首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The name Enterobacter hormaechei is proposed for a new species of the family Enterobacteriaceae, formerly called Enteric Group 75, which consists of 23 strains, 22 of which were isolated from humans. DNAs from 12 E. hormaechei strains tested were highly related to the type strain (ATCC 49162) by DNA hybridization, using the hydroxyapatite method (80 to 97% in 60 degrees C reactions; 80 to 90% in 75 degrees C reactions). The strains were most closely related (50 to 63%) to Enterobacter cloacae, Enterobacter dissolvens, Enterobacter taylorae, and Enterobacter nimipressuralis. E. hormaechei strains were positive within 48 h for the following: Voges-Proskauer test; citrate utilization (Simmons and Christensen); urea hydrolysis (87%); ornithine decarboxylase; growth in potassium cyanide (KCN); malonate utilization; production of acid from D-glucose, L-arabinose, cellobiose, dulcitol (87%), D-galactose, maltose, D-mannitol, D-mannose, L-rhamnose, sucrose, trehalose, and D-xylose; acid production from mucate; nitrate reduction; and o-nitrophenyl-beta-D-galactopyranoside. Delayed positive reactions were seen in tests for arginine dihydrolase, gas from D-glucose, acid from alpha-methyl-D-glucoside, and acetate utilization. E. hormaechei was negative in tests for indole production; H2S production; phenylalanine deaminase; lysine decarboxylase; gelatin hydrolysis; acid production from D-adonitol, D-arabitol, erythritol, glycerol, i(myo)-inositol, melibiose, raffinose, and D-sorbitol; esculin hydrolysis; DNase; lipase; and tyrosine clearing. Variable reactions occurred in tests for methyl red, motility, and tartrate. All strains tested were susceptible or moderately susceptible to amikacin, azlocillin, cefotaxime, ceftazidime, ceftriaxone, chloramphenicol, gentamicin, mezlocillin, moxalactam, piperacillin, trimethoprim-sulfamethoxazole, sulfisoxazole, thienamycin, tobramycin, and trimethoprim. All strains tested were resistant to nitrofurantoin; the majority were resistant to ampicillin, cefoxitin, and cephalothin. Four isolates were from blood; most other isolates were from wounds or sputum.  相似文献   

2.
3.
On the basis of phenotypic characterization and DNA relatedness determinations, the genus Afipia gen. nov., which contains six species, is described. The type species is Afipia felis sp. nov. (the cat scratch disease bacillus). Afipia clevelandensis sp. nov., Afipia broomeae sp. nov., and three unnamed not associated with cat-borne disease. All but one strain (Afipia genospecies 3) were isolated from human wound and respiratory sources. All Afipia species are gram-negative, oxidase-positive, nonfermentative rods in the alpha-2 subgroup of the class Proteobacteria. They are motile by means of a single flagellum. They grow on buffered charcoal-yeast extract agar and nutrient broth, but rarely on MacConkey agar, at 25 and 30 degrees C. They are urease positive; but they are negative in reactions for hemolysis, indole production, H2S production (triple sugar iron agar), gelatin hydrolysis, esculin hydrolysis, and peptonization of litmus milk. They do not produce acid oxidatively from D-glucose, lactose, maltose, or sucrose. The major cell wall fatty acids are 11-methyloctadec-12-enoic (CBr19:1), cis-octadec-11-enoic (C18:1omega7c), and generally, 9,10-methylenehexadecanote and 11,12-methyleneoctadecanoate; and there are only trace amounts of hydroxy acids. The guanineplus-cytosine content is 61.5 to 69 mol%. A. felis is positive for nitrate reduction and is delayed positive for acid production from D-xylose, but it is catalase negative. A. clevelandensis is negative in all of these tests. A. broomeae is weakly positive for catalase production and acid production from D-xylose, but it is negative for nitrate reduction.  相似文献   

4.
CDC group DF-2 is the vernacular name given to a slow-growing gram-negative bacterium that causes septicemia and meningitis in humans. Infections frequently (one-third of cases) occur following dog bites or close contact with dogs or occasionally with cats. Splenectomy and alcoholism appear to be strong predisposing factors for DF-2 infection. In addition to 150 DF-2 strains received for identification, we received 9 DF-2-like strains; 6 were isolated from wound or eye infections, 3 of which were associated with dog bites and 1 of which was associated with a cat scratch, and 3 were isolated from dog mouths. The major characteristics of DF-2 include production of acid but no gas from lactose and maltose and usually D-glucose; positive reactions for oxidase, catalase, arginine dihydrolase, gliding motility, and o-nitrophenyl-beta-D-galactopyranoside; growth enhanced by serum and by incubation in a candle jar atmosphere; and negative reactions for sucrose, raffinose, inulin, melibiose, nitrate reduction, indole, and growth on MacConkey agar. DF-2-like strains had the same characteristics, except that acid was formed from sucrose, raffinose, inulin, and melibiose. By the hydroxyapatite method, DNAs from 12 DF-2 strains were 88% related in 60 degrees C reactions and 84% related in 75 degrees C reactions. Related sequences contained 0.5 to 1.5% unpaired bases (divergence). Three DF-2-like strains were 73 to 80% related at 60 degrees C (with 2.0 to 2.5% divergence) and 68 to 75% related at 75 degrees C. The relatedness of DF-2 and DF-2-like strains was 19 to 31% at 60 degrees Celsius and 13 to 19% at 75 degrees Celsius. The relatedness of DF-2 and DF-2-like strains to Capnocytophaga species was 4 to 7%. The DNA relatedness date indicate that eh DF-2 and the DF-2-like strains are separate, previously undescribed species. Both groups are phenotypically and genetically distinct from Capnocytophaga species, although they do share several characteristics with Capnocytophaga species, including cellular morphology, gliding motility, cellular fatty acid composition, enhancement of growth in a candle jar atmosphere, and G+C content. The new species differ from Capnocytophaga species by their positive oxidase and catalase reactions. We chose to avoid creating a new genus and proposed the names Capnocytophaga canimorsus sp. nov. for group DF-2 and C. cynodegmi sp. nov. for the DF-2-like strains.  相似文献   

5.
Seventy-eight aerotolerant Campylobacter isolates were characterized phenotypically and by DNA hybridization (hydroxyapatite method at 50 and 65 degrees C). Two DNA relatedness groups were found. (i) Sixty-four strains belonged to aerotolerant Campylobacter DNA hybridization group 2. These organisms were isolated from humans, primarily with diarrheal illness, and animals on several continents. Strains were aerotolerant at 30 and 36 degrees C and catalase negative or weakly catalase positive, grew in media containing glycine and on MacConkey agar, were susceptible to nalidixic acid, and were resistant to cephalothin. The name Campylobacter butzleri sp. nov. is proposed for this group. (ii) DNA hybridization group 1 consisted of the type strain of Campylobacter cryaerophila and 13 additional strains isolated from 10 animals outside the United States and from three humans within the United States. This group was genetically diverse; five strains were closely related to the type strain of C. cryaerophila (DNA hybridization group 1A), and eight strains were more closely related to one another (DNA hybridization group 1B). Strains in DNA hybridization group 1B were phenotypically diverse, with two of eight strains resembling C. cryaerophila. The seven strains from DNA hybridization groups 1A and 1B which resembled C. cryaerophila and the C. cryaerophila type strain were aerotolerant only at 30 degrees C and catalase positive, did not grow in glycine or on MacConkey agar, were generally susceptible to nalidixic acid, and were resistant to cephalothin. The remaining six strains of DNA hybridization group 1B phenotypically resembled C. butzleri; however, they were generally catalase positive and susceptible to nalidixic acid and cephalothin. DNA hybridization group 1B is not designated as a separate species at this time since it cannot, with certainty, be separated genetically from C. cryaerophila or phenotypically from C. butzleri.  相似文献   

6.
We used a polyphasic approach (sequencing analysis of the 16S ribosomal RNA gene and phenotypic analyses) to characterize 36 strains of Roseomonas species isolated from blood. Five strains, represented by strain MDA5176 (M.D. Anderson Cancer Center), were identified as Roseomonas gilardii. One strain belonged to Roseomonas genomospecies 4. The 22 strains represented by strain MDA5527 showed significant differences genotypically and phenotypically with R gilardii and other Roseomonas species and represented a new Roseomonas species; Roseomonas mucosa sp nov was proposed to denote its prominent mucoid, almost runny colonies. Eight strains, represented by strain MDA5605, had minor differences with R gilardii and displayed obvious pink to red colonies; Roseomonas gilardii subsp rosea subsp nov was proposed. For subspecies differentiation, R gilardii was proposed to be R gilardii subsp gilardii subsp nov. Unique patterns of biochemical reactions were established for these Roseomonas species, which may assist routine identification of these organisms. All 36 strains and 2 American Type Culture Collection strains were susceptible to amikacin and ciprofloxacin but resistant to cefepime and ceftazidime. They also were frequently susceptible to imipenem and ticarcillin-clavulanate but far less susceptible to ceftriaxone, trimethoprim-sulfamethoxazole, and ampicillin. R mucosa strains were most resistant, whereas R gilardii subsp gilardii strains were most susceptible.  相似文献   

7.
Strains labelled Enterobacter cancerogenus (Erwinia cancerogena) and strains labelled Enterobacter taylorae were found to constitute a single DNA-relatedness group (S1 nuclease hybridization method). Furthermore, no phenotypic test among the conventional and nutritional tests performed could differentiate Enterobacter cancerogenus from Enterobacter taylorae. Therefore, Enterobacter cancerogenus (Urosevi?, 1966) Dickey and Zumoff, 1968, is a senior subjective synonym for Enterobacter taylorae Farmer et al., 1985.  相似文献   

8.
Intestinal colonization by Klebsiella, Enterobacter, and Serratia (KES) strains is a crucial step in the development of nosocomial infections. We studied the adhesive properties, antibiotic resistance, and involvement in colonization or infection of 103 KES clinical isolates: 30 Klebsiella pneumoniae (29%), 16 Klebsiella oxytoca (15%), 30 Enterobacter aerogenes (29%), 14 Enterobacter cloacae (14%), and 13 Serratia sp. (13%) isolates. Half of them were resistant to several antimicrobial agents, including aminoglycosides and beta-lactam antibiotics. A total of 27 of 30 K. pneumoniae isolates (90%) adhered to the human cell line Intestine-407 (Int-407), while none of the K. oxytoca or E. aerogenes isolates and only 2 of the E. cloacae isolates adhered. Three adhesive patterns were observed for K. pneumoniae: an aggregative adhesion in 57% of the isolates, a diffuse adhesion in only one isolate, and a new pattern, localized adhesion, in 30% of the isolates. While most of the sensitive strains adhered with the aggregative phenotype, the localized pattern was associated with resistant K. pneumoniae isolates producing the CAZ-5 beta-lactamase. Furthermore, 45% of such localized-adhesion isolates were involved in severe infections. The distributions of type 1 and type 3 fimbriae, enteroaggregative E. coli, and cf29, pap, and afa/Dr adhesin-encoding genes were determined by using specific DNA probes. No relationship was found between the adhesive pattern and the production of specific fimbriae, suggesting that several unrecognized adhesive factors are involved. Our study indicates that special adhesive properties associated with resistance to antimicrobial agents could account for the pathogenicity of certain nosocomial strains.  相似文献   

9.
Light yellow-pigmented (strain PQ1) and yellow-pigmented (strain PQ2), gram-positive, non-spore-forming, nonmotile bacteria consisting of pairs or chains of cocci were isolated from the bile of a patient with cholecystitis (PQ1) and the peritoneal dialysate of another patient with peritonitis (PQ2). Morphologically and biochemically, the organisms phenotypically belonged to the genus Eterococcus. Whole-cell protein (WCP) analysis and sequence analysis of a segment of the 16S rRNA gene suggested that they are new species within the genus Enterococcus. PQ1 and PQ2 displayed less than 70% identities to other enterococcal species by WCP analysis. Sequence analysis showed that PQ1 shared the highest level of sequence similarity with Enterococcus raffinosus and E. malodoratus (sequence similarities of 99.8% to these two species). Sequence analysis of PQ2 showed that it had the highest degrees of sequence identity with the group I enterococci E. malodoratus (98.7%), E. raffinosus (98.6%), E. avium (98.6%), and E. pseudoavium (98.6%). PQ1 and PQ2 can be differentiated from the other Enterococcus spp. in groups II, III, IV, and V by their phenotypic characteristics: PQ1 and PQ2 produce acid from mannitol and sorbose and do not hydrolyze arginine, placing them in group I. The yellow pigmentation differentiates these strains from the other group I enterococci. PQ1 and PQ2 can be differentiated from each other since PQ1 does not produce acid from arabinose, whereas PQ2 does. Also, PQ1 is Enterococcus Accuprobe assay positive and pyrrolidonyl-beta-naphthylamide hydrolysis positive, whereas PQ2 is negative by these assays. The name Enterococcus gilvus sp. nov. is proposed for strain PQ1, and the name Enterococcus pallens sp. nov. is proposed for strain PQ2. Type strains have been deposited in culture collections as E. gilvus ATCC BAA-350 (CCUG 45553) and E. pallens ATCC BAA-351 (CCUG 45554).  相似文献   

10.
One hundred eight isolates were previously identified in our laboratory as Clostridium clostridioforme by colonial and cellular morphology, as well as biochemical tests. Recent studies have indicated that there are actually three different species in this C. clostridioforme group: C. hathewayi, C. bolteae, and C. clostridioforme. Our isolates were reexamined using biochemical and enzymatic tests and molecular methods. Forty-six isolates were reidentified as C. hathewayi, 34 as C. bolteae, five as C. clostridioforme, and one as C. symbiosum. Twenty-two strains were identified only to the genus level by 16S rRNA gene sequencing, and although they are microscopically and morphologically indistinguishable from the above-mentioned three species, they are phenotypically different and only 96 to 98% similar by gene sequencing. Twenty of these 22 strains were indole positive and formed two novel species. We propose Clostridium aldenense sp. nov. and Clostridium citroniae sp. nov. as names for these new species. They are differentiated from each other by results for raffinose, rhamnose, alpha-galactosidase, and beta-galactosidase: positive, negative, positive, and positive, respectively, for the former species and negative, positive, negative, and negative, respectively, for the latter species. The type strain of C. aldenense is RMA 9741 (ATCC BAA-1318; CCUG 52204), and the type strain of C. citroniae is RMA 16102 (ATCC BAA-1317; CCUG 52203).  相似文献   

11.
A collection of 123 clinical strains presumptively identified as Enterobacter cloacae and 12 type and reference strains of Enterobacter spp. were genotypically investigated by a quantitative bacterial dot method for DNA-DNA hybridization, giving an estimate of delta Tm (difference in thermal denaturation midpoint between homologous and heterologous duplexes). The API 20E system was used for phenotypic characterization. Using discontinuities in the values of delta Tm as criterion, five genomic groups of E. cloacae could be demonstrated, eleven ungrouped strains representing at least one additional group. Nine API profiles were found, the ideal phenotype of E. cloacae (i.e. the phenotype showing the most common reaction for the species in all tests studied) being the most frequently found. The type strain of E. cloacae and the reference strain CDC 1347-71 represented rather small genomic groups of three and eight strains respectively, most of them inositol positive. A majority of 98 isolates formed one single genomic group, biochemically dominated by the ideal phenotype. The genomic groups could not be differentiated phenotypically. At present there seems to be no reason for an attempt to split E. cloacae into two or more species. The type strain of E. dissolvens showed itself to be closely related to the type strain of E. cloacae (delta Tm 2.3 degrees C), indicating that the two species may be regarded as subjective synonyms.  相似文献   

12.
Most Neisseria species are gram-negative cocci or diplococci; currently, N. elongata is the only species of human origin with a bacillary morphology. Here, we report isolation and characterization of eight strains of another bacillary Neisseria species from human infections. The organisms caused or contributed to either oral cavity-related or respiratory tract infections, and two strains were isolated from blood cultures. The 16S rRNA gene sequences of these organisms, being homogenous or nearly so (99.4 to 100% identity), matched at <96% known Neisseria species and formed a distinct group within the genus. Analysis of the cellular fatty acids showed broad similarity with a few Neisseria species. The organisms were gram negative and measured 0.6 mum by 1.3 to 3.0 mum. They grew well on chocolate agar and on sheep blood agar but did not grow on modified Thayer-Martin agar. They were positive for oxidase and negative for indole production. There was no acid production from dextrose, lactose, maltose, or sucrose. The tests for catalase reaction, nitrate reduction, and tributilin varied with the strains. These results suggest that these organisms represent a novel species within the genus Neisseria, for which the name Neisseria bacilliformis sp. nov. is proposed. The type strain is MDA2833 = ATCC BAA-1200(T) = CCUG50858(T). Distinction between N. bacilliformis and N. elongata can be made confidently by 16S rRNA gene sequencing or cellular fatty acid profiling but may be difficult by morphology or routine biochemical tests.  相似文献   

13.
Deoxyribonucleic acid relatedness studies (S1 nuclease method) have shown that 15 strains isolated from three Lebanese spring waters, belonging to the genus Pseudomonas, formed two homogeneous DNA groups, with a within-group DNA relatedness ranging from 70 to 100%. These groups are referred to as Pseudomonas cedrella sp. nov. and Pseudomonas orientalis sp.nov. These strains were previously grouped on the basis of a numerical analysis in phenons Ve, Vd, Vg, and VI. DNA relatedness with 65 strains representing 24 species of the genus Pseudomonas sensu stricto was below 50%. The highest DNA binding value (50%) was found with P. marginalis species. A comparison of the complete 16S rRNA gene sequences of the strains representing the two new deoxyribonucleic acid hybridization groups, i.e., strains CFML 96-198T and CFML 96-170T, and the sequence of other strains of the genus Pseudomonas revealed that these strains (CFML 96-198T and CFML 96-170T) fell within the 'Pseudomonas fluorescens intrageneric cluster'. The G+C contents of the DNA of P. cedrella CIP 105541T and P. orientalis CIP 105540T were 59 and 60 mol%, respectively. The two species can be differentiated from each other by the fact that P. cedrella strains hydrolyze erythritol and D-lyxose. P. cedrella grouped together a total of nine strains from phenotypic groups Ve, Vg, and VI. P. orientalis grouped together six strains from both phenotypic groups Vd and Ve.  相似文献   

14.
Leminorella is proposed as a new genus for the group of Enterobacteriaceae formerly known as Enteric Group 57. Strains of Leminorella gave positive tests for H2S production, acid production from L-arabinose and D-xylose, and tyrosine clearing; they were negative for indole production, Voges-Proskauer, urea hydrolysis, phenylalanine deaminase, motility, gelatin liquefaction, lysine and ornithine decarboxylases, arginine dihydrolase, growth in KCN, and acid production from adonitol, D-arabitol, cellobiose, erythritol, D-galactose, myo-inositol, lactose, maltose, D-mannitol, D-mannose, melibiose, alpha-CH3-glucoside, raffinose, L-rhamnose, salicin, D-sorbitol, sucrose, and trehalose. By DNA hybridization, strains of Leminorella were only 3 to 16% related to other Enterobacteriaceae and were divided into three groups. Leminorella grimontii is proposed as the type species for the genus and strain CDC 1944-81, ATCC 33999, is designated as the type strain. There were four strains of L. grimontii from stool specimens and two from urine specimens. L. richardii is proposed as the name for the second species (type strain, CDC 0978-82, ATCC 33998). All four L. richardii strains were from stool specimens. L. grimontii can be distinguished from L. richardii because it produces gas from glucose (100%) and acid from dulcitol (83%) and is methyl red positive (100%). One strain, CDC 3346-72, was more related to L. grimontii by DNA hybridization than to L. richardii, but the lower relatedness to both of these species indicated that it may be a third species. Biochemically it could not be distinguished from L. grimontii. All Leminorella strains were resistant (no zone of inhibition) to ampicillin, carbenicillin, and cephalothin. Some of the Leminorella strains were sent to us for Salmonella serotyping, and two reacted weakly in Salmonella antisera. The clinical significance of Leminorella is unknown.  相似文献   

15.
Over a 12-year period, 16 human strains of a gram-negative, catalase-positive, halophilic, aerobic, nonmotile, small coccoid bacterium were received for identification. On the bases of biochemical characteristics and cellular fatty acid profiles, 14 of these strains were similar to the "Philomiragia" bacterium (Yersinia philomiragia, species incertae sedis). Additional characteristics were growth on Thayer-Martin agar but no growth or sparse, delayed growth on MacConkey agar; oxidase positive; acid production, often weak and delayed, from D-glucose, sucrose, and maltose; urease negative; no reduction of nitrates; and H2S produced but often delayed in triple sugar iron agar. Both the human isolates and the "Philomiragia" bacterium contained C10:0, C14:0, C16:0, C18:1 omega 9c, C18:0, 3-OH C18:0, C22:0, and C24:1 as major cellular fatty acids and ubiquinone eight (Q8) as the major isoprenoid quinone. These cellular acids in these relative amounts have been found previously only in Francisella tularensis and Francisella novicida, suggesting a relationship between the "Philomiragia" bacterium and Francisella species. Of the 14 human "Philomiragia"-like isolates, 9 were from blood, 3 were from lung biopsies or pleural fluid, and one each was from peritoneal fluid and cerebrospinal fluid. DNA relatedness studies (hydroxyapatite method, 50 and 65 degrees C) showed that these 14 strains were a single group that was the same species as the "Philomiragia" bacterium. Two other human strains were oxidase negative and H2S negative. They formed a single DNA relatedness group that was indistinguishable from the type strains of both F. tularensis and F. novicida. DNA relatedness of "Philomiragia" bacterium type and other strains to strains of F. novicida and F. tularensis, including the type strains, was 35 to 46%. One of the two F. novicida- and F. tularensis-like strains was isolated from blood, and the other was isolated from a cervical lymph node. On the basis of these findings, we propose transferring Y. philomiragia from the genus Yersinia to the genus Francisella as Francisella philomiragia comb. nov. Having confirmed that F novicida and F. tularensis are the same species and having shown that F. novicida is pathogenic for humans, we further propose eliminating the species F. novicida and demoting it to a biogroup of F. tularensis.  相似文献   

16.
The name Tatumella ptyseos gen. nov., sp. nov., is proposed for a group of organisms (previously called group EF-9) isolated from clinical sources in the United States, Canada, and Puerto Rico. A total of 68% of these isolates were from sputum specimens. T. ptyseos strains are gram-negative, oxidase-negative, fermentative rods that grow on MacConkey agar. The distinctive biochemical characteristics of 44 T. ptyseos isolates were as follows: acid but no gas from D-glucose, sucrose, and, usually (71%), D-xylose (62% delayed); no acid from lactose, maltose, or D-mannitol; negative tests for indole, urea, methyl red, gelatin, L-lysine decarboxylase, and L-ornithine decarboxylase; L-arginine dihydrolase variable; phenylalanine deaminase positive; Voges-Proskauer positive by the Coblentz method but negative by the O'Meara method; nonmotile at 36 degrees C but 66% weakly motile (30% delayed) at 25 degrees C; Simmons citrate positive at 25 degrees C (89%) but Simmons citrate negative at 36 degrees C. Deoxyribonucleic acid-deoxyribonucleic acid relatedness studies on 26 T. ptyseos strains showed that they were 80 to 100% related at 60 degrees C, which indicated that they comprise a single species. The deoxyribonucleic acid relatedness to other species within the Enterobacteriaceae was 7 to 38%. This is evidence that this species belongs in this family, is distinct from all described species and is best placed in a new genus. The T. ptyseos isolates studied were susceptible to all of the antimicrobial agents tested by broth dilution; these antimicrobial agents were amikacin, ampicillin, cephalothin, chloramphenicol, gentamicin, kanamycin, tetracycline, and tobramycin. Three striking differences between T. ptyseos and other members of the Enterobacteriaceae were its large zone of inhibition around penicillin (mean diameter 24 mm), its tendency to die on some laboratory media (such as blood agar) within 7 days, and its small number (usually one) of flagella. Strain H36 (=ATCC 33301, =CDC D6168, =CDC 9591-78) is the type strain of this new species. T. ptyseos is the type species for the genus Tatumella.  相似文献   

17.
Four bacterial isolates were recovered from the blood cultures of four patients, two of whom were from Hong Kong and two of whom were from Canada. The two Hong Kong strains were isolated from a 48-year-old man with intestinal obstruction and secondary sepsis (strain HKU16T) and from a 39-year-old man with acute appendicitis (strain HKU17), while the two Canadian strains were isolated from a 74-year-old man with biliary sepsis (strain CA1) and from a 66-year-old woman with metastatic carcinoma and sepsis (strain CA2). While the first three patients survived, the last patient died 2 weeks after the episode of bacteremia. All four isolates are strictly anaerobic, nonsporulating, gram-positive coccobacilli that were unidentified by conventional phenotypic tests and commercial identification systems. They grow on sheep blood agar as nonhemolytic pinpoint colonies after 48 h of incubation at 37 degrees C in an anaerobic environment. All are catalase positive and motile, with flagella. They produce acid from arabinose, glucose, mannose, and xylose. They do not produce indole or reduce nitrate. They are sensitive to penicillin, vancomycin, and metronidazole but resistant to cefotaxime. 16S rRNA gene sequence analysis showed 16.0%, 16.8%, and 21.0% base differences from Clostridium propionicum, Clostridium neopropionicum, and Atopobium minutum, respectively. The G+C content of strain HKU16T is 40.2% +/- 2.2%. Based on their phylogenetic affiliation, unique G+C content, and phenotypic characteristics, we propose a new genus and species, Catabacter hongkongensis gen. nov., sp. nov., to describe the bacterium, for which HKU16 is the type strain, and suggest that it be assigned to a new family, Catabacteriaceae. The gastrointestinal tract was probably the source of the bacterium for at least three of the four patients. The isolation of a catalase-positive, motile, nonsporulating, anaerobic gram-positive bacillus in clinical laboratories should raise the possibility of C. hongkongensis. Further studies should be performed to ascertain the epidemiology and other disease associations of this bacterium.  相似文献   

18.
Twelve strains of gram-negative, nonfermenting rods recovered mainly from septicemic patients were studied using conventional and molecular methods. The phenotypic profiles of these strains most closely resembled Psychrobacter phenylpyruvicus. They produced catalase, oxidase, urease, and H(2)S (lead acetate paper) but did not produce indole, reduce nitrate or nitrite, or hydrolyze gelatin or esculin. No acid production was observed in a King's oxidation-fermentation base containing d-glucose, d-xylose, d-mannitol, sucrose, lactose, or maltose. All strains were nonmotile and nonpigmented. Most strains produced green discoloration on blood agar. All strains grew at 25 degrees C and 35 degrees C and most grew on MacConkey agar. They shared a common cellular fatty acid (CFA) profile characterized by large amounts (56% to 90%) of 18:1omega7c and the presence of 3-OH-10:0, 16:1omega7c, 16:0, and 19:0cycomega8c that overall was most similar to that of Rhodobacter species but was quite distinct from that of P. phenylpyruvicus. The MICs for most beta-lactams, fluoroquinolones, aminoglycosides, and carbapenems were low. MICs for aztreonam and piperacillin were higher, with MICs for some strains of > 64 mg/liter and > 128 mg/liter, respectively. Polyphasic analysis of these strains, including morphological, biochemical, CFA composition, DNA-DNA hybridization, 16S rRNA gene sequencing, and percent guanine-plus-cytosine (G+C) content analysis, demonstrated that these strains and Rhodobacter massiliensis represent a new genus, "Haematobacter" (proposed name), with the species H. missouriensis (type strain H1892(T) = CCUG 52307(T) = CIP 109176(T)) and H. massiliensis comb. nov. (type strain Framboise(T) = CCUG 47968(T) = CIP 107725(T)) and an unnamed genomospecies.  相似文献   

19.
Two yeast strains, strains XH 1026 and XH 1164, isolated from the sputum of an intensive care unit patient with acute pneumonia, were originally identified as Candida albicans and C. tropicalis, respectively. Sequence analysis of the 26S rRNA gene D1/D2 domain and the internal transcribed spacer (ITS) region indicated that the two strains represent a novel yeast species closely related to C. rogusa. The name Candida pseudorugosa sp. nov. is therefore proposed (type strain, AS 2.3107 [CBS 10433]). The new species is able to grow at 42 degrees C and is resistant or insusceptible to amphotericin B (MIC, 2 microg/ml), caspofungin (MIC, 64 microg/ml), itraconazole (MIC, 1 microg/ml), and nystatin (MIC, 16 microg/ml); dose-dependent susceptible to fluconazole (MIC, 16 microg/ml); and susceptible to flucytosine (MIC, 0.125 microg/ml) and voriconazole (MIC, 0.125 to 0.25 microg/ml). The code for C. pseudorugosa sp. nov. provided by the API 20C AUX system is identical to that for C. rugosa. The colonies of the new species on CHROMagar Candida appear blue-green, similar to those of C. albicans. In addition to the molecular method based on D1/D2 domain or ITS region sequencing, use of the combination of the API system and CHROMagar Candida is helpful for the correct identification of C. pseudorugosa sp. nov.  相似文献   

20.
In 1985 the vernacular name Enteric Group 90 was coined for a small group of strains that had been referred to our laboratory as probable strains of Salmonella but did not agglutinate in Salmonella typing antisera. By DNA-DNA hybridization (hydroxyapatite method, 32P), seven strains of Enteric Group 90 were found to be closely related (98 to 100% at 60 degrees C and 94 to 100% at 75 degrees C) to the first strain received (0370-85). The relatedness of Enteric Group 90 to 62 strains of other species of the family Enterobacteriaceae was only 6 to 41%, with the highest values obtained with strains of Salmonella, Kluyvera, Shigella, Klebsiella, Enterobacter, and Citrobacter. We propose a new genus, Trabulsiella, with a single new species, Trabulsiella guamensis, for the highly related group of eight strains formerly known as Enteric Group 90. The type strain is designated ATCC 49490 (CDC 0370-85). T. guamensis strains grew well at 36 degrees C and had positive reactions in the following tests: methyl red, citrate utilization (Simmons) (38% positive at day 1, 88% positive at 2 days), H2S production, lysine decarboxylase, arginine dihydrolase (50% positive at 2 days, 100% positive at 7 days), ornithine decarboxylase, motility, growth in KCN medium, mucate fermentation, acetate utilization, nitrate reduction to nitrite, weak tyrosine hydrolysis (88% positive at 2 days, 100% positive at 7 days), and ONPG (o-nitrophenyl-beta-D-galactopyranoside) test. The strains fermented D-glucose with gas production and fermented L-arabinose, cellobiose, D-galactose, D-galacturonate, maltose, D-mannitol, D-mannose, L-rhamnose, D-sorbitol, trehalose, and D-xylose. T. guamensis strains had negative reactions in the following tests: indole production (13% positive), Voges-Proskauer, urea hydrolysis, phenylalanine deaminase, malonate utilization, lipase (corn oil), DNase, oxidase, pigment production, and acid production from adonitol, D-arabitol, dulcitol, erythritol, myo-inositol, melibiose, alpha-methyl-D-glucoside, raffinose, and sucrose. There were delayed positive reactions for gelatin liquefaction (22 degrees C), which was positive at 12 to 23 days, esculin hydrolysis (13% positive at day 1, 50% positive at 7 days), lactose fermentation (13% positive at 3 to 7 days, 100% positive at 8 to 10 days), glycerol fermentation (88% positive at 7 days), and salicin fermentation (13% positive at day 1, 88% positive at 7 days). All strains were susceptible by the disk diffusion method to colistin, nalidixic acid, gentamicin, streptomycin, kanamycin, chloramphenicol, and trimethoprim-sulfamethoxazole, and most strains were susceptible to sulfadiazine (75% susceptible), tetracycline (88%), and carbenicillin (75%). The strains were resistant to penicillin, cephalothin, and ampicillin. The strains were isolated from vacuum cleaner dust (five strains), soil (one strain), and human feces (two strains). Although T. guamensis can occur in human diarrheal stools, there is no evidence that it actually causes diarrhea. Its main interest to clinical microbiologists may be its possible misidentification as a strain Salmonella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号