg/kg) in combination with icariin (40 mg/kg) for 2 weeks.

Results:

Icariin (40–160 μg/mL) dose-dependently suppressed cell proliferation and induced apoptosis in both GBC-SD and SGC-996 cells, with SGC-996 cells being less sensitive to the drug. Icariin (40 μg/mL) significantly enhanced the antitumor activity of gemcitabine (0.5 μmol/L) in both GBC-SD and SGC-996 cells. The mice bearing gallbladder cancer xenograft treated with gemcitabine in combination with icariin exhibited significantly smaller tumor size than the mice treated with either drug alone. In GBC-SD cells, icariin significantly inhibited both the constitutive and gemcitabine-induced NF-κB activity, enhanced caspase-3 activity, induced G0-G1 phase arrest, and suppressed the expression of Bcl-2, Bcl-xL and surviving proteins.

Conclusion:

Icariin, by suppressing NF-κB activity, exerts antitumor activity, and potentiates the antitumor activity of gemcitabine in gallbladder cancer. Combined administration of gemcitabine and icariin may offer a better therapeutic option for the patients with gallbladder cancer.  相似文献   

7.

BACKGROUND AND PURPOSE

Anion exchanger 1 (AE1) is an integral membrane protein found in erythrocytes. Our previous studies have demonstrated that AE1 is expressed in human gastric cancer cells and may be involved in the carcinogenesis of cancer. In this study, we further investigated the role of AE1 in gastric carcinogenesis and the anti-tumour effects of AE1-targeted small interfering RNAs (siRNAs) in two experimental models of gastric cancer.

EXPERIMENTAL APPROACH

Molecular and cellular experiments were performed to elucidate the role of AE1 in the malignant transformation of gastric epithelium and the effects of AE1-targeted siRNAs on gastric cancer cells. The anti-tumour effect of the siRNA was evaluated in vivo in two mouse models, nude mice implanted with human gastric cancer xenografts (Model I) and mice with gastric cancer induced by N-methyl-N-nitrosourea (MNU) and Helicobacter pylori (Model II).

KEY RESULTS

AE1 was found to increase gastric carcinogenesis by promoting cell proliferation. AE1-targeted siRNA significantly suppressed AE1 expression and hindered tumour growth. Furthermore, the siRNA markedly decreased the detection rate of gastric cancer, in parallel with an increase in atypical hyperplasia at the end of the experiment in Model II.

CONCLUSIONS AND IMPLICATIONS

Knockdown of AE1 expression in gastric mucosa by administration of synthetic siRNAs significantly inhibits the growth of gastric cancer and decreases the detection rate of this tumour in experimental mice. These results suggest that AE1 is potentially a key therapeutic target and the silencing of AE1 expression in gastric mucosa could provide a new therapeutic approach for treating gastric cancer.  相似文献   

8.
目的:观察连翘中分离所得两种三萜类化合物:达玛-24-烯-3β-乙酰氧基-20s-醇[20(s)-dammar-24-ene-3β,20-diol-3β-acetate,DM]和五环齐墩果烷型三萜类化合物安博立酸(ambrolicacid,AA)对5种人消化道肿瘤细胞的抑制作用,以及AA对人胃癌细胞株SGC-7901的凋亡诱导作用。方法:MTT法观察AA和DM对5株人消化道肿瘤细胞株MKN-45、MKN-28、SGC-7901、PNAC-1、HepG-2的生长抑制作用,Annex-in-V/PI染色流式细胞术测定SGC-7901细胞的凋亡率,Western blotting检测相关凋亡蛋白表达。结果:两种三萜类化合物对人消化道肿瘤细胞有较好的抑制作用,其作用呈剂量依赖性;AA作用细胞72h后可以明显诱导细胞凋亡,而DM对细胞未有凋亡诱导作用;AA可下调pro-caspase3、6、8、9蛋白和Bcl-2蛋白表达水平,同时可上调Bax蛋白水平。结论:AA和DM对5株人消化道肿瘤细胞有明显抑制作用,AA诱导SGC-7901细胞凋亡的主要途径可能为调节凋亡相关蛋白的表达。  相似文献   

9.

BACKGROUND AND PURPOSE

Anti-angiogenic agents have recently become one of the major adjuvants for cancer therapy. A cyclopeptide, RA-V, has been shown to have anti-tumour activities. Its in vitro anti-angiogenic activities were evaluated in the present study, and the underlying mechanisms were also assessed.

EXPERIMENTAL APPROACH

Two endothelial cell lines, human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMEC-1), were used. The effects of RA-V on the proliferation, cell cycle phase distribution, migration, tube formation and adhesion were assessed. Western blots and real-time PCR were employed to examine the protein and mRNA expression of relevant molecules.

KEY RESULTS

RA-V inhibited HUVEC and HMEC-1 proliferation dose-dependently with IC50 values of 1.42 and 4.0 nM respectively. RA-V inhibited migration and tube formation of endothelial cells as well as adhesion to extracellular matrix proteins. RA-V treatment down-regulated the protein and mRNA expression of matrix metalloproteinase-2. Regarding intracellular signal transduction, RA-V interfered with the activation of ERK1/2 in both cell lines. Furthermore, RA-V significantly decreased the phosphorylation of JNK in HUVEC whereas, in HMEC-1, p38 MAPK was decreased.

CONCLUSIONS AND IMPLICATIONS

RA-V exhibited anti-angiogenic activities in HUVEC and HMEC-1 cell lines with changes in function of these endothelial cells. The underlying mechanisms of action involved the ERK1/2 signalling pathway. However, RA-V may regulate different signalling pathways in different endothelial cells. These findings suggest that RA-V has the potential to be further developed as an anti-angiogenic agent.  相似文献   

10.

Aim:

Vasodilator-stimulated phosphoprotein (VASP) expression is upregulated in human cancers and correlates with more invasive advanced tumor stages. The aim of this study was to elucidate the mechanisms by which matrine, an alkaloid derived from Sophora species plants, acted on the VASP protein in human gastric cancer cells in vitro.

Methods:

VASP was expressed and purified. Intrinsic fluorescence spectroscopy was used to study the binding of matrine to VASP. CD spectroscopy was used to examine the changes in the VASP protein secondary structure. Human gastric carcinoma cell line BGC823 was tested. Scratch wound and cell adhesion assays were used to detect the cell migration and adhesion, respectively. Real-time PCR and Western blotting assays were used to measure mRNA and protein expression of VASP.

Results:

In the fluorescence assay, the dissociation constant for binding of matrine to VASP protein was 0.86 mmol/L, thus the direct binding between the two molecules was weak. However, matrine (50 μg/mL) caused obvious change in the secondary structure of VASP protein shown in CD spectrum. Treatments of BGC823 cells with matrine (50 μg/mL) significantly inhibited the cell migration and adhesion. The alkaloid changed the subcellular distribution of VASP and formation of actin stress fibers in BGC823 cells. The alkaloid caused small but statistically significant decreases in VASP protein expression and phosphorylation, but had no significant effect on VASP mRNA expression.

Conclusion:

Matrine modulates the structure, subcellular distribution, expression and phosphorylation of VASP in human gastric cancer cells, thus inhibiting the cancer cell adhesion and migration.  相似文献   

11.

BACKGROUND AND PURPOSE

β-Adrenoceptors are expressed in human and experimental animal breast cancer cells. However, the effect of the agonists and antagonists reported on cell proliferation and tumour growth was paradoxical, precluding their utilization as possible adjuvant therapy, mainly in the cases of refractory tumours.

EXPERIMENTAL APPROACH

β-Adrenoceptor expression was analysed by immunofluorescence and RT-PCR. Cell proliferation was assessed by [3H]-thymidine incorporation, tumour growth by measuring with a calliper and ERK 1/2 phosphorylation by Western blotting.

KEY RESULTS

β2-Adrenoceptor expression was confirmed in the mouse and human cells tested. Cell proliferation was increased by adrenaline (by α2-adrenoceptor action) and decreased in every tested cell line by the β-adrenoceptor agonist isoprenaline and the β2-adrenoceptor agonist salbutamol. Isoprenaline and salbutamol reduced tumour growth in every tumour tested (mouse C4-HD and CC4-3-HI and human IBH-4, IBH-6 and MDA-MB-231 cell lines growing as xenografts in nude mice). These effects were reversed by the β-adrenoceptor antagonist propranolol. The α2-adrenoceptor antagonist rauwolscine and the β2-adrenoceptor agonist salbutamol were equally effective in diminishing tumour growth. ERK 1/2 activation analysed in IBH-4 tumours correlated with tumour growth, with the β-adrenoceptor agonists decreasing its activation. Inhibition of ERK 1/2 phosphorylation in vitro was mainly mediated by the PKA pathway.

CONCLUSIONS AND IMPLICATIONS

In our experimental models, the β-adrenoceptor agonists inhibited breast cancer cell proliferation and tumour growth, probably mediated by inhibition of ERK 1/2 phosphorylation. The β-adrenoceptor agonists were as effective as the α2-adrenoceptor antagonist rauwolscine, providing possible novel adjuvant treatments for breast cancer.  相似文献   

12.

Aim:

To investigate the effects of the transducer of ErbB-2.1 (TOB1) on the proliferation, migration and invasion of human lung cancer cells in vitro.

Methods:

Human lung cancer cell lines (95-D, A549, NCI-H1299, NCI-H1975, NCI-H661, NCI-H446, NCI-H1395, and Calu-3) and the normal human bronchial epithelial (HBE) cell line were tested. The expression levels of TOB1 in the cells were determined with Western blot and RT-PCR analyses. TOB1-overexpressing cell line 95-D/TOB1 was constructed using lipofectamine-induced TOB1 recombinant plasmid transfection and selective G418 cell culture. The A549 cells were transcend-transfected with TOB1-siRNA. MTT assay, flow cytometry and Western blot analysis were used to examine the effects of TOB1 on cancer cell proliferation and wound healing. Transwell invasive assay was performed to evaluate the effects of TOB1 on cancer cell migration and invasion. The activity of MMP2 and MMP9 was measured using gelatin zymography assay.

Results:

The expression levels of TOB1 in the 8 human lung cancer cell lines were significantly lower than that in HBE cells. TOB1 overexpression inhibited the proliferation of 95-D cells, whereas TOB1 knockdown with TOB1-siRNA promoted the growth of A549 cells. Decreased cell migration and invasion were detected in 95-D/TOB1 cells, and the suppression of TOB1 enhanced the metastasis in A549 cells. TOB1 overexpression not only increased the expression of the phosphatase and tensin homolog (PTEN), an important tumor suppressor, but also regulated the downstream effectors in the PI3K/PTEN signaling pathway, including Akt, ERK1/2, etc. In contrast, decreased expression of TOB1 oppositely regulated the expression of these factors. TOB1 also regulates the gelatinase activity of MMP2 and MMP9 in lung cancer cells.

Conclusion:

The results demonstrate that the PI3K/PTEN pathway, which is essential for carcinogenesis, angiogenesis, and metastasis, may be one of the possible signaling pathways for regulation of proliferation and metastasis of human lung cancer cells by TOB1 in vitro.  相似文献   

13.

Aim:

Fructus phyllanthi tannin fraction (PTF) from the traditional Tibetan medicine Fructus phyllanthi has been found to inhibit lung and liver carcinoma in mice. In this study we investigated the anticancer mechanisms of PTF in human lung squamous carcinoma cells in vitro.

Methods:

Human lung squamous carcinoma cell line (NCI-H1703), human large-cell lung cancer cell line (NCI-H460), human lung adenocarcinoma cell line (A549) and human fibrosarcoma cell line (HT1080) were tested. Cell viability was detected with MTT assay. Cell migration and invasion were assessed using a wound healing assay and a transwell chemotaxis chambers assay, respectively. Cell apoptosis was analyzed with flow cytometric analysis. The levels of apoptosis-related and metastasis-related proteins were detected by Western blot and immunofluorescence.

Results:

PTF dose-dependently inhibited the viability of the 3 human lung cancer cells. The IC50 values of PTF in inhibition of NCI-H1703, NCI-H460, and A549 cells were 33, 203, and 94 mg/L, respectively. PTF (15, 30, and 60 mg/L) dose-dependently induced apoptosis of NCI-H1703 cells. Treatment of NCI-H1703 and HT1080 cells with PTF significantly inhibited cell migration, and reduced the number of invasive cells through Matrigel. Furthermore, PTF dose-dependently down-regulated the expression of phosphor-ERK1/2, MMP-2 and MMP-9, up-regulated the expression of phosphor-JNK, but had no significant effect on the expression of ERK1/2 or JNK.

Conclusion:

PTF induces cell apoptosis and inhibits the migration and invasion of NCI-H1703 cells by decreasing MPPs expression through regulation of the MAPK pathway.  相似文献   

14.
15.

Aim:

We have reported novel anticancer bioactive peptides (ACBPs) that show tumor-suppressive activities in human gastric cancer, leukemia, nasopharyngeal cancer, and gallbladder cancer. In this study, we investigated the effects of ACBPs on human colorectal cancer and the underlying mechanisms.

Methods:

Cell growth and apoptosis of human colorectal tumor cell line HCT116 were measured using cell proliferation assay and flow cytometry, respectively. The expression levels of PARP, p53 and Mcl1A were assessed with Western blotting and immunohistochemistry. For evaluation of the in vivo antitumor activity of ACBPs, HCT116 xenograft nude mice were treated with ACBPs (35 μg/mL, ip) for 10 days.

Results:

Treatment of HCT116 cells with ACBPs (35 μg/mL) for 4–6 days significantly inhibited the cell growth. Furthermore, treatment of HCT116 cells with ACBPs (35 μg/mL) for 6–12 h significantly enhanced UV-induced apoptosis, increased the expression of PARP and p53, and decreased the expression of Mcl-1. Administration of ACBPs did not change the body weight of HCT116 xenograft nude mice, but decreased the tumor growth by approximately 43%, and increased the expression of PARP and p53, and decreased the expression of Mcl-1 in xenograft mouse tumor tissues.

Conclusion:

Administration of ACBPs inhibits human colorectal tumor cell growth and induces apoptosis in vitro and in vivo through modulating the PARP-p53-Mcl-1 signaling pathway.  相似文献   

16.
Wang HB  Ma XQ 《药学学报》2012,47(6):816-821
2-甲基-正丁酰紫草素[(2-methyl-n-butyl)shikonin,MBS,图1]是从紫草科植物紫草的根部提取得到的一个萘醌类化合物。研究表明,紫草素具有抗炎、抗菌、抗肿瘤的作用[1?3]。体外实验证实紫草素通过增加caspase-3的活化诱导多种肿瘤细胞的凋亡,如白  相似文献   

17.

Aim:

To investigate the mechanisms underlying anticancer action of the benzimidazole acridine derivative N-{(1H-benzo[d]imidazol-2-yl)methyl}-2-butylacridin-9-amine(8m) against human colon cancer cells in vitro.

Methods:

Human colon cancer cell lines SW480 and HCT116 were incubated in the presence of 8m, and then the cell proliferation and apoptosis were measured. The expression of apoptotic/signaling genes and proteins was detected using RT-PCR and Western blotting. ROS generation and mitochondrial membrane depolarization were visualized with fluorescence microscopy.

Results:

8m dose-dependently suppressed the proliferation of SW480 and HCT116 cells with IC50 values of 6.77 and 3.33 μmol/L, respectively. 8m induced apoptosis of HCT116 cells, accompanied by down-regulation of Bcl-2, up-regulation of death receptor-5 (DR5), truncation of Bid, cleavage of PARP, and activation of caspases (including caspase-8 and caspase-9 as well as the downstream caspases-3 and caspase-7). Moreover, 8m selectively activated JNK and p38 without affecting ERK in HCT116 cells. Knockout of JNK1, but not p38, attenuated 8m-induced apoptosis. In addition, 8m induced ROS production and mitochondrial membrane depolarization in HCT116 cells. Pretreatment with the antioxidants N-acetyl cysteine or glutathione attenuated 8m-induced apoptosis and JNK activation in HCT116 cells.

Conclusion:

The new benzimidazole acridine derivative, 8m exerts anticancer activity against human colon cancer cells in vitro by inducing both intrinsic and extrinsic apoptosis pathways via the ROS-JNK1 pathway.  相似文献   

18.
Diallyl trisulfide (DATS), a natural agent derived from garlic, has been tested for its antigastric cancer activities in various preliminary studies. However, more systematic pharmacodymatic (PD) and mechanistic evaluations are clearly needed. The aim of this study was to investigate the antitumor effects of DATS in the treatment of human gastric cancer cell SGC-7901 both in vitro and in vivo using widely recommended study procedures. DATS suppressed cancer cells proliferation and induced cell cycle arrest accompanied by an increase in the expressions of cyclin A2 and cyclin B1 in SGC-7901 cancer cells. DATS also caused an increase in apoptotic cell death, which involved in accumulations of bax, p53, and cytochrome C and reduction of Bcl-2 expressions. Besides, activation of JNK, ERK and p38 phosphorylation in DATS-treated cells suggested that mitogen-activated protein kinase (MAPKs) pathways were involved in DATS-induced apoptosis. Meanwhile, DATS significantly inhibited tumor growth and promoted tumor apoptosis in a xenograft model of gastric cancer cell SGC-7901. DATS inhibited tumor migration and invasion by modulating MMP9 and E-cadherin protein expressions. In addition, DATS treatment evidently increased the cytokine secretions of IL-12, TNF-α and IFN-γ (p < 0.05). Biochemical serum analysis and histopathological examination indicated no obvious side effects in major mouse organs. Therefore, our findings provide a framework for further exploration of DATS as a novel chemotherapeutic for human gastric cancer.  相似文献   

19.

Aim:

To test the hypothesis that the epoxyeicosatrienoic acid (EET)-induced transactivation of EGF-R depends on the activation of metalloproteinases and the subsequent release of HB-EGF in cancer cells.

Methods:

Exogenous 14,15-EET were added to four human-derived cancer cell lines Tca-8113, A549, HepG2, and MDA-MB-231, or these same cell lines were transfected with a mutant CYP epoxygenase (CYP102 F87V, an active 14,15-epoxygenase). The effects of elevated EET levels on the phosphorylation of tyrosine residues in the EGF receptor and on ERK1/2 activation were then assessed.

Results:

Both the addition of 14,15-EET and the transfection of cells with CYP102 F87V markedly increased the phosphorylation of the tyrosine residues of EGF-R and ERK1/2, an effect that was blocked by a selective EGF-R tyrosine kinase inhibitor (tyrphostin AG1478), a broad-spectrum metalloproteinase inhibitor (1,10-phenanthroline), and an inhibitor of HB-EGF release (CRM197) in Tca-8113 cells. In addition, AG1478, 1,10-phenanthroline, and CRM197 also inhibited the tyrosine phosphorylation of EGF-R and ERK1/2 that was induced by 14,15-EET in the A549, HepG2, and MDA-MB-231 cell lines.

Conclusion:

These results suggest that the EET-induced transactivation of EGF-R depends on activation of metalloproteinases and the subsequent release of HB-EGF in cancer cell lines.  相似文献   

20.

Aim:

To Characterize a new human lung cancer cell line Am1010, derived from drug-surviving cells (DSCs).

Methods:

The Am1010 cell line was established after 4 cycles of chemotherapy from an arm muscle metastasic tumor of a patient diagnosed with lung adenocarcinoma. The cell line has been remained in continuous culture for more than one year during this study.

Results:

The Am1010 cell line demonstrated in vitro multi-drug-resistance to cisplatin, taxol, and gefitinib. The Am1010 cell doubling time without drug treatment was 42.395 h. The IC50 value of cisplatin was 4.299 μmol/L and >10 μmol/L for the Am1010 and P0318 (a cell line derived from non-DSCs) cells, respectively. The IC50 value of taxol was 0.067 μmol/L and >1 μmol/L for the Am1010 and P0318 cells, respectively. The IC50 value of gefitinib was 15.233 μmol/L and >70 μmol/L for Am1010 and P0318 cells, respectively. 11 genes involved in the focal adhesion and cell adhesion pathways were found to be differentially expressed. The cells of Am1010 have a significantly larger chromosome number than most lung cancer cell lines.

Conclusion:

This novel DSCs derived lung cancer cell line will be a valuable in vitro tool for the investigation of lung cancer drug resistance and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号