首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular mechanisms of myogenic activity in gastric smooth muscle   总被引:13,自引:0,他引:13  
In many regions of the intestine, a thin layer of interstitial cells of Cajal (ICC) lie in the myenteric region, between the circular and longitudinal muscle layers. ICC are connected by gap junctions to surrounding ICC and also with circular and longitudinal smooth muscle cells, forming a large electrical syncytium. Damage of the ICC causes a disorder in the patterns of rhythmic activity. Isolated ICC produce a rhythmic oscillation of the membrane potential. All these observations have led to the suggestion that ICC may be the pacemaker cell responsible for intestinal activity. Gastric smooth muscles generate slow oscillatory membrane potential changes (slow waves) and spike potentials. The activity is considered to be linked to the metabolism in the cell. Three types of cells located in the gastric wall (circular and longitudinal smooth muscle cells and ICC) produce synchronized electrical responses with different shapes. The electrical responses appear to originate in ICC and then spread to the smooth muscle layers, indicating that ICC may also be the pacemaker cells responsible for gastric activity. However, isolated circular smooth muscle tissues spontaneously generate regenerative potentials, suggesting that there are at least two sites for the initiation of spontaneous activity in the stomach. Regenerative potentials persist in the presence of Ca-antagonists and are inhibited by agents which disrupt intracellular Ca(2+) homeostasis. Depolarization of the membrane elicits regenerative potentials after a long delay and the potentials have long refractory periods. This suggests that an unidentified 2nd messenger may be formed during the delay between membrane depolarization and the initiation of a regenerative potential. In gastric muscles of mutant mice which do not express inositol trisphosphate (InsP(3)) receptors, spike potentials but not slow waves are generated, suggesting the possible involvement of InsP(3) in the initiation of spontaneous activity.  相似文献   

2.
Kit mutants and gastrointestinal physiology   总被引:6,自引:1,他引:6  
There has been considerable speculation about the function of interstitial cells of Cajal (ICC) since their discovery more than 100 years ago. It has been difficult to study these cells under native conditions, but great insights about the function of ICC have come from studies of genetic models with loss-of function mutations in the Kit signalling pathway. First it was discovered that signalling via Kit (a receptor tyrosine kinase) was vital for the development and maintenance of the ICC phenotype in gastrointestinal (GI) muscles. In compound heterozygotes ( W/WV and Sl/Sld animals), where there are partial loss-of-function mutations in Kit receptors or Kit ligand (stem cell factor), ICC failed to develop in various regions of the GI tract, but no major changes in the smooth muscle layers or enteric nervous system occurred in the absence of these cells. Animals with these mutations provided an unprecedented opportunity to understand the role of ICC in GI motor function, and it is now clear from these studies that ICC serve as: (i) pacemaker cells, generating the spontaneous electrical rhythms of the gut known as slow waves; (ii) a propagation pathway for slow waves so that large areas of the musculature can be entrained to a dominant pacemaker frequency; (iii) mediators of excitatory cholinergic and inhibitory nitrergic neural inputs from the enteric nervous system, and (iv) stretch receptors that modulate membrane potential and electrical slow wave frequency. This review describes the use of genetic models to understand the important physiological role of ICC in the GI tract.  相似文献   

3.
Interstitial cells of Cajal (ICCs) play a key role in regulating gastrointestinal tract motility. The pathophysiological basis of colonic aperistalsis in Hirschsprung's disease (HD) is still not fully understood. Many studies reported that decreased numbers or disrupted networks of ICCs were associated with HD. Little information is available on the distribution of different subtypes of ICCs in HD. The aim of this study was to determine the alterations in density of different subtypes of ICC in colonic specimens of patients with total colonic and recto-sigmoid HD. Full thickness colonic specimens were obtained from five children with total colonic aganglionosis (TCA), sixteen with recto-sigmoid HD and seven controls. ICCs were visualized in frozen sections by c-Kit (CD117) fluorescent staining. In the control colon, c-Kit positive ICCs formed a dense network surrounding the myenteric plexus (IC-MY), along the submucosal surface of the circular muscle layer (IC-SM) and in the circular and longitudinal muscle layer (IC-IM). In the aganglionic region of the colon of the patients affected by HD, the number of ICCs (especially IC-IM and IC-SM) was markedly reduced and IC-MY networks were disrupted. Nearly total lack of three subtypes of ICCs was observed in the TCA specimens. This study demonstrated the altered distribution of different subtypes of ICCs in the resected colon of patients with recto-sigmoid HD and TCA. These findings suggest that the reduction of each subtype of ICCs may play an important role in the etiology of HD.  相似文献   

4.
The stomach generates a characteristic pattern of coordinated activity whereby rings of contraction regularly start in the corpus and migrate slowly down the stomach to the duodenum. This behaviour persists after isolating the stomach and after blocking nervous activity; hence the response is myogenic, resulting from organized contractions of smooth muscle cells lying in the stomach wall. Each ring of contraction is triggered by a long lasting wave of depolarization, termed a slow wave. Slow waves are now known to be generated by sets of interstitial cells of Cajal (ICC), which intermingle with gastric smooth muscle cells. This article describes some studies which identify the roles played by ICC in the on-going generation of coordinated gastric movements. Intramuscular ICC in the corpus generate slow waves and these provide the dominant pacemaker frequency in the stomach. Corporal slow waves, in turn, activate a network of myenteric ICC, which starts in the antrum and slowly conducts waves of depolarization down the stomach. As these waves pass over bundles of circularly orientated muscle cells, they activate a set of intramuscular ICC which lie in the circular muscle layer: these generate slow waves that rapidly spread radially, so triggering each ring of contraction.  相似文献   

5.
Many smooth muscles display spontaneous electrical and mechanical activity, which persists in the absence of any stimulation. In the past this has been attributed largely to the properties of the smooth muscle cells. Now it appears that in several organs, particularly in the gastrointestinal tract, activity in smooth muscles arises from a separate group of cells, known as interstitial cells of Cajal (ICC), which are distributed amongst the smooth muscle cells. Thus in the gastrointestinal tract, a network of interstitial cells, usually located near the myenteric plexus, generates pacemaker potentials that are conducted passively into the adjacent muscle layers where they produce rhythmical membrane potential changes. The mechanical activity of most smooth muscle cells, can be altered by autonomic, or enteric, nerves innervating them. Previously it was thought that neuroeffector transmission occurred simply because neurally released transmitters acted on smooth muscle cells. However, in several, but not all, regions of the gastrointestinal tract, it appears that nerve terminals, rather than communicating directly with smooth muscle cells, preferentially form synapses with ICC and these relay information to neighbouring smooth muscle cells. Thus a set of ICC, which are distributed amongst the smooth muscle cells of the gut, are the targets of transmitters released by intrinsic enteric excitatory and inhibitory nerve terminals: in some regions of the gastrointestinal tract, the same set of ICC also augment the waves of depolarisation generated by pacemaker ICC. Similarly in the urethra, ICC, distributed amongst the smooth muscle cells, generate rhythmic activity and also appear to be the targets of autonomic nerve terminals.  相似文献   

6.
Interstitial cells of Cajal: primary targets of enteric motor innervation   总被引:26,自引:0,他引:26  
For many years morphologists have noted the close relationship between interstitial cells of Cajal (ICC) and nerve fibers within the tunica muscularis of gastrointestinal (GI) organs. These observations led to speculations about a role for ICC in mediating neural inputs to the GI tract. Immunohistochemical and functional studies demonstrated the presence of receptors for the neurotransmitters utilized by enteric motor neurons, and changes in second messengers in ICC after field stimulation of intrinsic enteric neurons showed that ICC were functionally innervated in GI muscles. Recent double labeling experiments have shown that both excitatory and inhibitory enteric motor neurons are closely associated with ICC in the deep muscular plexus (IC-DMP) of the small intestine and intramuscular ICC (IC-IM) of the proximal and distal GI tract. Enteric motor neurons form synaptic-like structures with IC-IM and IC-DMP. Far fewer close contacts are found between enteric motor neurons and smooth muscle cells. Experiments on W/W(V) mutants that lack IC-IM in the stomach, lower esophageal sphincter, and pylorus have shown that these ICC are critical components of the neuromuscular junction. Cholinergic excitatory and nitrergic inhibitory neurotransmission are severely decreased in tissues lacking IC-IM, yet there is no loss of cholinergic or nitrergic neurons in W/W(V) mutants. These data suggest that either the post-junctional mechanisms responsible for receiving and transducing neurotransmitter signals are specifically expressed by ICC, or that the large extracellular spaces typically between nerve terminals and smooth muscle cells may not allow effective concentrations of neurotransmitters to reach receptors expressed by smooth muscle cells. These findings indicate an important role for certain classes of ICC in enteric neurotransmission and predict that loss of ICC in human motor disturbances may significantly compromise neural regulation of GI motility.  相似文献   

7.
Gut pacemaker cells: the interstitial cells of Cajal (ICC).   总被引:10,自引:0,他引:10  
This review will focus on the pacemaker mechanisms underlying gastrointestinal autonomic rhythmicity in an attempt to elucidate the differences and similarities between the pacemaker mechanisms in the heart and gut. Interstitial cells of Cajal (ICC) form networks that are widely distributed within the submucosal (ICC-SM), intra-muscular (ICC-IM, ICC-DMP) and inter-muscular layers (ICC-MY) of the gastrointestinal tract from the esophagus to the internal anal sphincter. The ICC generate spontaneously active pacemaker currents that may be recorded as plateau and slow potentials. These pacemaker currents drive the spontaneous electrical and mechanical activities of smooth muscle cells. The enteric nervous system, composed of both the myenteric (inter-muscular) plexus and the submucosal plexus, is also distributed in the gastrointestinal tract from the esophagus to the internal anal sphincter. The role of the ICC and the enteric nervous system in the integrative control of gastrointestinal function and especially of spontaneous rhythmic activity, is still unknown. Nevertheless, at least from the results presented in this review of studies of the jejunum, ileum and proximal colon of the mouse, it is convincing that the ICC drive spontaneous rhythmic motility, although a role for the enteric nervous system in the regulation of spontaneous rhythmic motility cannot be overlooked. Furthermore, intracellular Ca2+ handling has a critical role in the generation of pacemaker activity in the gut and heart, although respective players such as the Ca2+-ATPase of the sarcoplasmic reticulum (endoplasmic reticulum), IP3 receptors, ryanodine receptors and plasma membrane ion channels may have divergent roles in the Ca2+-release refilling cycles. In conclusion, intracellular Ca2+ handling plays a key role in the gut pacemaker responsible for spontaneous rhythmicity, as well as in the cardiac pacemaker responsible for spontaneous beating. Pharmacotherapeutic targeting of intracellular Ca2+ handling mechanisms may be a promising approach to the treatment and cure of gut motility dysfunction.  相似文献   

8.
Interstitial cells of Cajal (ICC) in the stomach of wild-type and Ws/Ws mutant rats that are deficient in c-kit were studied by immunohistochemistry and electron microscopy to elucidate their regional specialization in the gastric antrum. Immunohistochemistry for Kit protein demonstrated that in wild-type rats ICC were located at the submucosal border of the circular muscle layer (ICC-SM) in a limited extension of the antrum from the pyloric sphincter towards the corpus, as well as within both the circular (ICC-CM) and longitudinal (ICC-LM) muscle layers and in the myenteric plexus region (ICC-AP). In c-kit mutant Ws/Ws rats while ICC-CM and ICC-LM were not observed, but unexpectedly, a few ICC-SM and ICC-AP were found. By electron microscopy, ICC-SM and ICC-AP were characterized by abundant mitochondria, many caveolae, a distinct basal lamina and formed gap junctions with other ICC or with smooth muscle cells and make close contacts with nerves. Thus, ICC-SM and ICC-AP of the rat antrum were classified as Type 3 ICC, the type most similar to smooth muscle cells. The functional significance of ICC-SM and their survival in the c-kit mutant animals is discussed in reference to the role of the c-kit/stem cell factor system for their cellular maturation.  相似文献   

9.
Electrical rhythmicity in smooth muscle cells is essential for the movement of the gastrointestinal tract. Interstitial cells of Cajal (ICC) lie adjacent to smooth muscle layers and are implicated as the pacemaker cells. However, the pace making mechanism remains unclear. To study the intercellular interaction during electrical rhythm generation, we visualized changes in intracellular Ca2+ concentration ([Ca2+]i) in smooth muscle cells and myenteric ICC within segments of mouse ileum loaded with a fluorescent Ca2+ indicator, fluo-3. We observed rhythmic [Ca2+]i changes in longitudinal smooth muscle cells travelling rapidly through the smooth muscle cell layer. Between the rhythmic Ca2+ transients, we found brief Ca2+ transients localized to small areas within smooth muscle cells. The amplitude but not the periodicity of rhythmic [Ca2+]i transients in both cell types was partially inhibited by nicardipine, an L-type Ca2+ channel antagonist, suggesting that the rhythmic [Ca2+]i transients reflect membrane potential depolarizations corresponding to both slow waves and triggered Ca2+ spikes. Longitudinal smooth muscle cells and myenteric ICC showed synchronous spontaneous [Ca2+]i transients in eight out of 21 ileac preparations analysed. In the remaining preparations, the synchrony between ICC and smooth muscle cells was absent, although the rhythmicity of the smooth muscle cells was not disturbed. These results suggest that myenteric ICC may play multiple roles including pace making for physiological bowel movement.  相似文献   

10.
Aim: To identify the interstitial cells of Cajal in the porcine ileum for the first time immunohistochemically and to examine the electrical properties of intestinal smooth muscle in the same region. Methods: In vitro intracellular microelectrode recordings were made from smooth muscle cells in cross‐sectional preparations from abattoir‐derived healthy porcine ileum. Immunohistochemical labelling of interstitial cells of Cajal was performed using an anti‐Kit antibody. Results: Slow waves were recorded in the circular muscle layer of all ileal preparations. The mean resting membrane potential of smooth muscle cells was ?61.0 ± 1.3 mV. Slow waves had a mean amplitude of 8.5 ± 0.5 mV, a frequency of 9.9 ± 0.1 cycles per minute and a duration of 5.6 ± 0.1 s. A waxing and waning pattern of slow wave activity was occasionally observed. In addition, higher frequency spiking activity associated with contractions was observed in some recordings. The L‐type calcium channel blocker nifedipine abolished both the spiking activity and the contractions, but had no significant effect on slow wave characteristics. Current‐injection manipulation of the resting membrane potential had no effect on slow wave amplitude, frequency or duration. Kit‐immunoreactive interstitial cells of Cajal were identified in the ileal samples and were present in the region of the myenteric plexus and in the circular and longitudinal muscle layers. Conclusion: This study recorded slow waves in vitro and demonstrated immunohistochemically the presence of interstitial cells of Cajal in the normal porcine ileum. This study forms a basis for future physiological and pathophysiological comparative studies of intestinal motility.  相似文献   

11.
This study investigated the response of interstitial cells of Cajal (ICC) in postnatal mouse colon to treatment with Imatinib (Glivec®, a potent inhibitor of Kit receptor). ICC were revealed by immunofluorescent staining on frozen cross-sections and whole-mount preparations by anti-Kit and DOG1 antibodies. Kit and p-Kit protein were also evaluated by Western blot. After administration of Imatinib for 4 days beginning at 8 days post-partum (P8), the mean density of Kit+ ICC, which were localized around the myenteric nerve plexus (ICC-MY), within smooth muscle layers (ICC-IM) and in the connective tissue beneath the serosa (ICC-SS), was dramatically decreased to about 50% when compared with controls, but those Kit+ cells located at the submucosal border of circular smooth muscle layer (ICC-SM) seemed to be unchanged in both cell number and morphology. A small number of DOG1+/Kit cells appeared during Imatinib administration. However, these Kit+ ICC were not changed in mice even after 12 days of Imatinib treatment from P24. When Imatinib was discontinued, the number of ICC recovered to normal within 4 days. Our results indicate that the postnatal development of ICC in the mouse colon is Kit dependent, but ICC-SM are unlikely, and the Kit dependence of ICC development is also age-dependent.  相似文献   

12.
Specialized cells known as interstitial cells of Cajal (ICC) are distributed in specific locations within the tunica muscularis of the gastrointestinal (GI) tract. ICC serve as electrical pacemakers, provide pathways for the active propagation of slow waves, are mediators of enteric motor neurotransmission and play a role in afferent neural signalling. Morphological studies have provided evidence that motor neurotransmission in the GI tract does not occur through poorly defined structures between nerves and smooth muscle, but rather via specialized synapses that exist between enteric nerve terminals and intramuscular ICC or ICC-IM. ICC-IM are coupled to smooth muscle cells via gap junctions and post-junctional responses elicited in ICC-IM are conducted to neighbouring smooth muscle cells. Electrophysiological studies from the stomachs and sphincters of wild-type and mutant animals that lack ICC-IM have provided functional evidence for the importance of ICC in cholinergic excitatory and nitrergic inhibitory motor neurotransmission. Intraperitoneal injection of animals with Kit neutralizing antibody or organ culture of gastrointestinal tissues in the presence of neutralizing antibody, which blocks the development and maintenance of ICC, has provided further evidence for the role of ICC in enteric motor transmission. ICC-IM also generate an ongoing discharge of unitary potentials in the gastric fundus and antrum that contributes to the overall excitability of the stomach.  相似文献   

13.
Interstitial cells of Cajal (ICC) are located in most parts of the digestive system. Although they were discovered over 100 years ago, their function began to be unravelled only recently. Morphological observations have led to a number of hypotheses on the possible physiological roles of ICC: (1) these cells may be the source of slow electrical waves recorded in gastrointestinal (GI) muscles; (2) they participate in the conduction of electrical currents, and (3) mediate neural signals between enteric nerves and muscles. These hypotheses were supported by experiments in which the ICC‐containing layer was removed surgically, or when ICC were ablated chemically, and as a consequence the slow waves were absent. Electrophysiological experiments on isolated cells confirmed that ICC can generate rhythmic electrical activity and can also respond to messenger molecules known to be released from enteric nerves. In mice mutants deficient in ICC, or in mice treated with antibody against the protein c‐Kit, slow wave activity was impaired. These results support the role of ICC as pacemaker cells. Physiological studies have shown that ICC in certain GI regions are important for signal transmission between nerves and smooth muscle. There is evidence that pathological changes in ICC may be associated with GI motility disorders. The full interpretation of the role of ICC in disease conditions will require much further study on the physiology and pharmacology of these cells.  相似文献   

14.
15.
Interstitial cells of Cajal (ICC) associated with the myenteric plexus of the small intestine are crucial players in gut physiology performing pacemaker functions and directing peristalsis and segmentation. ICC have been studied after chemical isolation and under culture conditions, but concerns that these methods affect the intrinsic properties have hindered progress in our understanding of ICC. To overcome this problem, we have developed a method to obtain electrophysiological recordings from ICC in situ. The critical feature is the ability to make high resistance seals onto cells that are embedded within tissue to obtain patch clamp recordings. Our first results show a prominent presence of a chloride channel, one of the proposed ICC pacemaker channels. The developed method can be applied to auxiliary cells of the enteric nervous system such as glial cells or fibroblasts and will be ideal for the study of cell–cell communication in tissue.  相似文献   

16.
In the gastrointestinal (GI) tract electrical slow waves yield oscillations in membrane potential that periodically increase the open probability of voltage-dependent Ca2+ channels and facilitate phasic contractions. Slow waves are generated by the interstitial cells of Cajal (ICC), and these events actively propagate through ICC networks within the walls of GI organs. The mechanism that entrains spontaneously active pacemaker sites throughout ICC networks to produce regenerative propagation of slow waves is unresolved. Agents that block inositol 1,4,5-trisphosphate (IP3) receptors and mitochondrial Ca2+ uptake were tested on the generation of slow waves in the canine colon. A partitioned chamber apparatus was used to test the effects of blocking slow-wave generation on propagation. We found that active propagation occurred along strips of colonic muscle, but when the pacemaker mechanism was blocked in a portion of the tissue, slow waves decayed exponentially from the point where the pacemaker mechanism was inhibited. An IP3 receptor inhibitor, mitochondrial inhibitors, low external Ca2+, and divalent cations (Mn2+ and Ni2+) caused exponential decay of the slow waves in regions of muscle exposed to these agents. These data demonstrate that the mechanism that initiates slow waves is reactivated from cell-to-cell during the propagation of slow waves. Voltage-dependent conductances present in smooth muscle cells are incapable of slow-wave regeneration. The data predict that partial loss of or disruptions to ICC networks observed in human motility disorders could lead to incomplete penetration of slow waves through GI organs and, thus, to defects in myogenic regulation.  相似文献   

17.
Although it is well known that the reduction of interstitial cells of Cajal (ICCs) is associated with several gastrointestinal motility disorders in clinic, it is unknown whether the mature ICCs still have an active plasticity in adult mammals. This study focused on the issues of the reduction of ICCs during Imatinib administration and the recovery of ICCs following drug withdrawal in the small intestine of adult guinea pigs. ICCs were revealed by immunofluorescence on whole mount preparations with anti‐Kit, α‐smooth muscle actin, (α‐SMA), and 5‐bromo‐2′‐deoxyuridine (BrdU) antibodies. Moreover, the occurrence of apoptosis was also assayed. Imatinib treatment led to a gradual reduction of ICCs in number around the myenteric plexus and deep muscular plexus, which was dependent on the time but no apoptosis of ICCs was detected with the TUNEL method. During Imatinib treatment, some ICC‐like cells were double labeled for Kit and α‐SMA and a few ICC‐like cells were only stained with α‐SMA. When Imatinib was discontinued, the number of ICCs recovered to normal within 32 days. During this time, some proliferating ICCs were demonstrated by double labeling with Kit and BrdU antibodies. Our results indicated that Kit signaling was essential for the maintenance of survival and proliferation of the mature ICCs in the small intestine of adult guinea pigs. Moreover, ICCs might transdifferentiate to a type of α‐SMA+ cells, perhaps a phenotype of smooth muscle cells, when there is a loss‐of‐function of Kit. Anat Rec, 292:985–993, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Interstitial cells of Cajal (ICC) provide important regulatory functions in the motor activity of the gastrointestinal tract. In the small intestine, ICC in the myenteric region (ICC-MY), between the circular and longitudinal muscle layers, generate and propagate electrical slow waves. Another population of ICC lies in the plane of the deep muscular plexus (ICC-DMP), and these cells are closely associated with varicose nerve terminals of enteric motor neurons. Here we tested the hypothesis that ICC-DMP mediate excitatory and inhibitory neural inputs in the small bowel. ICC-DMP develop largely after birth. ICC-DMP, with receptor tyrosine kinase Kit-like immunoreactivity, appear first in the jejunum and then in the ileum. We performed electrophysiological experiments on mice immediately after birth (P0) or at 10 days post partum (P10) to determine whether neural responses follow development of ICC-DMP. At P0, slow-wave activity was present in the jejunum, but neural responses were poorly developed. By P10, after ICC-DMP developed, both cholinergic excitatory and nitrergic inhibitory neural responses were intact. Muscles of P0 mice were also put into organotypic cultures and treated with a neutralizing Kit antibody. Neural responses developed in culture within 3–6 days in control muscles, but blocking Kit caused loss of ICC and loss of cholinergic and nitrergic neural responses. Non-cholinergic excitatory responses remained after loss of ICC-DMP. Our observations are consistent with the idea that cholinergic and nitrergic motor neural inputs are mediated, to a large extent, via ICC-DMP. Thus, ICC-DMP appear to serve a function in the small intestine that is similar to the role of the intramuscular ICC in the stomach.  相似文献   

19.
The morphological features of interstitial cells of Cajal (ICC) in the gastrointestinal (GI) tract are described based on observations of laboratory animals including mice, rats and guinea-pigs, using immunohistochemical staining for Kit and electron microscopy. ICC show a specific distribution, arrangement and cell shape depending on their location within various regions and tissue layers of the GI tract. Hence they are classified into several subtypes. The stomach shows distinct regional variations in the distribution of subtypes of ICC from the cardia to pylorus, whereas the small intestine and colon both seem to retain nearly the same distribution pattern of subtypes of ICC throughout each organ. All subtypes of ICC share common ultrastructural features, such as the presence of numerous mitochondria, abundant intermediate filaments, and formation of gap junctions with the same type of cells and with smooth muscle cells. In addition, depending on their species and anatomical location, some subtypes of ICC show some features typical of smooth muscle cells including a basal lamina, caveolae, subsurface cisterns and dense bodies. ICC are somewhat heterogeneous morphologically. A question is raised on a special relationship between their ultrastructural features and dependency on Kit/stem cell factor system. As the neuromediator function of ICC, reciprocal distribution of ICC and gap junctions in the muscle coat is demonstrated by the comparison of Kit immunoreactive cells and gap junction protein connexin 43 in both small intestine and colon.  相似文献   

20.
The effects of flufenamic acid were investigated on slow waves, follower potentials and pacemaker potentials recorded respectively from circular smooth muscle cells, longitudinal smooth muscle cells and interstitial cells of Cajal distributed in the myenteric layers (ICC-MY) of the guinea-pig stomach antrum. Flufenamic acid (>10(-5) M) inhibited the amplitude and rate of rise of the upstroke phase of the slow waves, with no marked alteration in their frequency of occurrence. The inhibitory actions of flufenamic acid appeared to be mainly on slow potentials recorded from circular smooth muscle cells, but not on follower or pacemaker potentials. After abolishing spontaneous slow potentials with flufenamic acid, depolarizing current stimuli could evoke slow potentials with an amplitude that was much smaller than in the absence of flufenamic acid, with no significant alteration to the input resistance of the membrane. The time elapsed for the generation of the 2nd component of the slow waves or the slow potentials evoked during depolarizing current pulse stimulation was increased by flufenamic acid. The rate of rise of unitary potentials, but not the frequency of occurrence, was inhibited by flufenamic acid. These results indicate that the inhibitory actions of flufenamic acid appear to be mainly on the circular muscle layer including the interstitial cells of Cajal distributed within the muscle bundles (ICC-IM). Nifedipine-sensitive spike potentials were not inhibited by flufenamic acid. It is concluded that the selective inhibition of the 2nd component of slow waves by flufenamic acid may be mainly due to the inhibition of ion channels, possibly Ca2+-sensitive Cl--channels, activated during generation of slow potentials in the ICC-IM distributed in the circular muscle layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号