首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
目的 探讨组织工程化软骨分泌的可溶性因子是否能够单独诱导骨髓基质干细胞(bone marrow stromai cells,BMSCs)软骨分化.方法 体外培养扩增猪BMSCs、猪关节软骨细胞以及皮肤成纤维细胞,以5.0×107/ml的细胞终浓度分别接种于聚羟基乙酸/聚乳酸(PGA/PLA)支架,应用隔离池进行隔离共培养.以软骨细胞-材料复合物与BMSCs-材料复合物隔离共培养为实验组,以皮肤成纤维细胞-材料复合物与BMSCs-材料复合物隔离共培养为对照组1,以单纯BMSCs-材料复合物为对照组2.各组标本均于体外培养8周后取材,通过大体观察,组织学,以及免疫组织化学,RT-PCR等方法对新生组织进行评价.结果 隔离共培养8周后,实验组软骨细胞材料-复合物诱导的BMSCs-材料复合物形成的组织略有缩小,外观类似软骨组织,组织学检测见软骨陷窝样结构,SafraninO染色可见软骨特异性基质分泌,免疫组化显示有大量Ⅱ型胶原沉积,RT-PCR检测组织表达Ⅱ型胶原、Ⅸ型胶原、COMP、Sox9等软骨特异性基因,提示形成了较成熟软骨样组织;而对照组成纤维细胞材料复合物诱导的BMSCs-材料复合物和未经任何诱导的BMSCs-材料复合物形成的组织淡黄色,明显缩小、变薄、质地较软,组织学检测均未形成软骨陷窝样结构,主要为纤维性成分,各种软骨特异性相关检测均为阴性.结论 软骨细胞分泌的可溶性因子能够单独诱导BMSCs软骨分化,可能是软骨细胞形成的微环境中发挥诱导作用的主要因素.  相似文献   

2.
目的 探讨组织工程化软骨分泌的可溶性因子是否能够单独诱导骨髓基质干细胞(bone marrow stromai cells,BMSCs)软骨分化.方法 体外培养扩增猪BMSCs、猪关节软骨细胞以及皮肤成纤维细胞,以5.0×107/ml的细胞终浓度分别接种于聚羟基乙酸/聚乳酸(PGA/PLA)支架,应用隔离池进行隔离共培养.以软骨细胞-材料复合物与BMSCs-材料复合物隔离共培养为实验组,以皮肤成纤维细胞-材料复合物与BMSCs-材料复合物隔离共培养为对照组1,以单纯BMSCs-材料复合物为对照组2.各组标本均于体外培养8周后取材,通过大体观察,组织学,以及免疫组织化学,RT-PCR等方法对新生组织进行评价.结果 隔离共培养8周后,实验组软骨细胞材料-复合物诱导的BMSCs-材料复合物形成的组织略有缩小,外观类似软骨组织,组织学检测见软骨陷窝样结构,SafraninO染色可见软骨特异性基质分泌,免疫组化显示有大量Ⅱ型胶原沉积,RT-PCR检测组织表达Ⅱ型胶原、Ⅸ型胶原、COMP、Sox9等软骨特异性基因,提示形成了较成熟软骨样组织;而对照组成纤维细胞材料复合物诱导的BMSCs-材料复合物和未经任何诱导的BMSCs-材料复合物形成的组织淡黄色,明显缩小、变薄、质地较软,组织学检测均未形成软骨陷窝样结构,主要为纤维性成分,各种软骨特异性相关检测均为阴性.结论 软骨细胞分泌的可溶性因子能够单独诱导BMSCs软骨分化,可能是软骨细胞形成的微环境中发挥诱导作用的主要因素.  相似文献   

3.
目的 探讨以聚羟基乙酸(PGA)包裹特定形态的医用假体材料--多孔高密度聚乙烯(HDPE,商品名为MEDPOR)为支架,应用软骨细胞诱导骨髓基质干细胞(BMSCs),共培养构建特定形态的带内支撑组织工程化软骨医用假体的可能性.方法 以直径3 mm、长5 mm的圆柱形HDPE,外裹 1 mm厚PGA为支架,将体外分别培养的新生猪BMSCs和耳郭软骨细胞按7∶3混合,以10×10 7/ml细胞浓度接种于支架上,同时以相同浓度的单纯软骨细胞和单纯BMSCs分别接种,作为阳性对照组(PC组)和阴性对照组(NC组).经体外培养2周及在裸鼠皮下移植4、8周后取材 ,行大体观察、组织学、组织化学及免疫组化检测.结果 各组细胞均与材料黏附良好.实验组和阳性对照组均形成了大体形态良好的HDPE-软骨复合体,内支撑的HDPE与外层软骨结合紧密.组织学可见成熟的软骨陷窝结构,软骨渗入HDPE孔隙内部、异染基质及Ⅱ型胶原呈强阳性表达.结论 以HDPE为内支撑,外裹PGA的支架,接种混合细胞,可于皮下构建特定形态、组织学良好的HDPE-软骨复合体.  相似文献   

4.
目的探讨以聚羟基乙酸(PGA)包裹特定形态的医用假体材料多孔高密度聚乙烯(HDPE,商品名为MEDPOR)为支架,应用软骨细胞诱导骨髓基质干细胞(BMSCs),共培养构建特定形态的带内支撑组织工程化软骨医用假体的可能性。方法以直径3mm、长5mm的圆柱形HDPE,外裹1mm厚PGA为支架,将体外分别培养的新生猪BMSCs和耳郭软骨细胞按7:3混合,以10×107/ml细胞浓度接种于支架上,同时以相同浓度的单纯软骨细胞和单纯BMSCs分别接种,作为阳性对照组(PC组)和阴性对照组(NC组)。经体外培养2周及在裸鼠皮下移植4、8周后取材,行大体观察、组织学、组织化学及免疫组化检测。结果各组细胞均与材料黏附良好。实验组和阳性对照组均形成了大体形态良好的HDPE-软骨复合体,内支撑的HDPE与外层软骨结合紧密。组织学可见成熟的软骨陷窝结构,软骨渗入HDPE孔隙内部、异染基质及Ⅱ型胶原呈强阳性表达。结论以HDPE为内支撑,外裹PGA的支架,接种混合细胞,可于皮下构建特定形态、组织学良好的HDPE-软骨复合体。  相似文献   

5.
目的 :探讨hTERT转染的永生化软骨细胞和骨髓基质干细胞 (MSCs)裸鼠体内形成软骨的能力。方法 :通过真核表达载体 ,把人端粒酶逆转录酶基因转入兔髁状突软骨细胞 ,筛选并挑选阳性克隆进行扩增培养 ;取兔骨髓 ,密度梯度离心和培养 ,经诱导、扩增后与支架材料 β 磷酸三钙 (β TCP)复合 ,构建细胞 β TCP复合体 ,体外培育 1~ 2d后 ,植入裸鼠体内。通过粘多糖 (GAG)含量和Ⅱ型胶原的表达来检测 3和 6个月复合体软骨形成情况。结果 :两种细胞和 β TCP复合体在裸鼠体内均能形成软骨样组织 ;6个月 ,工程化软骨GAG含量和Ⅱ型胶原的表达均低于正常软骨组织 ,但无显著性差异 (P >0 .0 5 )。结论 :hTERT转染的永生化软骨细胞和骨髓基质干细胞均具有良好的软骨形成能力 ,在软骨组织工程修复软骨缺损方面具有重要的应用前景。  相似文献   

6.
目的 探讨利用异体软骨细胞作为诱导因素,与骨髓基质细胞(BMSCs)共培养体外构建软骨复合物的可行性,以及两种细胞混合比例与构建软骨质量的量效关系.方法 体外分别培养扩增BMSCs与异体软骨细胞,软骨细胞与BMSCs的混合比例分别为1:9(A组)、2:8(B组)、3:7(C组)、100%软骨细胞(D组)、100%BMSCs(E组),以5.0×107/ml的细胞终浓度接种于聚羟基乙酸 (PGA)材料支架上培养,各组标本均于体外培养6周后取材,通过大体观察、糖胺聚糖(GAG)含量测定、组织学以及免疫组织化学等方法检测组织工程化软骨形成的情况.结果 各组细胞均与材料黏附良好,C、D两组标本基本保持原有的大小和形状,外观洁白、光滑类似软骨组织;组织学显示两组均有连续的软骨陷窝样结构形成,免疫组织化学显示有大量Ⅱ型胶原沉积.定量结果显示,C组的GAG含量达到D组的70%以上.其他各组培养物体积明显缩小,组织学及免疫组织化学显示软骨样组织形成不佳.结论 异体软骨细胞与BMSC共培养可以构建出较好的软骨组织,表明软骨细胞对BMSCs发挥诱导作用,但是软骨细胞必须达到一定的数量要求.  相似文献   

7.
目的:探讨软骨细胞在裸鼠体内促进骨髓基质细胞(BMSCs)向软骨分化并形成软骨组织的可行性。方法:从SD大鼠中分别分离出BMSC和软骨细胞进行体外培养。收集软骨细胞培养上清液,作为BMSCs诱导液从第2代开始进行诱导分化,7天后取出标本,免疫组织化学检测软骨特异性Ⅱ型胶原表达,RT-PCR检测Ⅱ型胶原和aggrecan的mRNA表达。SD大鼠BMSCs与软骨细胞按一定比例(7:3)混匀,取5.0×107个混合细胞/ml的各组细胞悬液接种至壳聚糖生物材料,体外培养一周后植入裸鼠皮下,相同数量的单纯软骨细胞或BMSCs同样方法植入,分别作为阳性对照及阴性对照,1.5×107个软骨细胞同样植入作为低浓度软骨细胞对照。各组均8周后取材检测。结果:经诱导后的大鼠BMSCs的Ⅱ型胶原免疫组化检测阳性,RT-PCR检测Ⅱ型胶原和aggrecanmRNA呈阳性表达;混合细胞组及阳性对照组均形成了成熟的软骨,组织学可见成熟软骨陷窝、异染基质及Ⅱ型胶原表达;BMSCs组仅形成了纤维性组织;低浓度软骨细胞组在局部形成了少量软骨。结论:软骨细胞能在一定程度上提供软骨形成的微环境,诱导BMSCs在裸鼠体内向软骨组织分化并形成软骨组织。 还原  相似文献   

8.
目的 探讨构建特定形态带内支撑组织工程化软骨的医用假体的可能性.方法 以直径3 mm、长5 mm的圆柱状多孔高密度聚乙烯(Medpor)外裹厚1 mm的聚羟基乙酸为支架,将体外培养的骨髓基质干细胞(bone marrow stromal cells,BMSCs).按10×107/ml的细胞浓度均匀接种于支架,常规培养液培养5 d后,用含诱导因子的培养液立体诱导4周,同时以相同浓度的软骨细胞和BMSCs分别接种,常规体外培养4周作为阳性对照组和阴性对照组,分别种植于裸鼠皮下,4、8周后取材,行大体观察、组织学、组织化学、免疫组化及糖氨聚糖(GAG)定量等检测.结果 各组细胞均与材料粘附良好.实验组和阳性对照组均形成了大体形态良好的Medper-软骨复合体,内部的Medper与外层软骨结合紧密.组织学可见成熟软骨陷窝并渗入Medper孔隙内部、异染基质及Ⅱ型胶原表达,实验组GAG含量4、8周时分别为(5.13 ±0.32)mg/g、(5.37±0.12)mg/g.结论 以BMSCs作为种子细胞可于体内构建特定形态、组织学良好的Medpor-软骨复合体.  相似文献   

9.
[目的]探寻体外诱导骨髓基质干细胞成软骨细胞的最佳细胞因子,寻求体内修复家兔软骨缺损的最为有效方案。[方法]rhFGF1、rhTGF-β1、rhIGF-1单独或联合应用对骨髓基质干细胞进行体外诱导培养,应用常规染色、MTT、免疫组织化学染色的方法筛选诱导骨髓基质干细胞成软骨细胞的最佳细胞因子,并将其与骨髓基质干细胞复合于纤维蛋白凝胶制成凝胶复合物,直接种植到兔膝关节实验性关节软骨缺损处,并与对照组相比较,观察软骨修复效果。[结果]常规形态学观察,rhTGF-β1和rhIGF-1联合应用诱导的细胞在形态上类似于软骨细胞,免疫组化染色提示诱导细胞具有软骨细胞表型。凝胶复合物直接种植在体内能诱导骨髓基质干细胞向软骨细胞分化,修复缺损的软骨,缺少细胞因子的对照组软骨缺损修复效果差。[结论]rhTGF-β1和rhIGF-1联合应用可作为诱导骨髓基质干细胞向软骨细胞分化的最佳组合,骨髓基质干细胞凝胶复合物能修复软骨缺损。  相似文献   

10.
目的 探讨含有不同浓度胎牛血清的成软骨分化诱导液对骨髓基质干细胞(BMSCs)体外分化的影响,明确体外培养用血清在细胞分化中的作用,为软骨的体外组织构建提供技术参数.取第2代猪BMSCs,以5×107个细胞/cm3的密度接种到聚羟基乙酸(PGA)制成的圆盘状支架上(直径5 mm,厚度2 mm),7 d后分别应用含0%、5%、10%血清浓度的诱导液(诱导因子包括TGF-1、IGF-Ⅰ及地塞米松)进行体外持续性诱导培养.8周取材行组织湿重测量、GAG含量定量分析、大体观察、组织学、组织化学及免疫组织化学检测.结果 10%血清组复合物外观瓷白色,坚硬细腻,体积和外形均无明显变化.组织学及免疫组织化学检测结果显示有典型的软骨陷窝,大量的软骨特异性细胞外基质成分,组织湿重和GAG定量亦明显高于其它两组;3%血清组复合物体积缩小,有少量陷窝样结构及软骨特异性胞外基质聚集;而无血清组复合物缩小,松软易碎,未见典型的软骨陷窝和软骨特异性基质成分.结论 体外诱导培养BMSCs构建组织工程软骨过程中,10%浓度的血清成分有利于BMSCs成软骨分化.  相似文献   

11.
目的 探讨利用软骨细胞提供的软骨微环境诱导骨髓基质细胞(BMSC)在体外构建软骨组织的可行性.方法 将分离出的猪骨髓基质细胞和软骨细胞进行体外培养,收集软骨细胞培养上清液,作为骨髓基质细胞诱导液从第2代开始进行诱导分化.7 d后取出标本,免疫组织化学检测软骨特异性Ⅱ型胶原表达,RT-PCR检测Ⅱ型胶原和aggrecan的mRNA表达.体外分离培养的骨髓基质细胞与软骨细胞,扩增后两者以8∶2比例混匀,以5.0×107/ml的终浓度接种于聚羟基乙酸/聚乳酸(PGA/PLA)支架,以相同浓度的单纯软骨细胞和单纯BMSC以及20%上述浓度(1.0×107/ml)的单纯软骨细胞作为对照组.标本于8周后取材,行大体观察、湿重、蛋白多糖(GAGs)含量测定、组织学及免疫组化等相关检测.结果 经诱导后的骨髓基质细胞的Ⅱ型胶原免疫组化检测阳性,RT-PCR检测Ⅱ型胶原和aggrecan mRNA呈阳性表达.混合细胞组及阳性对照组体外培养8周后形成了单一成熟的软骨组织,并保持了支架材料的大小和形状,两组新生软骨在外观及组织学特征上也基本相同,免疫组化结果 表明两组均大量表达软骨特异性细胞外基质Ⅱ型胶原,共培养组的平均湿重和蛋白多糖(GAGs)含量均达到阳性对照组的70%以上.而单纯骨髓基质细胞组仅在局部形成了极少量幼稚的软骨样组织,且材料支架明显皱缩变形.低软骨细胞浓度组虽新生软骨湿重量能达阳性对照组的30%,但材料支架明显皱缩变形,仅在局部形成了不连续的软骨组织,新生软骨量明显少于共培养各组及阳性对照组.结论 软骨细胞能在一定程度上提供软骨形成的微环境,有效地诱导BMSC向软骨细胞分化,并在体外形成组织工程化的软骨组织.
Abstract:
Objective To investigate the feasibility of chondrogenesis in vitro with bone marrow stromal cells (BMSCs) induced by the co-cultured chondrocytes. Methods The BMSCs and chondrocytes were separated from pig and cultured. The supernatant of chondrocytes was used as the inducing solution for BMSCs from the 2nd generation. 7 days later, samples were taken and underwent immunohistochemistry and RT-PCR for detection of the expression of specific type Ⅱ cartilage collagen,type Ⅱ collagen and aggrecan mRNA. The cultured BMSCs and chondrocytes were mixed at a ratio of 8:2(BMSC: cartilage cell) and were inoculated into a polyglycolic acid/polylactic acid (PGA/PLA) scaffold at the final concentration of 5.0 × 107/ml. The cartilage cells and BMSCs were also inoculated seperately at the same concentration as the positive and negative control. Pure cartilage cells at 20% of the abovementioned concentration (1.0 × 107/ml) were used as the low concentration cartilage cell control group. Samples were collected 8 weeks later. General observations, wet weight, glycosaminoglycans (GAGs) determination and histological and immunohistochemistry examinations were performed. Results The expression of type Ⅱ collagen, type Ⅱ collagen and aggrecan mRNA were positive in induced BMSCs.In the co-cultured group and the positive control group, pure mature cartilage was formed after 8 weeks of culture in vitro, and the size and shape of the scaffold were maintained. The newly formed cartilage in the two groups were almost the same in appearance and histological properties. The immunohistochemistry results indicated that the cartilage cells of the two groups all expressed ample cartilage-specific type Ⅱ collagen. The average wet weight and GAG content in the co-cultured group reached more than 70% of those in positive control group. Only an extremely small amount of immature cartilage tissues was formed in local regions in pure BMSC group, and the scaffold was obviously shrunk and deformed. Although the wet weight of newly generated cartilage tissue in the low concentration cartilage cell group reached 30% of that in positive control group, the scaffold was obviously shrunken and deformed. Only regional and discontinuous cartilage tissues were formed, and the amount of newly formed cartilage was obviously less than that in the co-culture group and the positive control group. Conclusions Chondrocytes can provide a micro-environment for the formation of cartilage, and also effectively induce BMSC to differentiate into chondrocytes and form tissue-engineered cartilage in vitro.  相似文献   

12.
改良法体外诱导骨髓基质干细胞分化为类许旺细胞   总被引:6,自引:5,他引:1  
目的 探讨一种较为有效的诱导方法将骨髓基质干细胞体外定向诱导分化为类许旺细胞。 方法 用Dezawa所述方法 (称为传统诱导法 )加以改良成将所有诱导剂一起联合半量间隔诱导两次的方法 (称为改良诱导法 ) ,诱导后的细胞从形态学、抗S 10 0和抗GFAP细胞免疫化学染色的阳性率、MTT细胞活性测定及流式细胞仪检测细胞DNA含量来比较此两种方法对细胞的综合作用。 结果 改良法诱导的细胞在形态上更具有许旺细胞的长梭形外观 ,抗S 10 0及抗 GFAP阳性率分别由5 8 1%和 60 3 %提高到 79 4%、81 2 % (P <0 0 5 ) ;MTT法细胞活性测定表明改良法对细胞活性影响小(P <0 0 1) ;流式细胞仪DNA含量测定显示S期DNA含量较高 (P <0 0 5 )。 结论 改良法体外诱导骨髓基质干细胞为类许旺细胞具有诱导效果更好 ,对细胞损害小的优越性。  相似文献   

13.
骨髓基质细胞促进引导性骨再生的研究   总被引:2,自引:0,他引:2  
目的观察骨髓基质细胞增强引导性骨再生(GBR)修复骨缺损的能力。方法30只兔造成双桡骨干15mm骨缺损,以硅胶管桥接骨断端,实验组在硅胶管内注射自体骨髓基质细胞(MSC)1ml;对照组注射等量生理盐水。在不同时间内作X线片、大体、组织学观察及生化捡测。结果实验组成骨活跃,10周骨缺损完全修复,对照组各时间点骨修复均较实验组差,10周时仍无1只兔骨性愈合。术后4周实验组钙及碱性磷酸酶含量明显高于对照组(P〈0.01),术后8及10周实验组骨缺损区新生骨骨痂密度与相邻尺骨密度比值亦明显高于对照组(P〈0.01)。结论自体骨髓基质细胞可明显增强GBR修复骨缺损的能力。  相似文献   

14.
Objective To investigate the feasibility of chondrogenesis in vitro with bone marrow stromal cells (BMSCs) induced by the co-cultured chondrocytes. Methods The BMSCs and chondrocytes were separated from pig and cultured. The supernatant of chondrocytes was used as the inducing solution for BMSCs from the 2nd generation. 7 days later, samples were taken and underwent immunohistochemistry and RT-PCR for detection of the expression of specific type Ⅱ cartilage collagen,type Ⅱ collagen and aggrecan mRNA. The cultured BMSCs and chondrocytes were mixed at a ratio of 8:2(BMSC: cartilage cell) and were inoculated into a polyglycolic acid/polylactic acid (PGA/PLA) scaffold at the final concentration of 5.0 × 107/ml. The cartilage cells and BMSCs were also inoculated seperately at the same concentration as the positive and negative control. Pure cartilage cells at 20% of the abovementioned concentration (1.0 × 107/ml) were used as the low concentration cartilage cell control group. Samples were collected 8 weeks later. General observations, wet weight, glycosaminoglycans (GAGs) determination and histological and immunohistochemistry examinations were performed. Results The expression of type Ⅱ collagen, type Ⅱ collagen and aggrecan mRNA were positive in induced BMSCs.In the co-cultured group and the positive control group, pure mature cartilage was formed after 8 weeks of culture in vitro, and the size and shape of the scaffold were maintained. The newly formed cartilage in the two groups were almost the same in appearance and histological properties. The immunohistochemistry results indicated that the cartilage cells of the two groups all expressed ample cartilage-specific type Ⅱ collagen. The average wet weight and GAG content in the co-cultured group reached more than 70% of those in positive control group. Only an extremely small amount of immature cartilage tissues was formed in local regions in pure BMSC group, and the scaffold was obviously shrunk and deformed. Although the wet weight of newly generated cartilage tissue in the low concentration cartilage cell group reached 30% of that in positive control group, the scaffold was obviously shrunken and deformed. Only regional and discontinuous cartilage tissues were formed, and the amount of newly formed cartilage was obviously less than that in the co-culture group and the positive control group. Conclusions Chondrocytes can provide a micro-environment for the formation of cartilage, and also effectively induce BMSC to differentiate into chondrocytes and form tissue-engineered cartilage in vitro.  相似文献   

15.
Objective To investigate the feasibility of chondrogenesis in vitro with bone marrow stromal cells (BMSCs) induced by the co-cultured chondrocytes. Methods The BMSCs and chondrocytes were separated from pig and cultured. The supernatant of chondrocytes was used as the inducing solution for BMSCs from the 2nd generation. 7 days later, samples were taken and underwent immunohistochemistry and RT-PCR for detection of the expression of specific type Ⅱ cartilage collagen,type Ⅱ collagen and aggrecan mRNA. The cultured BMSCs and chondrocytes were mixed at a ratio of 8:2(BMSC: cartilage cell) and were inoculated into a polyglycolic acid/polylactic acid (PGA/PLA) scaffold at the final concentration of 5.0 × 107/ml. The cartilage cells and BMSCs were also inoculated seperately at the same concentration as the positive and negative control. Pure cartilage cells at 20% of the abovementioned concentration (1.0 × 107/ml) were used as the low concentration cartilage cell control group. Samples were collected 8 weeks later. General observations, wet weight, glycosaminoglycans (GAGs) determination and histological and immunohistochemistry examinations were performed. Results The expression of type Ⅱ collagen, type Ⅱ collagen and aggrecan mRNA were positive in induced BMSCs.In the co-cultured group and the positive control group, pure mature cartilage was formed after 8 weeks of culture in vitro, and the size and shape of the scaffold were maintained. The newly formed cartilage in the two groups were almost the same in appearance and histological properties. The immunohistochemistry results indicated that the cartilage cells of the two groups all expressed ample cartilage-specific type Ⅱ collagen. The average wet weight and GAG content in the co-cultured group reached more than 70% of those in positive control group. Only an extremely small amount of immature cartilage tissues was formed in local regions in pure BMSC group, and the scaffold was obviously shrunk and deformed. Although the wet weight of newly generated cartilage tissue in the low concentration cartilage cell group reached 30% of that in positive control group, the scaffold was obviously shrunken and deformed. Only regional and discontinuous cartilage tissues were formed, and the amount of newly formed cartilage was obviously less than that in the co-culture group and the positive control group. Conclusions Chondrocytes can provide a micro-environment for the formation of cartilage, and also effectively induce BMSC to differentiate into chondrocytes and form tissue-engineered cartilage in vitro.  相似文献   

16.
骨髓基质干细胞修复兔关节软骨缺损的实验研究   总被引:1,自引:1,他引:0  
目的研究以多聚乙醇酸(PGA)为支架的骨髓基质干细胞(BMSCs)复合物修复兔膝关节软骨缺损的情况。方法体外培养扩增的自体BMSCs种植于PGA支架并培养72h,然后将支架-细胞复合物植入兔关节软骨缺损模型。术后12周处死动物,标本行大体观察、组织学检查及Ⅱ型胶原免疫组化染色。结果BMSCs-PGA复合物植入后形成丰富的透明软骨样修复组织,新生软骨无明显退变。对照组主要为纤维组织及软骨下骨修复。结论BMSCs-PGA复合物可修复关节软骨缺损。  相似文献   

17.
人骨髓基质干细胞体外诱导培养的新方法研究   总被引:7,自引:0,他引:7  
目的为骨组织工程的临床应用提供一种新的人骨髓基质干细胞(BMSCs)培养方法,以满足细胞培养过程中对各类细胞因子的需求,同时尽量减少细胞培养过程中动物源性抗原物质的引入。方法采用10%富血小板血浆(PRP)替代动物血清配比高糖DMEM培养基,体外诱导培养(50μg/mL抗坏血酸、10-8mol/L地塞米松、10-3mol/Lβ-甘油磷酸钠)人BMSCs,快速扩增后,倒置相差显微镜、扫描电镜观察各组细胞形态及细胞增殖情况。ALP染色与钙结节染色等方法对细胞进行生物学特性检测。结果人BMSCs24h开始贴壁,7d左右细胞融合。诱导培养后细胞能较快地扩增;ALP染色与钙结节染色结果显示细胞具有良好的成骨细胞生物学特性。结论以自体PRP替代动物血清体外诱导培养人BMSCs是一种良好的培养方法,所培养的细胞数量及其生物学特性能快速达到临床应用的需求。  相似文献   

18.
大鼠组织提取液对体外培养骨髓基质细胞的影响   总被引:1,自引:0,他引:1  
目的研究大鼠脑组织成份和其它组织提取液对体外培养骨髓基质细胞(bonemarrowstromalcells,BMSC)的影响。方法提取大鼠全脑、灰质、白质、垂体、肌肉、肝脏等组织液,进行原代骨髓基质细胞培养,观察并测定其ALP染色阳性率。以空白培养液作对照,观察大鼠各组织提取液对骨髓基质细胞增殖,分化,矿化的作用。结果(1)各组织提取液对原代骨髓基质细胞培养后,其ALP染色阳性率以灰质和全脑组最高,其次是白质和肌肉组。(2)除肝脏组外其余各组织提取液对BMSC均有不同程度的增殖刺激作用,以灰质最强,其它依次为肌肉、白质、全脑与血清组,肝脏组则显示对BMSC增殖有抑制作用。(3)肝脏组对BMSC具有分化抑制作用,其它各组均显示分化刺激作用,增加程度依次为灰质、全脑、白质、肌肉与血清。(4)灰质组的矿化结节形成率最高,其它依次为全脑、白质、肌肉与血清。结论大鼠脑组织中的灰质提取液能显著刺激原代骨髓基质细胞增殖,且向成骨细胞诱导分化,并且在二代以后的BMSC培养中,表现出最强的刺激增殖、向成骨细胞分化和体外矿化的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号