首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell signaling and cell-cell interactions play an important role in neuronal differentiation in the embryonic CNS. Previous work (Hausman, R.E., Vivek Sagar, G.D. and Shah, B.H., Dev. Brain Res., 59 (1991) 31-37) had shown that cholinergic differentiation in the embryonic chick retina depends on insulin and neuron-neuron interactions. Here, we pursued the molecular nature of that dependence on cell interactions. The embryonic chick retina is known to contain several cell adhesion or recognition molecules. We asked if retina cognin, a 50 kDa cell surface-associated protein, played a role in controlling cholinergic differentiation in the developing chick retina. As previously, cholinergic differentiation was measured by two markers: choline acetyltransferase (ChAT) activity and high-affinity choline uptake. We used polyclonal antibody to cognin to determine if blocking cognin-mediated cell interactions would affect the normal embryonic increases in these cholinergic markers. We demonstrated a 40% inhibition of the normal developmental appearance of ChAT activity in retina neuronal cultures from early development, but no effect in cultures from more differentiated retina. The inhibition was selective for retina, since it was not seen in neural tissues like cerebrum and cerebellum that also express ChAT. In contrast to the effect of insulin, choline uptake was not affected by treatment with cognin antibody. Antibodies to two other cell recognition molecules present in the retina (Ng-CAM and N-cadherin) did not block the normal developmental appearance of ChAT. These results suggest that cognin-mediated interactions play a unique role in the control of one aspect of cholinergic differentiation in the developing chick retina.  相似文献   

2.
Previous work [Kyriakis et al., Proc. Natl. Acad. Sci. U.S.A., 84 (1987) 7463-7467] had shown that insulin, when added during a window of binding from embryonic days 9-11, stimulates the normal developmental increase in choline acetyltransferase (ChAT) activity (a marker for cholinergic differentiation) in cultured embryonic chick retinal neurons. Here, we investigated the effect of insulin and IGF 1 on embryonic chick retinal neurons at the stage of development (embryonic day 6) when ChAT activity is first expressed. We investigated insulin peptide effects in retinal tissue developing in vitro as well as in cultures of retinal cells. We show that insulin also stimulated the initial embryonic increase in ChAT activity but had no stimulatory effect on glutamic acid decarboxylase activity (a marker for GABAergic differentiation), an enzyme whose activity also increases developmentally in the same retinal neurons. In fact, insulin inhibited the expression of GAD activity in the retina. The insulin-mediated increase in ChAT activity was independent of normal cell-cell interactions but could not replace them. Insulin also stimulated choline uptake but only after a two day delay, suggesting that the normal program for cholinergic differentiation in the chick retina was induced by insulin. IGF 1 did not have any effect on either cholinergic or GABAergic differentiation. We conclude that cholinergic differentiation in chick embryo retinal neurons is dependent on both insulin- and cell contact-mediated signals.  相似文献   

3.
We have previously reported the developmental profiles of glutamate decarboxylase (GAD) and choline acetyltransferase (ChAT) bio- and immunocytochemically, assessing GABAergic and cholinergic neuronal phenotypes respectively, in neuroblast-enriched cultures from 3-day-old chick embryo, plated on poly-L-lysine. We have also reported that collagen as culture substrate inhibits neuronal aggregation and neuritic fasciculation in this culture system. In this study we assessed the same parameters for cultures on collagen. In addition, we evaluated the effects of nerve growth factors (NGF) on cholinergic and GABAergic expression on neurons plated either on polylysine or collagen. We found that non-neuronal cells and NGF prolonged the survival of cholinergic and GABAergic neuronal populations and that both markedly stimulated GABAergic expression. In contrast, cholinergic expression was only enhanced by NGF. Immunostaining for GABA and ChAT reflected the biochemical findings. Glutamine synthetase and cyclic nucleotide phosphohydrolase, used as markers for astrocytes and oligodendrocytes respectively, showed very low activity in both substrata and were not related to GAD or ChAT peak activities. Our findings suggest that humoral factors and cell-cell contacts markedly influence neuronal phenotypic expression in culture. Moreover, it appears that during early neuronal differentiation GABAergic neurons are more responsive to microenvironmental regulation compared to cholinergic neurons.  相似文献   

4.
Levetiracetam ((S)-α-ethyl -2-oxo-pyrrolidine acetamide, ucb L059) is a novel anticonvulsant drug presently in clinical development. Its mechanism of action is unknown although a recently reported novel specific binding site for [3H]levetiracetam, unique to brain, may be involved. This binding site has not yet been characterized, but some evidence suggested a possibly indirect interaction with the GABA system. We therefore examined levetiracetam's effects on GABA metabolism and turnover in several rat brain regions after systemic administration of anticonvulsant doses. Furthermore, in order to study functional effects of levetiracetam on a well defined system of GABAergic neurons in a brain region that has been critically involved in anticonvulsant drug action, we examined levetiracetam's action on spontaneous firing of substantia nigra pars reticulata (SNR) neurons in anesthetized rats. Although levetiracetam did not alter the activity of the GABA synthesizing and degrading enzymes glutamic acid decarboxylase (GAD) and GABA aminotransferase (GABA-T) in vitro, systemic administration induced significant alterations in these enzymes in several brain regions, indicating that these enzyme alterations were no direct drug effects but a consequence of postsynaptic changes in either GABAergic or other neurotransmitter-related systems. In the striatum, levetiracetam, 170 mg/kg i.p., induced a significant increase in GABA-T activity while GAD activity markedly decreased. When GABA turnover was estimated after inhibition of GABA-T by aminooxyacetic acid (AOAA), treatment with levetiracetam (given 15 min prior to injection of AOAA) significantly reduced GABA turnover in the striatum. Since the substantia nigra pars reticulata (SNR) receives a strong GABAergic input from the striatum, we examined if the alterations in GABA metabolism and turnover in the striatum led to functional alterations in neuronal activity in the SNR by recording single unit activity of SNR neurons after i.p. injection of levetiracetam. While injection of vehicle did not affect SNR neuronal activity, a significant decrease in spontaneous neuronal firing was recorded after levetiracetam. Since a substantial body of evidence suggests that the SNR is a critical site at which decrease of neuronal firing results in protection against various seizure types, the suppressive effect of levetiracetam on SNR activity may contribute to the anticonvulsant action of this drug.  相似文献   

5.
To evaluate the effects on the GABAergic system, Wistar rats were raised on a chronically protein- and tryptophan-restricted diet with 8% protein, based on either Purina chow or corn. There was a significant decrease in both body and cerebral weight in the restricted animals compared with the control group fed with a 23% protein diet. In animals fed mainly corn, glutamic acid decarboxylase (GAD) activity increased significantly at the ages studied (14, 30, and 60 days) in the cerebral cortex and hippocampus. In the same way, gamma-aminobutyric acid (GABA) release decreased significantly in early life in both brain regions, then increased in 30-60-day-old animals corn-fed predominantly in the cerebral cortex. The reduction in GABA release may be attributable to a decrease in GABAergic cell density, which could induce an over-activation of 5-hydroxytryptamine (5-HTergic) receptors, leading in turn to the observed enhancement of GAD activity. Taken together, these results may represent a plastic response by GABAergic neurons to (5-HTergic under-stimulation in mainly corn-fed animals.  相似文献   

6.
The purpose of this study was to investigate the effect of γ-aminobutyric acid (GABA) on the function of synapses formed by cholinergic neurons derived from the chick retina. We used an experimental culture system in which striated muscle cells served as postsynaptic targets for cholinergic neurons of the retina. This cell culture system permitted the physiological monitoring of acetylcholine release at synapses formed by retinal neurons. By plating a low of density dissociated retinal cells with myotubes, it was possible to study relatively isolated, presynaptic cholinergic neurons. We found that GABA and agonists, muscimol and isoguvacine, inhibited spontaneous transmission at retina-muscle synapses. These inhibitory effects were reversibly blocked by bicuculline, a GABA receptor antagonist. The benzodiazepine, flurazepam, potentiated GABA-mediated inhibition. Overall, our findings suggest a direct inhibitory action of GABA on the cholinergic retinal neurons studied in our cell culture system.  相似文献   

7.
The immunocytochemical distribution of gamma-aminobutyric acid (GABA), GABA synthesizing enzyme; L-glutamate decarboxylase (GAD) and degradative enzyme; GABA transaminase (GABA-T) in the chicken vestibular endorgans and the vestibular ganglion was investigated. GABA and GAD-like immunoreactivity were confined to the sensory hair cell cytoplasm, suggesting that GAD synthesizes GABA in the hair cell. GABA-T-like immunoreactivity, indicative of GABA degradation, was found around hair cells, along nerve fibers running through the stroma and within the ganglion cell. These immunocytochemical findings indicate that the GABAergic system exists in the chicken vestibular endorgans and that GABA may function as an afferent neurotransmitter at the level of hair cells.  相似文献   

8.
The nucleus basalis of adult rats was injected with β(1–40) amyloid peptide. A marked increase in basal and K+-evoked GABA release in the ipsilateral cortex and a significant decrease in GAD activity in the injected NB were found 30 days after injection. An intense activation of microglial cells that surrounded and infiltrated the deposit was observed. These data demonstrate that a local injection of β(1–40) peptide into the NB induces glia activation and affects GABAergic neurons.  相似文献   

9.
K. Akagawa  C.J. Barnstable   《Brain research》1987,408(1-2):154-162
Monolayer and reaggregate cultures have been established from neonatal rat retina. After 7 days in culture, 60 nM [3H]gamma-aminobutyric acid (GABA) was used to identify cells with a high affinity uptake mechanism for GABA. Approximately 80% of the process-bearing cells were found to be labelled. These cells were identified as amacrine cells by double-labelling experiments combining [3H]GABA uptake with immunocytochemical labelling with monoclonal antibody HPC-1 which in retina is specific for amacrine cells. The ability of cultures to synthesize GABA from glutamate was investigated at various times. Little synthesis was observed during the first few days in culture. This lag was followed by an increase in the amount of synthesis until 3 weeks of culture. When clumps and reaggregate cultures of retinal cells were examined by [3H]GABA uptake, a time-dependent redistribution of labelled cells was observed. After 20 h in culture, GABA-positive cells were distributed over the whole cell mass. Over the next few days, the labelled cells became more common on the outer edge of the aggregates and less common in inner regions. By 7 days of culture, no labelled cell bodies were found on the inside of the aggregates, although such cells could be labelled by [3H]D-aspartate. The results provide positive identification of a subclass of retinal cells in culture, and show that at least one aspect of retinal histogenesis is not dependent upon extra-retinal tissues or the position imposed by the temporal order of retinal cell birth.  相似文献   

10.
In the present study, using neuroblast-enriched cultures derived from three-day-old chick embryos (E3WE), we examined the morphological effects of ethanol and/or GABA, as well as the developmental profile of the cholinergic and GABAergic neuronal phenotypes, as assessed by the activities of choline acetyltransferase (ChAT) and glutamate decarboxylase (GAD). Cultures exposed to ethanol (50 mM) exhibited smaller and fewer aggregates than controls with a neuritic network that lacked fasciculation. In cultures treated with GABA (105 M) alone or ethanol + GABA the size and number of the neuronal aggregates was increased and also neuritic arborization and fasciculation was enhanced. Thus, addition of GABA restored the normal growth pattern in the ethanol-treated cultures. As previously shown, E3WE culture treated with ethanol alone showed a decrease in both ChAT and GAD activities compared to controls. Both cholinergic and GABAergic neuronal phenotypes were enhanced in cultures treated with GABA as assessed by increases in ChAT and GAD activities, respectively, compared to controls. Moreover, in cultures treated concomitantly with ethanol and GABA both ChAT and GAD activities were higher than in ethanol-alone-treated cultures. Thus, the presence of GABA in the ethanol-treated cultures counteracted the decline in ChAT and GAD activities observed in the ethanol-alone-treated cultures. We concluded that GABA through its neuronotrophic actions can rescue neuroblasts from ethanol insult and restore neuronal phenotypes.  相似文献   

11.
Turtle retinas were processed immunocytochemically and histochemically to detect the presence of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and glutamate decarboxylase (GAD). We observed cholinergic and gamma-aminobutyric acid (GABA)ergic neurons in the proximal retina, as expected, and in the distal retina as well. ChAT immunoreactivity in the distal retina was observed within the axons and pedicles of numerous cone photoreceptors, suggesting that a population of turtle cone photoreceptors uses ACh as a neurotransmitter. Type L2 horizontal cells were immunoreactive for GAD, and their dendrites invaginated into cone pedicles. AChE histochemistry revealed processes within the outer plexiform layer which formed a loosely organized lattice. In the proximal retina, labeling for ChAT and GAD was similar to that reported by previous investigators. Processes from ChAT-labeled amacrine cells in the inner nuclear layer formed a stratum within the distal inner plexiform layer (IPL) (at 16-21% relative IPL depth), and processes from ChAT-labeled amacrines in the ganglion cell layer formed a proximal ChAT stratum (at 55-58% relative IPL depth). In addition, six AChE-labeled bands and five GAD-labeled bands were observed within the IPL of stained retinas. Therefore, we determined that the two broadest AChE-labeled bands and the two broadest GAD-labeled bands overlapped the two labeled ChAT strata. The evidence for cholinergic and GABAergic processes in both the inner plexiform layer and the outer plexiform layer, combined with electrophysiological evidence from other investigators, raises the possibility that distal retinal neurons may be involved in the encoding of directional information.  相似文献   

12.
In the present study, we have investigated the developmental expression of the transmitter-synthesizing enzymes choline acetyltransferase (ChAT) and glutamate decarboxylase (GAD) in rat medial septal neurons by using in situ hybridization histochemistry. In addition, we have employed immunostaining for ChAT and the calcium-binding protein parvalbumin, known to be contained in septohippocampal GABAergic neurons. A large number of GAD67 mRNA-expressing neurons were already observed in the septal complex on embryonic day (E) 17, the earliest time point studied. During later developmental stages, there was mainly an increase in the intensity of labeling. Neurons expressing ChAT mRNA were first recognized at E 20, and their number slowly increased during postnatal development of the septal region. The adult pattern of ChAT mRNA-expressing neurons was observed around postnatal day (P) 16. By using a monoclonal ChAT antibody, the first immunoreactive cells were not seen before P 8. Similarly, the first weakly parvalbumin-immunoreactive neurons were seen in the septal complex by the end of the 1st postnatal week. These results indicate that in situ hybridization histochemistry may be an adequate method to monitor the different development of transmitter biosynthesis in cholinergic and GABAergic septal neurons. Moreover, the late onset of ChAT mRNA expression would be compatible with a role of target-derived factors for the differentiation of the cholinergic phenotype. © 1996 John Wiley-Liss, Inc.  相似文献   

13.
In the ganglion cell layer of the rabbit retina, the inhibitory transmitter γ-aminobutyric acid (GABA) and its analogues are accumulated by neurons that appear to match in size and number the population of displaced amacrine cells that synthesize the excitatory transmitter acetylcholine. In this double-label study, we have established directly that the cholinergic amacrine cells, selectively stained with diamidino-phenylindole, are strongly immunoreactive with GABA antisera. The coexistence of two classical transmitters, one excitatory and the other inhibitory, in this defined neuronal population, suggests that stimulation of the cholinergic amacrines may give rise to complex responses in their target neurons.  相似文献   

14.
Antibodies to glutamic acid decarboxylase (GAD), the major pathway for the synthesis of γ‐aminobutyric acid (GABA) in humans, are found at elevated levels in a subgroup of patients with chronic epilepsy. To test whether the antibodies were associated with changes in cortical GABA levels we used magnetic resonance spectroscopy. Four patients with epilepsy and high serum GAD antibody levels (107–6,200 units/ml) and 10 healthy controls were recruited. A 3T GABA‐optimized spectrum was obtained from a reproducible voxel in the cortex. Compared to the control group, the patient group had significantly lower GABA concentrations within the cortex. Demonstration of an association between high serum GAD antibodies and low cortical GABA levels in patients with epilepsy suggests that GAD antibodies are, at least, a marker of a specific disease process and support a role for immune‐mediated GABAergic dysfunction.  相似文献   

15.
The substantia nigra receives a strong GABAergic input from the ipsilateral striatum and globus pallidus. Nigral GABAergic synaptic interactions have been described in the pars compacta (SNC) and pars reticulata (SNR) but not in the pars lateralis (SNL). The SNR and particularly the SNL are the nodal points of the GABAergic nigrotectal pathway. The present study analyzes the synaptic connections of GABAergic and dopaminergic neurons in each of the divisions of the substantia nigra by employing a double-labeling immunocytochemical technique at the light and electron microscope levels. Glutamic acid decar☐ylase (GAD)-containing terminals make symmetrical synaptic contacts with dopaminergic neurons in the SNC and SNR. Neurons that contain GAD also receive a GABAergic input in the SNR and SNL. The proportion of GAD-GAD contacts appears to be highest in the SNL where virtually all GAD-positive terminals are found to be in synaptic contact with or apposed to GAD positive profiles. This study demonstrates a strong GABAergic input onto nigral dopaminergic neurons and GABAergic neurons in the SNR and SNL. This GABAergic influence which is ontensibly striatal or pallidal in origin is particularly prominent in relation to the SNL-mediated nigro-collicular pathway.  相似文献   

16.
Antibodies directed against gamma-aminobutyric acid (GABA) and L-glutamic acid decarboxylases 65 and 67 kDa (GAD65 and -67) were used to study the GABAergic cell populations of the chameleon retina. GABA immunoreactivity was found in the two main types of retinal interneurons, amacrine and horizontal cells. Amacrine, displaced amacrine, and intra- and interplexiform cells displayed the strongest GABA immunoreactivity of all the retinal cell types. Horizontal cells formed a continuous GABA-immunoreactive cell layer lying against the outermost portion of the inner nuclear layer. In contrast to previous studies (Quesada et al. [1996] Cell Biol. Int. 20:395-400; [1999] Eur. J. Anat. 3:13-25), the present results demonstrate that the horizontal cells of the chameleon retina are GABA immunoreactive and that a subpopulation of these is immunolabelled by an antibody against GAD65. These results indicate that GABAergic synaptic transmission plays a key role in the outer plexiform layer of the vertebrate retina.  相似文献   

17.
The laterodorsal and pedunculopontine tegmental nuclei (LDT-PPT) are involved in the generation of active sleep (AS; also called REM or rapid eye movement sleep). Although the LDT-PPT are composed principally of cholinergic neurons that participate in the control of sleep and waking states, the function of the large number of GABAergic neurons that are also located in the LDT-PPT is unknown. Consequently, we sought to determine if these neurons are activated (as indicated by their c-fos expression) during active sleep induced by the microinjection of carbachol into the rostro-dorsal pons (AS-carbachol). Accordingly, immunocytochemical double-labeling techniques were used to identify GABA and Fos protein, as well as choline acetyltransferase (ChAT), in histological sections of the LDT-PPT. Compared to control awake cats, there was a larger number of GABAergic neurons that expressed c-fos during AS-carbachol (31.5±6.1 vs. 112±15.2, P<0.005). This increase in the number of GABA+Fos+ neurons occurred on the ipsilateral side relative to the injection site; there was a small decrease in GABA+Fos+ cells in the contralateral LDT-PPT. However, the LDT-PPT neurons that exhibited the largest increase in c-fos expression during AS-carbachol were neither GABA+ nor ChAT+ (47±22.5 vs. 228.7±14.0, P<0.0005). The number of cholinergic neurons that expressed c-fos during AS-carbachol was not significantly different compared to wakefulness. These data demonstrate that, during AS-carbachol, GABAergic as well as an unidentified population of neurons are activated in the LDT-PPT. We propose that these non-cholinergic LDT-PPT neurons may participate in the regulation of active sleep.  相似文献   

18.
Dissociated cells from week-old mouse cerebellum were grown on either polylysine coated coverslips or on uncoated coverslips. Polylysine coated coverslips give rise to cultures containing all of the cerebellar cell types except Purkinje cells. Use of uncoated coverslips gives rise to cultures which are depleted of granule cells because the granule cells are unable to adhere to glass without a substrate present. The uncoated coverslip cultures are therefore enriched in glial and other non-neuronal cells. Effects of triiodothyronine on each type of culture were then examined as a function of time.On coated coverslips hormone treatment caused a noticeable increase in cell clumping at 1 week, and seemed responsible for a leveling off of the decline in total high-affinity uptake of γ-aminobutyric acid, as well as for a small increase in β-alanine inhibited uptake between 2 and 3 weeks. There was no effect on the overall uptake of thymidine. On uncoated coverslips triiodothyronine treatment significantly increased the thymidine uptake at days 2 and 3, and increased the proportion of Bergmann-like to velate astrocytes at 1 week. There were, however, no significant differences in GABA uptake at any of the time points examined.We conclude that in cerebellar cultures lacking Purkinje cells, triiodothyronine affects both the rate of acquisition and the timecourse of morphological changes (possibly reflecting transformation to more differentiated states) of glial cells but not of neurons. These results are consistent with the hypothesis that, in vivo, thyroxine acts indirectly via Purkinje cells to give developmental signals to neuroblasts and/ or neurons.  相似文献   

19.
20.
Fos immunohistochemistry was used to characterize neurons in the chick retina activated by optokinetic and stationary stimuli. Higher percentages of co-localization of Fos and the α5 subunit of the nicotinic acetylcholine receptor, and Fos and GABA were observed in retinal neurons after optokinetic compared to the stationary stimulation. These results indicate an involvement of the cholinergic and GABAergic circuitries in the motion detection by chick retinal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号