首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Objective

The use of bone marrow–derived mesenchymal stem cells (MSCs) has shown promise in cell‐based cartilage regeneration. A yet‐unsolved problem, however, is the unwanted up‐regulation of markers of hypertrophy, such as alkaline phosphatase (AP) and type X collagen, during in vitro chondrogenesis and the formation of unstable calcifying cartilage at heterotopic sites. In contrast, articular chondrocytes produce stable, nonmineralizing cartilage. The aim of this study was to address whether coculture of MSCs with human articular chondrocytes (HACs) can suppress the undesired hypertrophy in differentiating MSCs.

Methods

MSCs were differentiated in chondrogenic medium that had or had not been conditioned by parallel culture with HAC pellets, or MSCs were mixed in the same pellet with the HACs (1:1 or 1:2 ratio) and cultured for 6 weeks. Following in vitro differentiation, the pellets were transplanted into SCID mice.

Results

The gene expression ratio of COL10A1 to COL2A1 and of Indian hedgehog (IHH) to COL2A1 was significantly reduced by differentiation in HAC‐conditioned medium, and less type X collagen protein was deposited relative to type II collagen. AP activity was significantly lower (P < 0.05) in the cells that had been differentiated in conditioned medium, and transplants showed significantly reduced calcification in vivo. In mixed HAC/MSC pellets, suppression of AP was dose‐dependent, and in vivo calcification was fully inhibited. Chondrocytes secreted parathyroid hormone–related protein (PTHrP) throughout the culture period, whereas PTHrP was down‐regulated in favor of IHH up‐regulation in control MSCs after 2–3 weeks of chondrogenesis. The main inhibitory effects seen with HAC‐conditioned medium were reproducible by PTHrP supplementation of unconditioned medium.

Conclusion

HAC‐derived soluble factors and direct coculture are potent means of improving chondrogenesis and suppressing the hypertrophic development of MSCs. PTHrP is an important candidate soluble factor involved in this effect.
  相似文献   

2.
3.

Objective

Osteoarthritis is characterized by an imbalance in cartilage homeostasis, which could potentially be corrected by mesenchymal stem cell (MSC)–based therapies. However, in vivo implantation of undifferentiated MSCs has led to unexpected results. This study was undertaken to establish a model for preconditioning of MSCs toward chondrogenesis as a more effective clinical tool for cartilage regeneration.

Methods

A coculture preconditioning system was used to improve the chondrogenic potential of human MSCs and to study the detailed stages of chondrogenesis of MSCs, using a human MSC line, Kp‐hMSC, in commitment cocultures with a human chondrocyte line, hPi (labeled with green fluorescent protein [GFP]). In addition, committed MSCs were seeded into a collagen scaffold and analyzed for their neocartilage‐forming ability.

Results

Coculture of hPi‐GFP chondrocytes with Kp‐hMSCs induced chondrogenesis, as indicated by the increased expression of chondrogenic genes and accumulation of chondrogenic matrix, but with no effect on osteogenic markers. The chondrogenic process of committed MSCs was initiated with highly activated chondrogenic adhesion molecules and stimulated cartilage developmental growth factors, including members of the transforming growth factor β superfamily and their downstream regulators, the Smads, as well as endothelial growth factor, fibroblast growth factor, insulin‐like growth factor, and vascular endothelial growth factor. Furthermore, committed Kp‐hMSCs acquired neocartilage‐forming potential within the collagen scaffold.

Conclusion

These findings help define the molecular markers of chondrogenesis and more accurately delineate the stages of chondrogenesis during chondrocytic differentiation of human MSCs. The results indicate that human MSCs committed to the chondroprogenitor stage of chondrocytic differentiation undergo detailed chondrogenic changes. This model of in vitro chondrogenesis of human MSCs represents an advance in cell‐based transplantation for future clinical use.
  相似文献   

4.
5.
OBJECTIVE: Human osteoarthritis (OA) is characterized by a pathologic shift in articular cartilage homeostasis toward the progressive loss of extracellular matrix (ECM). The purpose of this study was to investigate the ability of rAAV-mediated SOX9 overexpression to restore major ECM components in human OA articular cartilage. METHODS: We monitored the synthesis and content of proteoglycans and type II collagen in 3-dimensional cultures of human normal and OA articular chondrocytes and in explant cultures of human normal and OA articular cartilage following direct application of a recombinant adeno-associated virus (rAAV) SOX9 vector in vitro and in situ. We also analyzed the effects of this treatment on cell proliferation in these systems. RESULTS: Following SOX9 gene transfer, expression levels of proteoglycans and type II collagen increased over time in normal and OA articular chondrocytes in vitro. In situ, overexpression of SOX9 in normal and OA articular cartilage stimulated proteoglycan and type II collagen synthesis in a dose-dependent manner. These effects were not associated with changes in chondrocyte proliferation. Notably, expression of the 2 principal matrix components could be restored in OA articular cartilage to levels similar to those in normal cartilage. CONCLUSION: These data support the concept of using direct, rAAV-mediated transfer of chondrogenic genes to articular cartilage for the treatment of OA in humans.  相似文献   

6.
7.
8.
OBJECTIVE: The objective of the present study was to investigate the potential of application of growth factor genes to induce chondrogenic differentiation of human-derived mesenchymal stem cells (MSCs). The growth factor genes evaluated in the present study were transforming growth factor 1 (TGF-beta1) and insulin-like growth factor 1 (IGF-1). METHODS: Human MSCs were transduced with the adenoviral vectors carrying either TGF-beta1 or IGF-1 (AdTGF-beta1 and AdIGF-1 respectively) or a combination of both growth factor genes at different multiplicities of infection (MOI) and were then made into pellets. Pellets were also made from nontransduced cells and maintained in culture medium supplemented with 10 ng/mL of TGF-beta1. At specified time points, histological analysis, cartilage matrix gene expression, and immunofluorescence were performed to determine the extent of chondrogenic differentiation. RESULTS: MSCs transduced with the AdTGF-beta1 demonstrated robust chondrogenic differentiation, while those made from AdIGF-1 did not. AdTGF-beta1 pellets demonstrated aggrecan gene expression as early as day 3 of pellet culture, while type II collagen gene expression was detected by day 10 of culture. The AdIGF-1, alone or in combination with TGF-beta1 pellets, did not show any type II collagen gene expression at any time point. By immunofluoresecence, type X collagen was distributed throughout the matrix in TGF-beta1 protein pellets while the growth factor gene pellets displayed scant staining. CONCLUSION: The results suggest that sustained administration of TGF-beta1 may be more effective in suppressing terminal differentiation than intermittent dosing and thus effective for cartilage repair.  相似文献   

9.
OBJECTIVE: To investigate the appearance of hypertrophic chondrocytes in osteoarthritic (OA) cartilage, using type X collagen as a specific marker. METHODS. The biosynthesis of type X collagen was examined by metabolic labeling of freshly isolated articular chondrocytes with 3H-proline, immunoprecipitation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the synthesized collagens. Extracellular deposition of types X and II collagen was analyzed immunohistochemically. RESULTS. Immunostaining revealed an irregular distribution of type X collagen, which was localized around chondrocyte clusters in fibrillated OA cartilage, but was absent from the noncalcified region of normal articular cartilage. Freshly isolated OA chondrocytes synthesized predominantly type X collagen, while control chondrocytes synthesized mostly type II collagen. CONCLUSION. Our findings indicate focal premature chondrocyte differentiation to hypertrophic cells in OA cartilage.  相似文献   

10.

Objective

The potential of stem cells to repair compromised cartilage tissue, such as in osteoarthritis (OA), depends strongly on how transplanted cells respond to factors secreted from the residing OA chondrocytes. This study was undertaken to determine the effect of morphogenetic signals from OA chondrocytes on chondrogenic differentiation of human mesenchymal stem cells (MSCs).

Methods

The effect of OA chondrocyte–secreted morphogens on chondrogenic differentiation of human MSCs was evaluated using a coculture system involving both primary and passaged OA chondrocytes. The findings were compared against findings for human MSCs cultured in OA chondrocyte–conditioned medium. Gene expression analysis, biochemical assays, and immunofluorescence staining were used to characterize the chondrogenic differentiation of human MSCs. Mass spectrometry analysis was used to identify the soluble factors. Numerical analysis was carried out to model the concentration profile of soluble factors within the human MSC–laden hydrogels.

Results

The human MSCs cocultured with primary OA chondrocytes underwent chondrogenic differentiation even in the absence of growth factors; however, the same effect could not be mimicked using OA chondrocyte–conditioned medium or expanded cells. Additionally, the cocultured environment down‐regulated hypertrophic differentiation of human MSCs. Mass spectrometry analysis demonstrated cell–cell communication and chondrocyte phenotype–dependent effects on cell‐secreted morphogens.

Conclusion

The experimental findings, along with the results of the numerical analysis, suggest a crucial role of soluble morphogens and their local concentrations in the differentiation pattern of human MSCs in a 3‐dimensional environment. The concept of using a small number of chondrocytes to promote chondrogenic differentiation of human MSCs while preventing their hypertrophic differentiation could be of great importance in formulating effective stem cell–based cartilage repair.
  相似文献   

11.

Objective

Human embryonic stem cells (ESCs) provide an unlimited supply of pluripotent cells for articular cartilage tissue engineering and regenerative medicine applications. Articular cartilage is an avascular tissue with precise polarity and organization comprising 3 distinct functional zones: surface, middle, and deep. To date, attempts at differentiating human ESCs into articular chondrocytes have been unsuccessful. The majority of studies have focused on chondrogenic (but not specifically articular cartilage) differentiation. Furthermore, previous investigations of induction of chondrogenesis by human ESCs required embryoid body formation; however, embryoid body formation often results in heterogeneous differentiation. The present study was undertaken to determine the in vitro chondrogenic potential of bone morphogenetic protein 7 (BMP‐7) and transforming growth factor β1 (TGFβ1)–induced human ESC differentiation toward the articular cartilage phenotype.

Methods

Dissociated single human ESCs were cultured and passaged on a gelatin‐coated flask. The human ESCs were cultured as an aggregate in a pellet culture system for 14 days in basal chondrogenic medium (CM), CM with TGFβ1, CM with BMP‐7, or CM with both TGFβ1 and BMP‐7.

Results

The size and wet weight of the cartilage pellets and glycosaminoglycan levels increased, with the smallest, intermediate, and greatest increases, respectively, observed with CM plus TGFβ1 treatment, CM plus BMP‐7 treatment, and CM plus TGFβ1 and BMP‐7 treatment (compared with CM treatment alone). The largest size and highest weight of the pellet was in the group in which TGFβ1 and BMP‐7 were added to the medium. However, expression of the genes for cartilage‐specific aggrecan and type II collagen II, as assessed by determination of messenger RNA levels, was highest in the BMP‐7–treated group. Superficial zone protein (SZP)/lubricin, a marker of the superficial zone articular chondrocyte, was not detectable under identical culture conditions.

Conclusion

These results demonstrate an efficient and reproducible model system of human ESC‐induced chondrogenesis, using a novel direct plating method in which intervening embryoid body formation does not occur. Further work is needed for optimization of conditions to obtain the articular cartilage phenotype that includes the superficial zone marker as demonstrated by SZP/lubricin synthesis.
  相似文献   

12.

Objective

MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue‐specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA‐140 (miR‐140).

Methods

To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR‐140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin‐1β (IL‐1β) on miR‐140 expression. Double‐stranded miR‐140 (ds–miR‐140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA.

Results

Microarray analysis showed that miR‐140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR‐140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR‐140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL‐1β suppressed miR‐140 expression. Transfection of chondrocytes with ds–miR‐140 down‐regulated IL‐1β–induced ADAMTS5 expression and rescued the IL‐1β–dependent repression of AGGRECAN gene expression.

Conclusion

This study shows that miR‐140 has a chondrocyte differentiation–related expression pattern. The reduction in miR‐140 expression in OA cartilage and in response to IL‐1β may contribute to the abnormal gene expression pattern characteristic of OA.
  相似文献   

13.
OBJECTIVE: Bone morphogenetic protein (BMP) and transforming growth factor beta (TGFbeta) are potent anabolic factors in adult articular chondrocytes. In this study, we investigated whether intracellular inhibitors of BMP and TGFbeta signaling, inhibitory Smad6 (I-Smad6) and I-Smad7, are expressed in articular chondrocytes in normal and osteoarthritic (OA) cartilage, and whether their expression shows a correlation with the anabolic activity of OA chondrocytes in vivo and after interleukin-1beta (IL-1beta) stimulation in vitro. METHODS: RNA isolated directly from normal and OA human knee cartilage as well as from cultured articular chondrocytes was analyzed by (quantitative) polymerase chain reaction technology. Immunolocalization of the I-Smads was performed on tissue sections and compared with the anabolic cellular activity as documented by in situ hybridization experiments for aggrecan and type II collagen. RESULTS: Both Smad6 and Smad7 were expressed in all samples of normal and OA cartilage. Immunostaining (including confocal microscopy) confirmed the presence of Smad6 and Smad7 in the majority of normal and degenerated articular chondrocytes; localization was mostly cytoplasmic. No correlation between expression of the main anabolic genes and expression of the I-Smads was found. In cultured articular chondrocytes, stimulation with IL-1beta showed up-regulation of Smad7, whereas Smad6 was down-regulated. CONCLUSION: Both Smad6 and Smad7 are expressed in adult human articular chondrocytes. The primarily cytoplasmic localization suggests permanent activation of the I-Smads in articular cartilage in vivo. No evidence was found that up-regulation or down-regulation of I-Smads in OA cartilage correlates directly with the anabolic (or catabolic) activity of articular chondrocytes. The regulation in chondrocytes of Smad6 and Smad7 expression by IL-1beta suggests a potentially important role of IL-1beta signaling in chondrocytes, via indirect influencing of the BMP/TGFbeta signaling cascade.  相似文献   

14.
OBJECTIVE: Muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle exhibit long-time proliferation, high self-renewal, and multipotent differentiation. This study was undertaken to investigate the ability of MDSCs that were retrovirally transduced to express bone morphogenetic protein 4 (BMP-4) to differentiate into chondrocytes in vitro and in vivo and enhance articular cartilage repair. METHODS: Using monolayer and micromass pellet culture systems, we evaluated the in vitro chondrogenic differentiation of LacZ- and BMP-4-transduced MDSCs with or without transforming growth factor beta1 (TGFbeta1) stimulation. We used a nude rat model of a full-thickness articular cartilage defect to assess the duration of LacZ transgene expression and evaluate the ability of transplanted cells to acquire a chondrocytic phenotype. We evaluated cartilage repair macroscopically and histologically 4, 8, 12, and 24 weeks after surgery, and performed histologic grading of the repaired tissues. RESULTS: BMP-4-expressing MDSCs acquired a chondrocytic phenotype in vitro more effectively than did MDSCs expressing only LacZ; the addition of TGFbeta1 did not alter chondrogenic differentiation of the BMP-4-transduced MDSCs. LacZ expression within the repaired tissue continued for up to 12 weeks. Four weeks after surgery, we detected donor cells that coexpressed beta-galactosidase and type II collagen. Histologic scoring of the defect sites 24 weeks after transplantation revealed significantly better cartilage repair in animals that received BMP-4-transduced MDSCs than in those that received MDSCs expressing only LacZ. CONCLUSION: Local delivery of BMP-4 by genetically engineered MDSCs enhanced chondrogenesis and significantly improved articular cartilage repair in rats.  相似文献   

15.
OBJECTIVE: To identify markers associated with the chondrogenic capacity of expanded human articular chondrocytes and to use these markers for sorting of more highly chondrogenic subpopulations. METHODS: The chondrogenic capacity of chondrocyte populations derived from different donors (n = 21) or different clonal strains from the same cartilage biopsy specimen (n = 21) was defined based on the glycosaminoglycan (GAG) content of tissues generated using a pellet culture model. Selected cell populations were analyzed by microarray and flow cytometry. In some experiments, cells were sorted using antibodies against molecules found to be associated with differential chondrogenic capacity and again assessed in pellet cultures. RESULTS: Significance Analysis of Microarrays indicated that chondrocytes with low chondrogenic capacity expressed higher levels of insulin-like growth factor 1 and of catabolic genes (e.g., matrix metalloproteinase 2, aggrecanase 2), while chondrocytes with high chondrogenic capacity expressed higher levels of genes involved in cell-cell or cell-matrix interactions (e.g., CD49c, CD49f). Flow cytometry analysis showed that CD44, CD151, and CD49c were expressed at significantly higher levels in chondrocytes with higher chondrogenic capacity. Flow cytometry analysis of clonal chondrocyte strains indicated that CD44 and CD151 could also identify more chondrogenic clones. Chondrocytes sorted for brighter CD49c or CD44 signal expression produced tissues with higher levels of GAG per DNA (up to 1.4-fold) and type II collagen messenger RNA (up to 3.4-fold) than did unsorted cells. CONCLUSION: We identified markers that allow characterization of the capacity of monolayer-expanded chondrocytes to form in vitro cartilaginous tissue and enable enrichment for subpopulations with higher chondrogenic capacity. These markers might be used as a means to predict and possibly improve the outcome of cell-based cartilage repair techniques.  相似文献   

16.
Aim: P‐glycoprotein (P‐gp) is an adenosine‐5‐triphosphate Binding Cassettes B 1 (ABCB1) transporter that exports various substrates on cellular membrane. Surface expression of P‐gp was decreased during chondrogenesis of human bone marrow mesenchymal stem cells (BM‐MSCs). We examined the role of P‐gp in extracellular matrix deposition during chondrogenesis of human BM‐MSCs. Method: BM‐MSCs were isolated from 16 volunteers after informed consent and incubated for 28 days using three‐dimensional culture methods in chondrogenic medium with and without P‐gp inhibitor (verapamil, 10 μmol/L). Results: Hematoxylin and eosin staining revealed a cartilaginous structure with chondrogenic cells in the lacunae after 2 weeks of culture. Total glycosaminoglycan (GAG) content was increased and rose during pellet culture. Hyaluronan (HA) content of the culture medium decreased with P‐gp inhibitor. Type II collagen deposition decreased with P‐gp inhibitor. Conclusion: Inhibition of P‐gp facilitated GAG accumulation via HA export inhibition during chondrogenic differentiation of human BM‐MSCs. Modulation of P‐gp expression during chondrogenesis would be a possible therapeutic approach for articular cartilage regeneration.  相似文献   

17.
OBJECT: In order to examine the mechanisms involved in steroid-induced arthropathy after intra-articular corticosteroid injection, a histological examination was performed in vivo using severe combined immunodeficiency (SCID) mice that were implanted with human articular cartilage into the back (SCID/hu model). In addition, the effect of corticosteroids on chondrocyte apoptosis was evaluated in vitro using cultured human chondrocytes. METHOD: Human articular cartilage was obtained during knee surgery and implanted subcutaneously into the backs of SCID mice. One month later, weekly injections of corticosteroid (hydrocortisone acatate: 1 mg/0.2 ml, triamcinolone acetonide: 0.2 mg/0.2 ml, dexamethasone acetate: 0.1 mg/0.2 ml) in the subcutaneous cavity around the grafted cartilage in SCID mice were initiated. After six weeks of treatment, the grafted cartilage pieces were removed from the SCID mice and examined histologically. Chondrocyte apoptosis after corticosteroid treatment was also investigated using cultured human chondrocytes. RESULT: In the corticosteroid treated, grafted articular cartilage, apoptotic chondrocytes were apparent in the superficial and middle layers of cartilage. But a reduced intensity of Safranin O staining was not remarkable. In the cultured chondrocytes, apoptotic changes were also observed after corticosteroid treatment. CONCLUSION: Corticosteroid treatment induces chondrocyte apoptosis and it may be important to understand the steroid-induced arthropathy.  相似文献   

18.
19.

Objective

The control of angiogenesis during chondrogenic differentiation is an important issue affecting the use of stem cells in cartilage repair, especially with regard to the persistence of regenerated cartilage. This study was undertaken to investigate the effect of vascular endothelial growth factor (VEGF) stimulation and the blocking of VEGF with its antagonist, soluble Flt‐1 (sFlt‐1), on the chondrogenesis of skeletal muscle‐derived stem cells (MDSCs) in a rat model of osteoarthritis (OA).

Methods

We investigated the effect of VEGF on cartilage repair in an immunodeficiency rat model of OA after intraarticular injection of murine MDSCs expressing bone morphogenetic protein 4 (BMP‐4) in combination with MDSCs expressing VEGF or sFlt‐1.

Results

In vivo, a combination of sFlt‐1– and BMP‐4–transduced MDSCs demonstrated better repair without osteophyte formation macroscopically and histologically following OA induction, when compared with the other groups. Higher differentiation/proliferation and lower levels of chondrocyte apoptosis were also observed in sFlt‐1– and BMP‐4–transduced MDSCs compared with a combination of VEGF‐ and BMP‐4–transduced MDSCs or with BMP‐4–transduced MDSCs alone. In vitro experiments with mixed pellet coculture of MDSCs and OA chondrocytes revealed that BMP‐4–transduced MDSCs produced the largest pellets, which had the highest gene expression of not only type II collagen and SOX9 but also type X collagen, suggesting formation of hypertrophic chondrocytes.

Conclusion

Our results demonstrate that MDSC‐based therapy involving sFlt‐1 and BMP‐4 repairs articular cartilage in OA mainly by having a beneficial effect on chondrogenesis by the donor and host cells as well as by preventing angiogenesis, which eventually prevents cartilage resorption, resulting in persistent cartilage regeneration and repair.
  相似文献   

20.
Abstract:  To develop a minimally invasive preventive measure for early osteoarthritis, the effect of melatonin on cartilage matrix synthesis of articular chondrocytes was evaluated in vitro in a pellet culture system. The chondrogenic markers were assessed using histology, TaqMan® polymerase chain reaction, and western blot. Our results show that melatonin treatment yielded chondrocyte-pellets with a higher expression of chondrogenic markers consisting of collagen II, Sox 9, and aggrecan at both the mRNA and protein levels. A hypertrophic marker, collagen X, remained low. Moreover, up-regulation of internal transforming growth factor beta1 (TGF-β1) expression was observed in the melatonin-treated cells. Our data indicate, for the first time, that the administration of melatonin enhances cartilage matrix synthesis of articular chondrocytes in a serum-containing pellet culture system, likely through the TGF-β signal pathway. Melatonin may prove to be a highly valuable addition to current therapeutic models for degenerative cartilage repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号