首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suszynski TM, Rizzari MD, Kidder LS, Mueller K, Chapman CS, Kitzmann JP, Pongratz RL, Cline GW, Todd PW, Kennedy DJ, O’Brien TD, Avgoustiniatos ES, Schuurman H‐J, Papas KK. Paramagnetic microparticles do not elicit islet cytotoxicity with co‐culture or host immune reactivity after implantation. Xenotransplantation 2011; 18: 239–244. © 2011 John Wiley & Sons A/S. Abstract: Background: Paramagnetic microparticles (MPs) may be useful in pancreatic islet purification, in particular purification of porcine islets as a potential xenotransplantation product. We assessed whether MPs affect islet function or induce an adverse effect following implantation. Methods: Porcine islets were co‐cultured with 0, 500, and 1500 MPs per islet equivalent (IE) for 1 day and with 0 and 1500 MPs/IE for 7 days. Fractional viability was assessed using oxygen consumption rate normalized to DNA content (OCR/DNA) and after 7‐day co‐culture by perifusion glucose‐stimulated insulin secretion (GSIS) and by transplantation under the renal capsule of diabetic nude mice. To assess an inflammatory response or immune reaction, MPs (~107) were implanted under the renal capsule of C57BL/6 mice. Results: No statistically significant differences were measured in OCR/DNA (mean ± SE) following 1‐day co‐culture with 0, 500, or 1500 MPs/IE (243.3 ± 4.5, 211.3 ± 8.1, or 230.6 ± 11.3 nmol/min·mgDNA, respectively) or following 7‐day co‐culture with 0 or 1500 MPs/IE (248.5 ± 1.4 or 252.9 ± 4.7 nmol/min·mgDNA, respectively). GSIS was not affected by the presence of MPs; first‐ and second‐phase insulin area‐under‐the‐curve (mean ± SE) reflected no statistically significant differences after 7‐day co‐culture between 0 and 1500 MPs/IE (8.36 ± 0.29 and 8.45 ± 0.70 pg/ml·min·ngDNA for first‐phase; 69.73 ± 2.18 and 65.70 ± 4.34 pg/ml·min·ngDNA for second‐phase, respectively). Islets co‐cultured with MPs normalized hyperglycemia in diabetic nude mice, suggesting no adverse effects on in vivo islet function. Implantation of MPs did not elicit tissue injury, inflammatory change or immune reactivity. Conclusion: MPs do not adversely affect islet viability or function during co‐culture, and MPs are not immune reactive following implantation.  相似文献   

2.

Background

Porcine islet xenotransplantation is considered an attractive alternative treatment for type 1 diabetes mellitus. However, it is largely limited because of initial rejection due to Instant Blood‐Mediated Inflammatory Reaction (IBMIR), oxidative stress, and inflammatory responses. Recently, soluble tumor necrosis factor‐ɑ receptor type I (sTNF‐αR) and heme oxygenase (HO)‐1 genes (HO‐1/sTNF‐αR) have been shown to improve the viability and functionality of porcine islets after transplantation.

Methods

In this study, genetically modified mesenchymal stem cells (MSCs) expressing the HO‐1/sTNF‐αR genes (HO‐1/sTNF‐αR‐MSC) were developed using an adenoviral system, and porcine islet viability and function were confirmed by in vitro tests such as GSIS, AO/PI, and the ADP/ATP ratio after coculturing with HO‐1/sTNF‐αR‐MSCs. Subsequently, isolated porcine islets were transplanted underneath the kidney capsule of diabetic humanized mice without MSCs, with MSCs or with HO‐1/sTNF‐αR‐MSCs.

Results

According to the results, the HO‐1/sTNF‐αR‐MSC‐treated group exhibited improved survival of porcine islets and could reverse hyperglycemia more than porcine islets not treated with MSCs or islets cotransplanted with MSCs. Moreover, the HO‐1/sTNF‐αR‐MSC group maintained its morphological characteristics and the insulin secretion pattern of transplanted porcine islets similar to endogenous islets in immunocompetent humanized mice.

Conclusions

Our results suggest that HO‐1/sTNF‐αR‐MSCs are efficient tools for porcine islet xenotransplantation, and this study may provide basic information for pre‐clinical animal models and future clinical trials of porcine islet xenotransplantation.  相似文献   

3.
Encapsulated porcine islets could be used to treat type I diabetes without necessitating severe immunosuppression. Islet survival and secretory function in the encapsulation device need to be preserved to ensure efficient insulin output in response to surrounding stimuli. In the present study, we evaluated stimulated insulin secretion from adult and neonatal pig islets seeded on an acellular collagen matrix and encapsulated in alginate during long‐term culture. Pig islets survived longer and secreted more insulin when cultured on acellular porcine dermis compared to human fascia. Islets from neonatal pigs could survive up to 33 weeks in vitro, and their insulin secretion increased during the first 5 weeks of culture in a beta‐cell maturation medium. In fact, by the 4th week of culture, insulin secretion from neonatal islets attained the same level as adult islets and even surpassed it by the 18th week. Our results show that in vitro maturation of encapsulated neonatal porcine islets is possible and can actually compensate the initial low insulin secretion from these islets while allowing enough time to perform complete functional and biosafety characterization of islets before transplantation.  相似文献   

4.
BACKGROUND/AIMS: Widespread clinical application of islet transplantation remains restricted, because of insufficient methods to prevent rejection and autoimmune destruction of islet grafts. In this study we demonstrate long-term function of islets of Langerhans within a capsule of porcine chondrocytes which may serve as an immunoisolation barrier utilizing the immunoprivileged properties of the chondrocyte matrix. METHODS: Islets of Langerhans were isolated from Lewis rats, seeded on biodegradable polyglycolic acid polymer, and encapsulated with a monolayer of porcine chondrocytes. The encapsulated constructs and controls were kept in culture for 5 weeks. One group was exposed to a glucose challenge every 5th day. The insulin concentration of the culture medium was measured. Histological and insulin-immunohistochemical studies were performed. RESULTS: Hematoxylin and eosin histology demonstrated viability of the islets of Langerhans. The intact morphology was demonstrated by Heidenhain staining. Toluidine blue showed viability of surrounding chondrocyte layers. Immunohistochemistry was positive for insulin within the beta cells of the islets. Both encapsulated constructs and nonencapsulated controls showed increasing insulin levels after glucose challenge. CONCLUSIONS: We can tissue engineer a chondrocyte encapsulation membrane which permits diffusion of glucose and insulin. Islets of Langerhans survive within the chondrocyte capsule, and the glucose/insulin feedback mechanism remains intact.  相似文献   

5.
Abstract We propose a new device especially designed to test membranes for islet macroencapsulation. It is composed of three independent parts: a support made of three polytetrafluoroethylene rings, the membrane that forms the walls of the encapsulation chamber, and a collagen gel that immobilizes the islets. Studies of this device were performed with the AN69 membrane. After 2 months of implantation in the peritoneal cavity of rats, the empty device was found to be biocompatible, referred to as weak cellular adhesion. In vitro the encapsulation preserved the peak of insulin release in response to high glucose during a perifusion test (0.36 ± 0.02 |μU/ml/islet for free or encapsulated islets). As a result of the collagen gel, the morphological aspect and functional activity were still preserved after 7 days of culture. In vivo xenotransplantation into diabetic mice normalized the fasting gly-cemia up to 30 days. Numerous macrophages adhered to the outer surface of the membrane, and a layer of cells emerging from the destruction of islets covered the inner surface. In addition, the morphological aspect of many islets was altered. By showing that the AN69 membrane was only partially efficient for islet xenotransplantation, this new device proved to be of interest for testing a variety of membranes.  相似文献   

6.
BACKGROUND: Recently, we have developed a simple and reliable method to efficiently isolate large numbers of neonatal porcine islets (NPI). We and others have shown that NPI are susceptible to cytolysis by the activation of human complement in vitro. Microencapsulation of islets may be one strategy to protect NPI from this form of rejection. We examined whether microencapsulation can prevent lysis of NPI induced by human antibody and complement in vitro and also assessed their ability to reverse hyperglycemia in diabetic nude mice. METHODS: NPI were microencapsulated with purified alginate, cultured for 2 days, then tested for sensitivity to fresh human serum using an established in vitro cytotoxicity assay or transplanted into alloxan-induced diabetic nude mice. RESULTS: Incubation of nonencapsulated NPI for 24 hr in the presence of fresh human serum resulted in a 53% loss of cellular insulin content, a 51% reduction in recoverable DNA content, and a marked reduction of insulin secretory responsiveness when compared with controls cultured in heat-inactivated human serum. In contrast, exposure of encapsulated islets to fresh human serum had no cytotoxic effect on the islets. Transplantation of 2000 encapsulated NPI i.p. into diabetic nude mice (n=16) corrected hyperglycemia in all mice within 8 weeks. Similar results were obtained when 2000 nonencapsulated NPI were implanted under the kidney capsule (n=10); however recipients of nonencapsulated NPI placed i.p. failed to obtain euglycemia and survived for only 3 weeks posttransplantation. CONCLUSION: Microencapsulation protects NPI from the cytotoxic effects of human antibody and complement and allows for long-term reversal of diabetes in nude mice.  相似文献   

7.
BACKGROUND: Pig islets xenotransplantation remains associated with a strong humoral and cellular xenogeneic immune responses. The aim of this study was to assess the long-term biocompatibility of alginate encapsulated pig islets after transplantation in primates. METHODS: Adult pig islets encapsulated in alginate under optimal conditions (n=7) or not (n=5) were transplanted under the kidney capsule of nondiabetic Cynomolgus maccacus. Additional primates received empty capsules (n=1) and nonencapsulated pig islets (n=2) as controls. Capsule integrity, cellular overgrowth, pig islet survival, porcine C-peptide and anti-pig IgM/IgG antibodies were examined up to 6 months after implantation. RESULTS: Nonencapsulated islets and islets encapsulated in nonoptimal capsules were rapidly destroyed. In seven primates receiving perfectly encapsulated pig islets, part of the islets survived up to 6 months after implantation without immunosuppression. Porcine C-peptide was detected after 1 month in 71% of the animals. The majority of grafts (86%) were intact and completely free of cellular overgrowth or capsule fibrosis. Explanted capsules, after 135 (n=2/2) and 180 (n=2/3) days, demonstrated residual insulin content and responses to glucose challenge (stimulation index of 2.2). Partial islet survival was obtained despite an elicited anti-pig IgG humoral response. CONCLUSIONS: Optimal alginate encapsulation significantly prolonged adult pig islet survival into primates for up to 6 months, even in the presence of antibody response.  相似文献   

8.
The ability to culture porcine islets for extended times allows for both their functional assessment and the assurance of their microbiological safety prior to transplantation. We have previously shown that agarose-encapsulated porcine islets can be cultured for at least 24 weeks. In the current study, porcine islet agarose macrobeads cultured for up to 67 weeks were assessed for their ability to restore normoglycemia, respond to an intraperitoneal glucose challenge, maintain spontaneously diabetic BB rats free of insulin therapy for more than 6 months, and for their biocompatibility. Porcine islets were encapsulated in agarose macrobeads and subjected to weekly static perifusion assays for the assessment of insulin production. After in vitro culture for either 9, 40, or 67 weeks, 56-60 macrobeads were transplanted to each spontaneously diabetic BB rat. Transplanted rats were monitored daily for blood glucose levels. Glucose tolerance tests and assessments for porcine C-peptide were conducted at various intervals throughout the study. Normoglycemia (100-200 mg/dl) was initially restored in all islet transplanted rats. Moderate hyperglycemia (200-400 mg/dl) developed at around 30 days posttransplantation and continued throughout the study period of 201-202 days. Importantly, all rats that received encapsulated porcine islets continued to gain weight and were free of exogenous insulin therapy for the entire study. Porcine C-peptide (0.2-0.9 ng/ml) was detected in the serum of islet recipients throughout the study period. No differences were detected between recipient animals receiving islet macrobeads of various ages. These results demonstrate that the encapsulation of porcine islets in agarose macrobeads allows for extended culture periods and is an appropriate strategy for functional and microbiological assessment prior to clinical use.  相似文献   

9.
BACKGROUND: Despite the success of the Edmonton protocol for human islet transplantation, an alternate source of islet tissue must be developed if beta-cell replacement therapy is to see widespread application. Neonatal porcine islets (NPI) represent one potential source of tissue. When human or rodent islets are transplanted, the majority of cells undergo hypoxia-induce apoptosis soon after the grafts are placed in the recipient. In the present study, we investigated whether NPI were similarly sensitive to hypoxia. METHODS: NPI were exposed to hypoxia and hypoxia/reoxygenation using an in vitro hypoxic chamber. Afterwards, viability, frequency of apoptosis, and beta-cell function were evaluated. NPI and adult porcine islets were transplanted into chemically diabetic, immunodeficient mice and graft apoptosis was assessed 24 hours and seven days posttransplant. RESULTS: NPI demonstrated a remarkable capacity to resist apoptosis and maintain insulin secretion despite severe stresses such as hypoxia/reoxygenation. One day after transplantation, NPI grafts showed limited apoptosis, confined to rare strongly insulin positive cells. In contrast, adult porcine islet grafts underwent widespread apoptosis. Western blotting revealed that NPI express high levels of at least one potent endogenous antiapoptotic protein (XIAP). CONCLUSIONS: The majority of cells within transplanted human islets undergo apoptosis soon after portal infusion. In contrast, NPI have the capacity to resist this early posttransplant apoptosis, with likely reduced antigen release and diminished immune stimulation. NPI appear to contain a population of insulin-low to insulin-negative pre-beta-cells, which are resistant to hypoxia-induced apoptosis and still capable of differentiating into mature beta-cells.  相似文献   

10.
Islet encapsulation offers an immune system barrier for islet transplantation, and encapsulation within an alginate sheetlike structure offers the ability to be retrievable after transplanted. This study aims to show that human islets encapsulated into islet sheets remain functional and viable after 8 weeks in culture or when transplanted into the subcutaneous space of rats. Human islets were isolated from cadaveric organs. Dissociation and purification were done using enzymatic digestion and a continuous Ficoll-UWD gradient. Purified human islets were encapsulated in alginate sheets. Human Islet sheets were either kept in culture, at 37°C and 5% CO2, or transplanted subcutaneously into Lewis rats. After 1, 2, 4, and 8 weeks, the human islet sheets were retrieved from the rats and assessed. The viability of the sheets was measured using fluorescein diacetate (FDA)/propidium iodide (PI), and function was measured through glucose-stimulated insulin release, in which the sheets were incubated for an hour in low-glucose concentration (2.8 mmol/L) and then high (28 mmol/L), then high (28 mmol/L) plus 3-isobutyl-1-methylxanthine (50 μm). Human islet sheets remained both viable, above 70%, and functional, with a stimulation index (insulin secretion in high glucose divided by insulin secretion in low glucose) above 1.5, over 8 weeks of culture or subcutaneous transplantation. Islet transplantation continues to make advances in the treatment of type 1 diabetes. These preliminary results suggest that encapsulated islets sheets can survive and maintain islet viability and function in vivo, within the subcutaneous region.  相似文献   

11.
《Cell transplantation》1996,5(5):517-524
A lack of a sufficient number of human donor pancreases has stimulated interest in isolation and cryopreservation techniques for islets from the porcine pancreas. But because of a poorly developed outer membrane porcine islets are particularly susceptible to damage during cryopreservation. The aims of this study were two-fold: 1) to develop a method for isolation and storage of islets from neonatal porcine pancreas and, 2) to examine effects of Sertoli cells on islet yield and function in Sertoli cell-islet cell cocultures. A total of 170 neonatal porcine pancreases were processed by means of a short period of digestion with collagenase and culture of the tissues at 32°C for periods up to 7 days following isolation. Results were: The mean ± SEM, number of viable islets, and percentage loss of cells following 7 days of culture were 29, 442 ± 1,119 and 22.2 ± 1.2, respectively. Cryopreservation had a marked impact on recovery of viable islets: In absence of Sertoli cells an average of only 64% of islets remained viable; by contrast, when cryopreserved islets were cocultured with Sertoli cells, a mean of 82% was recovered. Glucose at 16.7 mmol/L had the capacity to elicit insulin release from 3-day-old cultured islets. The concentration in absence of Sertoli cells was 57.3 ± 3.8, uU/mL/10 islets; in the presence of Sertoli cells the level increased to a mean ± SEM of 112.8 ± 17.7, uU/mL/10 islets. Similar results were obtained following cryopreservation: glucose at 16.7 mmol/L stimulated a mean ± SEM of 27.9 ± 6.6, uU/mL/10 islets, of insulin in absence of, and 44.9 ± 9.9, uU/mL/10 islets, in presence of, Sertoli cells. Our results show that isolation and cryopreservation of neonatal porcine islets can be successfully accomplished. In addition, coculture with Sertoli cells significantly improves both the yield and functional capacity of islets following cryopreservation.  相似文献   

12.

Background

Xenotransplantation with porcine islets is a promising approach to overcome the shortage of human donors. This is the first report of phase 1/2a xenotransplantation study of encapsulated neonatal porcine islets under the current framework of regulations for xenotransplantation in New Zealand.

Methods

Newborn piglets were anesthetized and bled, and the pancreata were removed with the use of sterile technique and processed. Encapsulated neonatal porcine islets were implanted with the use of laparoscopy into the peritoneal cavity of 14 patients with unstable type 1 diabetes without any immunosuppressive drugs. The patients received encapsulated islets of 5,000 (n = 4; group 1), 10,000 (n = 4; group 2), 15,000 (n = 4; group 3), or 20,000 (n = 2; group 4) islet equivalents per kg body weight. Outcome was determined from adverse event reports, HbA1c, total daily insulin dose, and frequency of unaware hypoglycemic events. To assess graft function, transplant estimated function (TEF) scores were calculated. Sufficient or marginal numbers of encapsulated neonatal porcine islets were transplanted into streptozotocin-induced diabetic B6 mice as an in vivo functional assay.

Results

There were 4 serious adverse events, of which 3 were considered to be possibly related to the procedure. Tests for porcine endogenous retrovirus DNA and RNA were all negative. The numbers of unaware hypoglycemia events were reduced after transplantation in all groups. Four of 14 patients attained HbA1c <7% compared with 1 at baseline. The average TEF scores were 0.17, 0.02, −0.01, and 0.08 in groups 1, 2, 3, and 4 respectively. The in vivo study demonstrated that a sufficient number of the transplanted group reversed diabetes with positive porcine C-peptide.

Conclusions

Transplantation of encapsulated neonatal porcine islets was safe and was followed by a reduction in unaware hypoglycemia events in unstable type 1 diabetic patients. The mouse in vivo assessment data demonstrated certain graft function.  相似文献   

13.
Transplant of hydrogel‐encapsulated allogeneic islets has been explored to reduce or eliminate the need for chronic systemic immunosuppression by creating a physical barrier that prevents direct antigen presentation. Although successful in rodents, translation of alginate microencapsulation to large animals and humans has been hindered by large capsule sizes (≥500 μm diameter) that result in suboptimal nutrient diffusion in the intraperitoneal space. We developed a microfluidic encapsulation system that generates synthetic poly(ethylene glycol)‐based microgels with smaller diameters (310 ± 14 μm) that improve encapsulated islet insulin responsiveness over alginate capsules and allow transplant within vascularized tissue spaces, thereby reducing islet mass requirements and graft volumes. By delivering poly(ethylene glycol)‐encapsulated islets to an isolated, retrievable, and highly vascularized site via a vasculogenic delivery vehicle, we demonstrate that a single pancreatic donor syngeneic islet mass exhibits improved long‐term function over conventional alginate capsules and close integration with transplant site vasculature. In vivo tracking of bioluminescent allogeneic encapsulated islets in an autoimmune type 1 diabetes murine model showed enhanced cell survival over unencapsulated islets in the absence of chronic systemic immunosuppression. This method demonstrates a translatable alternative to intraperitoneal encapsulated islet transplant.  相似文献   

14.
BACKGROUND: The aim of this study was to compare the functional maturation of neonatal porcine islet (NPI) grafts exposed to long-term hyperglycemia with those implanted under euglycemic conditions. METHODS: mice Neonatal porcine islets were transplanted under the left renal capsule of diabetic SCID mice (group H), or in diabetic SCID mice who were also implanted with 500 BALB/c islets under the right renal capsule (group N). On day 42, the right kidneys were removed in both groups. RESULTS: No animals in group H achieved euglycemia within 3 weeks after transplantation. Thus, these mice were exposed to long-term hyperglycemia. Mice in group N became euglycemic immediately after transplantation, however after removal of BALB/c grafts on day 42 they exhibited significantly higher blood glucose levels than in group H and showed glucose intolerance after glucose administration. Cellular insulin content of NPI grafts harvested on day 58 or 72 was significantly lower in group N mice compared to group H. CONCLUSIONS: These results suggest that tight control of glycemia reduces the functional maturation of NPI grafts.  相似文献   

15.
BACKGROUND: The long-term viability and function of transplanted encapsulated neonatal porcine islets was examined in a diabetic patient. METHODS AND RESULTS: A 41-yr-old Caucasian male with type 1 diabetes for 18 yr was given an intraperitoneal transplant of alginate-encapsulated porcine islets at the dose of 15,000 islet equivalents (IEQs)/kg bodyweight (total dose 1,305,000 IEQs) via laparoscopy. By 12 weeks following the transplant, his insulin dose was significantly reduced by 30% (P = 0.0001 by multiple regression tests) from 53 units daily prior to transplant. The insulin dose returned to the pre-transplant level at week 49. Improvement in glycaemic control continued as reflected by total glycated haemoglobin of 7.8% at 14 months from a pre-transplant level of 9.3%. Urinary porcine C-peptide peaked at 4 months (9.5 ng/ml) and remained detectable for 11 months (0.6 ng/ml). The patient was followed as part of a long-term microbiologic monitoring programme which subsequently showed no evidence of porcine viral or retroviral infection. At laparoscopy 9.5 yr after transplantation, abundant nodules were seen throughout the peritoneum. Biopsies of the nodules showed opacified capsules containing cell clusters that stained as live cells under fluorescence microscopy. Immunohistology noted sparse insulin and moderate glucagon staining cells. The retrieved capsules produced a small amount of insulin when placed in high glucose concentrations in vitro. An oral glucose tolerance test induced a small rise in serum of immuno-reactive insulin, identified as porcine by reversed phase high pressure liquid chromatography. CONCLUSION: This form of xenotransplantation treatment has the potential for sustained benefit in human type 1 diabetics.  相似文献   

16.
Most islet xenotransplantation laboratories have focused on porcine islets, which are both costly and difficult to isolate. Teleost (bony) fish, such as tilapia, possess macroscopically visible distinct islet organs called Brockmann bodies which can be inexpensively harvested. When transplanted into diabetic nude mice, tilapia islets maintain long‐term normoglycemia and provide human‐like glucose tolerance profiles. Like porcine islets, when transplanted into euthymic mice, they are rejected in a CD4 T‐cell‐dependent manner. However, unlike pigs, tilapia are so phylogenetically primitive that their cells do not express α(1,3)Gal and, because tilapia are highly evolved to live in warm stagnant waters nearly devoid of dissolved oxygen, their islet cells are exceedingly resistant to hypoxia, making them ideal for transplantation within encapsulation devices. Encapsulation, especially when combined with co‐stimulatory blockade, markedly prolongs tilapia islet xenograft survival in small animal recipients, and a collaborator has shown function in diabetic cynomolgus monkeys. In anticipation of preclinical xenotransplantation studies, we have extensively characterized tilapia islets (morphology, embryologic development, cell biology, peptides, etc.) and their regulation of glucose homeostasis. Because tilapia insulin differs structurally from human insulin by 17 amino acids, we have produced transgenic tilapia whose islets stably express physiological levels of humanized insulin and have now bred these to homozygosity. These transgenic fish can serve as a platform for further development into a cell therapy product for diabetes.  相似文献   

17.
The aim of this study was to investigate the results of 20 consecutive porcine islet isolations using a new enzyme Liberase PI. Twenty pancreata were procured for islet isolation, which was performed using modified Ricordi's method with Liberase PI. Quantitation of islet viability staining, insulin stimulation assay, intracellular insulin content/DNA, and in vivo transplantability into diabetic nude mice were examined for quality control. The results were compared between a high-yield group (>2500 IEQ/g pancreas) and a low-yield group (<2500 IEQ/g pancreas). Sufficient amount of purified islets (3000 IEQ/g pancreas) were obtained using the new brand enzyme Liberase PI. These islets showed good quality in structure and functions, which were demonstrated by in vitro and in vivo standard assays. Isolation index (IEQ/number) of the low-yield group was lower than that of high-yield group (0.75 vs 0.86), which means more fragmentation of islets in the low-yield group. There were no differences in function between the two groups. In conclusion, we obtained sufficient numbers of viable, functional islets from porcine pancreas using a new brand enzyme Liberase PI and low-temperature isolation technique. However, overdigestion of islets during the isolation remains to be overcome. Advance in porcine islet isolation technique will in the future make the porcine islet xenotransplantation a reality for the cure of diabetes mellitus.  相似文献   

18.
BACKGROUND: The immune mechanisms associated with the rejection of microencapsulated neonatal porcine islets (NPI) are not clearly understood. Therefore, in this study we characterized the immune cells and molecules that are involved in this process by examining the microencapsulated NPI xenografts at various time points post-transplantation in B6 mice. METHODS: Microencapsulated NPI were transplanted into streptozotocin-induced diabetic immune-competent B6 and immune-deficient B6 rag-/- mice and blood glucose levels were monitored twice a week. Encapsulated NPI were then recovered from B6 mice at various time points post-transplantation to characterize the islets and immune response using immunohistochemical and RT-PCR analyses. To determine which T-cell subpopulation is important for the rejection of encapsulated NPI, B6 rag-/- mice with established microencapsulated NPI xenografts were reconstituted with either CD4(+) or CD8(+) T cells and a return to the diabetic state was noted. For controls, adoptive transfer experiments involved reconstitution of B6 rag-/- mice with established microencapsulated NPI with non-fractionated lymph node cells or non-reconstituted mice. RESULTS: All B6 recipients of microencapsulated NPI remained diabetic throughout the study while B6 rag-/- recipients achieved normoglycemia and maintained normoglycemia for up to 100 days post-transplantation. Encapsulated NPI recovered from B6 mice at early time points (day 7 and day 14) post-transplantation were surrounded with very few layers of immune cells that increased with time post-transplantation. The extent of cellular overgrowth on the surface of encapsulated NPI has a significant correlation with islet cell death and the presence of CD4(+) T cells, B cells and macrophages. Mouse IgG antibody and complement as well as cytokines [gamma-interferon (IFN-gamma), interleukin10 (IL10)] and chemokines (monocyte chemotactic protein-1 and macrophage inflammatory protein-1alpha and beta) were detected within the microcapsules at several time points post-transplantation suggesting that these molecules can traverse the microcapsule. Mouse anti-porcine IgG antibodies in recipient sera were found to peak at 30 days post-transplantation indicating leakage of porcine xenoantigens. In contrast, microencapsulated NPI recovered from B6 rag-/- mice had no cellular overgrowth on the surface. Complement and cytokines (IL 10 but not IFN-gamma) including chemokines were detected within the microcapsules at several days post-transplantation. We also found that B6 rag-/- mice reconstituted with non-fractionated lymph node cells or CD4(+) T cells but not CD8(+) T cells became diabetic demonstrating that CD4(+) T cells are the necessary T-cell subtype for microencapsulated NPI rejection. In contrast, non-reconstituted B6 rag-/- mice remained normoglycemic for the entire duration of the study. CONCLUSIONS: Our results demonstrate that CD4(+) T cells, B cells and macrophages are the immune cells recruited to and involved in the rejection of encapsulated NPI. Immune molecules secreted by these cells as well as complement can traverse the microcapsule membrane and are responsible for destroying the NPI cells. Treatment regimens which target these molecules may modify the rejection of encapsulated NPI and lead to prolonged islet xenograft survival.  相似文献   

19.
Neonatal porcine cell clusters (NPCCs) might replace human for transplant in patients with type 1 diabetes mellitus (T1DM). However, these islets are not immediately functional, due to their incomplete maturation/ differentiation. We then have addressed: 1) to assess whether in vitro coculture of islets with homologous Sertoli cells (SC) would shorten NPCCs' functional time lag, by accelerating the beta-cell biological maturation/differentiation; 2) to evaluate metabolic outcome of the SC preincubated, and microencapsulated NPCCs, upon graft into spontaneously diabetic NOD mice. The islets, isolated from < 3 day piglets, were examined in terms of morphology/viability/function and final yield. SC effects on the islet maturation pathways, both in vitro and in vivo, upon microencapsulation in alginate/poly-L-ornithine, and intraperitoneal graft into spontaneously diabetic NOD mice were determined. Double fluorescence immunolabeling showed increase in beta-cell mass for SC+ neonatal porcine islets versus islets alone. In vitro insulin release in response to glucose, as well as mRNA insulin expression, were significantly higher for SC+ neonatal porcine islets compared with control, thereby confirming SC-induced increase in viable and functional beta-cell mass. Graft of microencapsulated SC+ neonatal porcine islets versus encapsulated islets alone resulted in significantly longer remission of hyperglycemia in NOD mice. We have preliminarily shown that the in vitro NPCCs' maturation time lag can dramatically be curtailed by coincubating these islets with SC. Graft of microencapsulated neonatal porcine islets, precultured in Sertoli cells, has been proven successful in correcting hyperglycemia in stringent animal model of spontaneous diabetes.  相似文献   

20.

Background

The amount and condition of exocrine impurities may affect the quality of islet preparations, especially during culture. In this study, the objective was to determine the oxygen demand and viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture.

Method

We compared the oxygen consumption rate (OCR) normalized to DNA (OCR/DNA, a measure of fractional viability in units of nmol/min/mg DNA), and the percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over 6–9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture.

Results

The mean (±SE) OCR/DNA was 74.0 ± 11.7 units higher for acinar (vs islet) tissue on the day of isolation (n = 16, P < .0001), but 25.7 ± 9.4 units lower after 1 day (n = 8, P = .03), 56.6 ± 11.5 units lower after 2 days (n = 12, P = .0004), and 65.9 ± 28.7 units lower after 8 days (n = 4, P = .2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6–9 days in culture (n = 6). DNA recovery decreased to 24 ± 7% for acinar and 75 ± 8% for islets (P = .002). Similarly, OCR recovery decreased to 16 ± 3% for acinar and remained virtually constant for islets (P = .005).

Conclusion

Differences in the metabolic profile of acinar and islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre–islet transplantation culture protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号