首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antigen-specific B cells express major histocompatibility complex class II and can present antigen directly to T cells. Adoptive transfer experiments using transgenic B and T cells demonstrated that antigen-specific B cells can also efficiently transfer antigen to another cell for presentation to T cells in vivo. To identify the antigen-presenting cell that receives antigens from B cells, a strategy was developed to follow the traffic of B cell-derived proteins in vivo. B cells were labeled with the fluorescent dye CFSE and loaded with antigen, before adoptive transfer into recipient mice. Populations of splenocytes from the recipient mice were later assayed for the presence of fluorescent proteins and for the ability to activate T cells. A small number of CD8alpha+CD4-CD11b(lo) dendritic cells (DCs) contain proteins transferred from B cells and these DCs effectively present antigens derived from the B cells to T cells. The results suggest that CD8alpha+ DCs sample the cells and membranes in their environment for presentation to T cells circulating through the T cell zone. This function of CD8alpha+ DCs may be relevant to the priming of an immune response or the induction of T cell tolerance.  相似文献   

2.
Induction of cytotoxic T lymphocyte (CTL) responses against minor histocompatibility antigens is dependent upon the presence of T cell help and requires the interaction of CD40 on dendritic cells (DCs) with CD40 ligand on activated T helper cells (Th). This study demonstrates that CD40 is neither involved in Th-dependent nor Th-independent antiviral CTL responses. Moreover, the data show that DC maturation occurs in vivo after viral infection in the absence of CD40 and Th. This maturation did not require viral infection of DCs but was mediated by peptide-specific CD8(+) T cells. Surprisingly, naive CD8(+) T cells were able to trigger DC maturation within 24 h after activation in vivo and in vitro. Moreover, peptide-activated CD8(+) T cells were able to induce maturation in trans, as DCs that failed to present the relevant antigen in vivo also underwent maturation. Upon isolation, the in vivo-stimulated DCs were able to convert a classically Th-dependent CTL response (anti-HY) into a Th-independent response in vitro. Thus, antiviral CD8(+) T cells are sufficient for the maturation of DCs in the absence of CD40.  相似文献   

3.
Dendritic cells (DCs) are able in tissue culture to phagocytose and present antigens derived from infected, malignant, and allogeneic cells. Here we show directly that DCs in situ take up these types of cells after fluorescent labeling with carboxyfluorescein succinimidyl ester (CFSE) and injection into mice. The injected cells include syngeneic splenocytes and tumor cell lines, induced to undergo apoptosis ex vivo by exposure to osmotic shock, and allogeneic B cells killed by NK cells in situ. The CFSE-labeled cells in each case are actively endocytosed by DCs in vivo, but only the CD8+ subset. After uptake, all of the phagocytic CD8+ DCs can form major histocompatibility complex class II-peptide complexes, as detected with a monoclonal antibody specific for these complexes. The CD8+ DCs also selectively present cell-associated antigens to both CD4+ and CD8+ T cells. Similar events take place with cultured DCs; CD8+ DCs again selectively take up and present dying cells. In contrast, both CD8+ and CD8- DCs phagocytose latex particles in culture, and both DC subsets present soluble ovalbumin captured in vivo. Therefore CD8+ DCs are specialized to capture dying cells, and this helps to explain their selective ability to cross present cellular antigens to both CD4+ and CD8+ T cells.  相似文献   

4.
To understand the relationship between host antigen-presenting cells (APCs) and donor T cells in initiating graft-versus-host disease (GVHD), we followed the fate of host dendritic cells (DCs) in irradiated C57BL/6 (B6) recipient mice and the interaction of these cells with minor histocompatibility antigen- (miHA-) mismatched CD8+ T cells from C3H.SW donors. Host CD11c+ DCs were rapidly activated and aggregated in the T cell areas of the spleen within 6 hours of lethal irradiation. By 5 days after irradiation, <1% of host DCs were detectable, but the activated donor CD8+ T cells had already undergone as many as seven divisions. Thus, proliferation of donor CD8+ T cells preceded the disappearance of host DCs. When C3H.SW donor CD8+ T cells were primed in vivo in irradiated B6 mice or ex vivo by host CD11c+ DCs for 24-36 hours, they were able to proliferate and differentiate into IFN-gamma-producing cells in beta(2)-microglobulin-deficient (beta(2)m(-/-)) B6 recipients and to mediate acute GVHD in beta(2)m(-/-) --> B6 chimeric mice. These results indicate that, although host DCs disappear rapidly after allogeneic bone marrow transplantation, they prime donor T cells before their disappearance and play a critical role in triggering donor CD8+ T cell-mediated GVHD.  相似文献   

5.
Control of the intracellular protozoan, Leishmania major, requires major histocompatibility complex class II (MHC II)-dependent antigen presentation and CD4+ T cell T helper cell 1 (Th1) differentiation. MHC II-positive macrophages are a primary target of infection and a crucial effector cell controlling parasite growth, yet their function as antigen-presenting cells remains controversial. Similarly, infected Langerhans cells (LCs) can prime interferon (IFN)gamma-producing Th1 CD4+ T cells, but whether they are required for Th1 responses is unknown. We explored the antigen-presenting cell requirement during primary L. major infection using a mouse model in which MHC II, I-Abeta(b), expression is restricted to CD11b+ and CD8alpha+ dendritic cells (DCs). Importantly, B cells, macrophages, and LCs are all MHC II-negative in these mice. We demonstrate that antigen presentation by these DC subsets is sufficient to control a subcutaneous L. major infection. CD4+ T cells undergo complete Th1 differentiation with parasite-specific secretion of IFNgamma. Macrophages produce inducible nitric oxide synthase, accumulate at infected sites, and control parasite numbers in the absence of MHC II expression. Therefore, CD11b+ and CD8alpha+ DCs are not only key initiators of the primary response but also provide all the necessary cognate interactions for CD4+ T cell Th1 effectors to control this protozoan infection.  相似文献   

6.
Cancer vaccines aim at inducing (a) tumor-specific effector T cells able to reduce/eliminate the tumor mass, and (b) long-lasting tumor-specific memory T cells able to control tumor relapse. We have shown earlier, in 18 human histocompatibility leukocyte antigen (HLA)-A*0201 patients with metastatic melanoma, that vaccination with peptide-loaded CD34-dendritic cells (DCs) leads to expansion of melanoma-specific interferon gamma-producing CD8+ T cells in the blood. Here, we show in 9 out of 12 analyzed patients the expansion of cytolytic CD8+ T cell precursors specific for melanoma differentiation antigens. These precursors yield, upon single restimulation with melanoma peptide-pulsed DCs, cytotoxic T lymphocytes (CTLs) able to kill melanoma cells. Melanoma-specific CTLs can be grown in vitro and can be detected in three assays: (a) melanoma tetramer binding, (b) killing of melanoma peptide-pulsed T2 cells, and (c) killing of HLA-A*0201 melanoma cells. The cytolytic activity of expanded CTLs correlates with the frequency of melanoma tetramer binding CD8+ T cells. Thus, CD34-DC vaccines can expand melanoma-specific CTL precursors that can kill melanoma antigen-expressing targets. These results justify the design of larger follow-up studies to assess the immunological and clinical response to peptide-pulsed CD34-DC vaccines.  相似文献   

7.
Bone marrow-derived antigen-presenting cells (APCs) take up cell-associated antigens and present them in the context of major histocompatibility complex (MHC) class I molecules to CD8(+) T cells in a process referred to as cross-priming. Cross-priming is essential for the induction of CD8(+) T cell responses directed towards antigens not expressed in professional APCs. Although in vitro experiments have shown that dendritic cells (DCs) and macrophages are capable of presenting exogenous antigens in association with MHC class I, the cross-presenting cell in vivo has not been identified. We have isolated splenic DCs after in vivo priming with ovalbumin-loaded beta2-microglobulin-deficient splenocytes and show that they indeed present cell-associated antigens in the context of MHC class I molecules. This process is transporter associated with antigen presentation (TAP) dependent, suggesting an endosome to cytosol transport. To determine whether a specific subset of splenic DCs is involved in this cross-presentation, we negatively and positively selected for CD8(-) and CD8(+) DCs. Only the CD8(+), and not the CD8(-), DC subset demonstrates cross-priming ability. FACS((R)) studies after injection of splenocytes loaded with fluorescent beads showed that 1 and 0.6% of the CD8(+) and the CD8(-) DC subsets, respectively, had one or more associated beads. These results indicate that CD8(+) DCs play an important role in the generation of cytotoxic T lymphocyte responses specific for cell-associated antigens.  相似文献   

8.
Murine splenic dendritic cells (DCs) can be divided into two subsets based on CD8alpha expression, but the specific role of each subset in stimulation of T cells is largely unknown. An important function of DCs is the ability to take up exogenous antigens and cross-present them in the context of major histocompatibility complex (MHC) class I molecules to CD8(+) T cells. We previously demonstrated that, when cell-associated ovalbumin (OVA) is injected into mice, only the CD8(+) DC subset cross-presents OVA in the context of MHC class I. In contrast to this selectivity with cell-associated antigen, we show here that both DC subsets isolated from mice injected with OVA/anti-OVA immune complexes (OVA-IC) cross-present OVA to CD8(+) T cells. The use of immunoglobulin G Fc receptor (Fc(gamma)R) common gamma-chain-deficient mice revealed that the cross-presentation by CD8(-) DCs depended on the expression of gamma-chain-containing activating FcgammaRs, whereas cross-presentation by CD8(+) DCs was not reduced in gamma-chain-deficient mice. These results suggest that although CD8(+) DCs constitutively cross-present exogenous antigens in the context of MHC class I molecules, CD8(-) DCs only do so after activation, such as via ligation of Fc(gamma)Rs. Cross-presentation of immune complexes may play an important role in autoimmune diseases and the therapeutic effect of antitumor antibodies.  相似文献   

9.
An important pathway for immune tolerance is provided by thymic-derived CD25+ CD4+ T cells that suppress other CD25- autoimmune disease-inducing T cells. The antigen-presenting cell (APC) requirements for the control of CD25+ CD4+ suppressor T cells remain to be identified, hampering their study in experimental and clinical situations. CD25+ CD4+ T cells are classically anergic, unable to proliferate in response to mitogenic antibodies to the T cell receptor complex. We now find that CD25+ CD4+ T cells can proliferate in the absence of added cytokines in culture and in vivo when stimulated by antigen-loaded dendritic cells (DCs), especially mature DCs. With high doses of DCs in culture, CD25+ CD4+ and CD25- CD4+ populations initially proliferate to a comparable extent. With current methods, one third of the antigen-reactive T cell receptor transgenic T cells enter into cycle for an average of three divisions in 3 d. The expansion of CD25+ CD4+ T cells stops by day 5, in the absence or presence of exogenous interleukin (IL)-2, whereas CD25- CD4+ T cells continue to grow. CD25+ CD4+ T cell growth requires DC-T cell contact and is partially dependent upon the production of small amounts of IL-2 by the T cells and B7 costimulation by the DCs. After antigen-specific expansion, the CD25+ CD4+ T cells retain their known surface features and actively suppress CD25- CD4+ T cell proliferation to splenic APCs. DCs also can expand CD25+ CD4+ T cells in the absence of specific antigen but in the presence of exogenous IL-2. In vivo, both steady state and mature antigen-processing DCs induce proliferation of adoptively transferred CD25+ CD4+ T cells. The capacity to expand CD25+ CD4+ T cells provides DCs with an additional mechanism to regulate autoimmunity and other immune responses.  相似文献   

10.
The presentation of exogenous protein antigens in a major histocompatibility complex class I-restricted fashion to CD8+ T cells is called cross-presentation. We demonstrate that cross-presentation of soluble viral antigens (derived from hepatitis C virus [HCV], hepatitis B virus [HBV], or human immunodeficiency virus) to specific CD8+ T cell clones is dramatically improved when antigen-presenting dendritic cells (DCs) are pulsed with the antigen in the presence of chloroquine or ammonium chloride, which reduce acidification of the endocytic system. The export of soluble antigen into the cytosol is considerably higher in chloroquine-treated than in untreated DCs, as detected by confocal microscopy of cultured cells and Western blot analysis comparing endocytic and cytosolic fractions. To pursue our findings in an in vivo setting, we boosted groups of HBV vaccine responder individuals with a further dose of hepatitis B envelope protein vaccine with or without a single dose of chloroquine. Although all individuals showed a boost in antibody titers to HBV, six of nine individuals who were administered chloroquine showed a substantial CD8+ T cell response to HBV antigen, whereas zero of eight without chloroquine lacked a CD8 response. Our results suggest that chloroquine treatment improves CD8 immunity during vaccination.  相似文献   

11.
Apoptotic cells must be rapidly cleared, as defects in this process can lead to autoimmunity. Milk fat globule EGF factor 8 (MFG-E8) binds to apoptotic cells and facilitates their removal through interaction with phagocytes. Mice deficient in MFG-E8 develop lupus-like autoimmunity associated with accumulation of apoptotic cells in vivo. Here, we have shown that MFG-E8 controls phagocytic ingestion of cell fragments as well as their intracellular processing into MHC-antigen complexes. Older Mfge8-/- mice spontaneously developed dermatitis associated with CD8+ T cell infiltration and striking activation of effector memory CD8+ T cells. CD8+ T cell responses to both exogenous and endogenous apoptotic cell-associated antigens were enhanced in Mfge8-/- mice. MFG-E8 deficiency accelerated the onset of disease in a mouse model of autoimmune diabetes. Enhanced CD8+ T cell responses were attributed to increased cross-presentation by DCs along with increased detection of antigen-MHCI complexes. Intracellular trafficking analysis revealed that intact apoptotic cells ingested by wild-type DCs rapidly fused with lysosomes, whereas smaller fragments persisted in Mfge8-/- DC endosomal compartments for 24 hours. These observations suggest that MFG-E8 deficiency promotes immune responses to self antigens not only by delaying the clearance of dying cells but also by altering intracellular processing, leading to enhanced self-antigen presentation.  相似文献   

12.
Dendritic cells (DCs) activated by CD40L-expressing CD4+ T cells act as mediators of "T helper (Th)" signals for CD8+ T lymphocytes, inducing their cytotoxic function and supporting their long-term activity. Here, we show that the optimal activation of DCs, their ability to produce high levels of bioactive interleukin (IL)-12p70 and to induce Th1-type CD4+ T cells, is supported by the complementary DC-activating signals from both CD4+ and CD8+ T cells. Cord blood- or peripheral blood-isolated naive CD8+ T cells do not express CD40L, but, in contrast to naive CD4+ T cells, they are efficient producers of IFN-gamma at the earliest stages of the interaction with DCs. Naive CD8+ T cells cooperate with CD40L-expressing naive CD4+ T cells in the induction of IL-12p70 in DCs, promoting the development of primary Th1-type CD4+ T cell responses. Moreover, the recognition of major histocompatibility complex class I-presented epitopes by antigen-specific CD8+ T cells results in the TNF-alpha- and IFN-gamma-dependent increase in the activation level of DCs and in the induction of type-1 polarized mature DCs capable of producing high levels of IL-12p70 upon a subsequent CD40 ligation. The ability of class I-restricted CD8+ T cells to coactivate and polarize DCs may support the induction of Th1-type responses against class I-presented epitopes of intracellular pathogens and contact allergens, and may have therapeutical implications in cancer and chronic infections.  相似文献   

13.
Although dendritic cells (DCs) play an important role in mediating protection against influenza virus, the precise role of lung DC subsets, such as CD11b- and CD11b+ conventional DCs or plasmacytoid DCs (pDCs), in different lung compartments is currently unknown. Early after intranasal infection, tracheal CD11b-CD11chi DCs migrated to the mediastinal lymph nodes (MLNs), acquiring co-stimulatory molecules in the process. This emigration from the lung was followed by an accumulation of CD11b+CD11chi DCs in the trachea and lung interstitium. In the MLNs, the CD11b+ DCs contained abundant viral nucleoprotein (NP), but these cells failed to present antigen to CD4 or CD8 T cells, whereas resident CD11b-CD8+ DCs presented to CD8 cells, and migratory CD11b-CD8- DCs presented to CD4 and CD8 T cells. When lung CD11chi DCs and macrophages or langerin+CD11b-CD11chi DCs were depleted using either CD11c-diphtheria toxin receptor (DTR) or langerin-DTR mice, the development of virus-specific CD8+ T cells was severely delayed, which correlated with increased clinical severity and a delayed viral clearance. 120G8+ CD11cint pDCs also accumulated in the lung and LNs carrying viral NP, but in their absence, there was no effect on viral clearance or clinical severity. Rather, in pDC-depleted mice, there was a reduction in antiviral antibody production after lung clearance of the virus. This suggests that multiple DCs are endowed with different tasks in mediating protection against influenza virus.  相似文献   

14.
In the nonobese diabetic (NOD) mouse model of type 1 diabetes, the immune system recognizes many autoantigens expressed in pancreatic islet beta cells. To silence autoimmunity, we used dendritic cells (DCs) from NOD mice to expand CD25+ CD4+ suppressor T cells from BDC2.5 mice, which are specific for a single islet autoantigen. The expanded T cells were more suppressive in vitro than their freshly isolated counterparts, indicating that DCs from autoimmune mice can increase the number and function of antigen-specific, CD25+ CD4+ regulatory T cells. Importantly, only 5,000 expanded CD25+ CD4+ BDC2.5 T cells could block autoimmunity caused by diabetogenic T cells in NOD mice, whereas 10(5) polyclonal, CD25+ CD4+ T cells from NOD mice were inactive. When islets were examined in treated mice, insulitis development was blocked at early (3 wk) but not later (11 wk) time points. The expanded CD25+ CD4+ BDC2.5 T cells were effective even if administered 14 d after the diabetogenic T cells. Our data indicate that DCs can generate CD25+ CD4+ T cells that suppress autoimmune disease in vivo. This might be harnessed as a new avenue for immunotherapy, especially because CD25+ CD4+ regulatory cells responsive to a single autoantigen can inhibit diabetes mediated by reactivity to multiple antigens.  相似文献   

15.
Dendritic cells (DCs) constitute very attractive vectors for cancer immunotherapy due to their ability to efficiently capture and present tumor antigens, which initiates tumor-directed T-cell responses. Because the initiation of cytotoxic anti-tumor immune responses requires the cross-presentation mechanism, antigen targeting to DCs represents a very important step in the chain of events that constitutes the cross-priming immune process. In the current study, we explored the ability of DCs loaded with antibody-coated melanoma and ovarian carcinoma tumor cells to cross-present tumor antigens to CD8+ T cells and elicit in vitro anti-tumor immune responses. Coating melanoma and ovarian cancer cells with monoclonal antibodies against different surface antigens (CD44, ME491, LFA-3, and CD24) expressed by the tumor cells promoted the cross-presentation of the tumor-associated antigens as MART-1, gp100, tyrosinase, and NY-ESO-1 by DCs to CD8+ T. These tumor antigen-specific CD8+ T-cell populations resulting from the DC-mediated cross-priming process were identified using specific immune tetramers and were a few fold larger than the ones generated using peptide-pulsed or apoptotic tumor cell-loaded DCs. The CD8+ T cells generated by DCs loaded with monoclonal antibody-coated tumor cells were cytotoxic against the primary melanoma and ovarian carcinoma cells. Thus, targeting monoclonal antibody-coated tumor cells to DCs is a novel method that opens new perspectives for immunotherapy strategies.  相似文献   

16.
The present study was undertaken to assess the Ia differentiation requirements of CD8+ class II-allospecific CTL, whose CD8+ phenotype is apparently "discordant" with their MHC class II reactivity. To do so, we compared the effect of in vivo anti-Ia blockade on the differentiation of Ia-reactive CD8+ CTL with its effect on the differentiation of CD4+ T cells. We found that anti-Ia blockade did not detectably interfere with the differentiation of CD8+ Ia-reactive CTL, even though it arrested the differentiation of CD4+ T cells. Thus, the differentiation of CD4+ T cells is strictly dependent upon Ia engagement, whereas the differentiation of CD8+ T cells, even those with reactivity against MHC class II alloantigens, does not require Ia engagement. These results support the concept that Ia-reactive CD8+ T cells are conventional CD8+ CTL, probably selected by self-class I MHC molecules during differentiation, whose receptors fortuitously crossreact on MHC class II alloantigens. Taken together, the present data indicate an intimate relationship between CD4/CD8 expression with MHC class specificity during T cell differentiation and selection. We suggest that an active triggering role for CD4 and CD8 accessory molecules in T cell differentiation is best able to explain these observations.  相似文献   

17.
We investigated the role of antigen-presenting cells in early interferon (IFN)-gamma production in normal and recombinase activating gene 2-deficient (Rag-2(-/-)) mice in response to Listeria monocytogenes (LM) infection and interleukin (IL)-12 administration. Levels of serum IFN-gamma in Rag-2(-/-) mice were comparable to those of normal mice upon either LM infection or IL-12 injection. Depletion of natural killer (NK) cells by administration of anti-asialoGM1 antibodies had little effect on IFN-gamma levels in the sera of Rag-2(-/-) mice after LM infection or IL-12 injection. Incubation of splenocytes from NK cell-depleted Rag-2(-/-) mice with LM resulted in the production of IFN-gamma that was completely blocked by addition of anti-IL-12 antibodies. Both dendritic cells (DCs) and monocytes purified from splenocytes were capable of producing IFN-gamma when cultured in the presence of IL-12. Intracellular immunofluorescence analysis confirmed the IFN-gamma production from DCs. It was further shown that IFN-gamma was produced predominantly by CD8alpha+ lymphoid DCs rather than CD8alpha- myeloid DCs. Collectively, our data indicated that DCs are potent in producing IFN-gamma in response to IL-12 produced by bacterial infection and play an important role in innate immunity and subsequent T helper cell type 1 development in vivo.  相似文献   

18.
Immunization of C57BL/6 (B6) mice with FBL, a Friend murine leukemia virus (F-MuLV), induces both tumor-specific cytolytic CD8+ (CTL) and lymphokine-producing CD4+ Th that are effective in adoptive therapy of B6 mice bearing disseminated FBL leukemia. The current study evaluated the F-MuLV antigenic determinants expressed on FBL that are recognized by FBL-reactive CD8+ and CD4+ T cells. To identify the specificity of the FBL-reactive CD8+ CTL, Fisher rat embryo fibroblast (FRE) cells transfected with plasmids encoding F-MuLV gag or envelope (env) gene products plus the class I-restricting element Db were utilized. FBL-reactive CTL recognized FRE target cells transfected with the F-MuLV gag-encoded gene products, but failed to recognize targets expressing F-MuLV env. Attempts to generate env-specific CD8+ CTL by immunization with a recombinant vaccinia virus containing an inserted F-MuLV env gene were unsuccessful, despite the generation of a cytolytic response to vaccinia epitopes, implying that B6 mice fail to generate CD8+ CTL to env determinants. By contrast, CD4+ Th clones recognized FRE target cells transfected with env and not gag genes, and immunization with the recombinant vaccinia virus induced an env-specific CD4+ T cell response. These data show that in a Friend retrovirus-induced tumor model in which tumor rejection can be mediated by either CTL or Th, antigens derived from discrete retroviral proteins are predominantly responsible for activation of each T cell subset.  相似文献   

19.
Antigen-specific, CD8+, cytolytic T lymphocytes (CTLs) could potentially provide resistance to several infectious and malignant diseases. However, the cellular requirements for the generation of specific CTLs in human lymphocyte cultures are not well defined, and repetitive stimulation with antigen is often required. We find that strong CD8+ CTL responses to influenza virus can be generated from freshly isolated blood T cells, as long as dendritic cells are used as antigen presenting cells (APCs). Small numbers of dendritic cells (APC:T cell ratio of 1:50-1:100) induce these CTL responses from most donors in 7 d of culture, but monocytes are weak or inactive. Whereas both dendritic cells and monocytes are infected with influenza virus, the former serve as effective APCs for the induction of CD8+ T cells while the latter act as targets for the CTLs that are induced. The strong CD8+ response to influenza virus-infected dendritic cells is accompanied by extensive proliferation of the CD8+ T cells, but the response can develop in the apparent absence of CD4+ helpers or exogenous lymphokines. CD4+ influenza virus-specific CTLs can also be induced by dendritic cells, but the cultures initially must be depleted of CD8+ cells. These findings should make it possible to use dendritic cells to generate human, antigen-specific, CD8+ CTLs to other targets. The results illustrate the principle that efficient T cell-mediated responses develop in two stages: an afferent limb in which dendritic cells are specialized APCs and an efferent limb in which the primed T cells carry out an immune response to many types of presenting cells.  相似文献   

20.
In recent years, human dendritic cells (DCs) could be subdivided into CD304+ plasmacytoid DCs (pDCs) and conventional DCs (cDCs), the latter encompassing the CD1c+, CD16+, and CD141+ DC subsets. To date, the low frequency of these DCs in human blood has essentially prevented functional studies defining their specific contribution to antigen presentation. We have established a protocol for an effective isolation of pDC and cDC subsets to high purity. Using this approach, we show that CD141+ DCs are the only cells in human blood that express the chemokine receptor XCR1 and respond to the specific ligand XCL1 by Ca2+ mobilization and potent chemotaxis. More importantly, we demonstrate that CD141+ DCs excel in cross-presentation of soluble or cell-associated antigen to CD8+ T cells when directly compared with CD1c+ DCs, CD16+ DCs, and pDCs from the same donors. Both in their functional XCR1 expression and their effective processing and presentation of exogenous antigen in the context of major histocompatibility complex class I, human CD141+ DCs correspond to mouse CD8+ DCs, a subset known for superior antigen cross-presentation in vivo. These data define CD141+ DCs as professional antigen cross-presenting DCs in the human.The adaptive immune response is initiated through presentation of antigen to T cells by DCs. In the mouse, DCs can be broadly grouped into plasmacytoid DCs (pDCs) and conventional DCs (cDCs; earlier termed myeloid DCs). Mouse cDCs can be further subdivided into several DC types, which are apparently specialized for optimal antigen uptake, processing, and presentation to T cells in different body compartments (Steinman and Banchereau, 2007; Heath and Carbone, 2009; Segura and Villadangos, 2009). One particular type of antigen presentation is cross-presentation: in this case, extracellular antigen is not classically presented in the context of MHC-II but is instead shunted into the MHC-I presentation pathway (Bevan, 2006; Shen and Rock, 2006; Villadangos et al., 2007). CD8+ T cells can thus be activated by antigens taken up from the extracellular space and then differentiate into cytotoxic T cells. This mechanism is thought to be of major importance for the recognition of viral or bacterial antigens when DCs are not directly infected. In these instances, debris of cells that were infected and have subsequently undergone apoptosis as part of a cellular stress reaction is taken up and cross-presented by specialized DCs. Through this type of processing, the antigenic composition of the pathogen can become visible to the CD8+ T cell immune system. In the mouse, extensive experimentation has demonstrated that within cDCs, CD8+ DCs are the most effective in antigen cross-presentation (den Haan et al., 2000; Iyoda et al., 2002; Schulz and Reis e Sousa, 2002; Heath et al., 2004). Whether mouse pDCs play a significant role in antigen presentation and more so in antigen cross-presentation is controversial (Colonna et al., 2004; Liu, 2005; Villadangos and Young, 2008).We have recently shown in the mouse system that splenic CD8+ DCs (and their counterparts in other organs) are the only cells in the body expressing XCR1, a chemokine receptor with a unique ligand, XCL1 (Dorner et al., 2009). In vitro, XCL1 induces potent chemotaxis of XCR1+ CD8+ DCs. In vivo, XCL1 secreted by activated CD8+ T cells augments their expansion and differentiation into cytotoxic T cells when the antigen is cross-presented by CD8+ DCs in the context of MHC-I (Dorner et al., 2009). Collectively, these observations indicate that the XCL1–XCR1 communication axis optimizes the cooperation of antigen-specific CD8+ T cells with XCR1+ DCs, which cross-present antigen to them.Based on our studies in the mouse, we were interested to determine whether human DCs express XCR1. Human DCs have been extensively phenotyped in the past and subdivided again into pDC and into CD1c+ (BDCA-1+), CD16+, and CD141+ (BDCA-3+) cDC subsets (Dzionek et al., 2000; MacDonald et al., 2002; Piccioli et al., 2007; for review see Ju et al., 2010). Meticulous gene expression analyses of all human and mouse DCs have recently revealed a large gene expression program shared by human and mouse pDCs, and also led to the suggestion that human CD141+ DCs correspond to mouse CD8+ DCs (Robbins et al., 2008). In spite of this groundbreaking work on the subdivision of human DCs into subsets, information on the function of human primary DCs remained very scarce, apparently because of the limitations imposed by the very low frequencies of DCs in human blood (CD1c+ DCs, 0.31 ± 0.14% SD; CD16+ DCs, 0.75 ± 0.41%; CD141+ DCs, 0.04 ± 0.03%; pDCs, 0.29 ± 0.08%; n = 8; not depicted). Instead, antigen cross-presentation in the human system was essentially analyzed with DCs derived from monocytes in culture (Fonteneau et al., 2003), a system that may not reflect all of the functional properties of primary DCs.In the present study, we demonstrate that CD141+ DCs are the only population in human blood that expresses the chemokine receptor XCR1. Human CD141+ DCs react to the chemokine XCL1 by mobilization of intracellular Ca2+ ([Ca2+]i) and by strong chemotaxis in vitro. More importantly, our experiments demonstrate that primary CD141+ DCs excel in cross-presentation of antigen when directly compared with CD1c+ DCs, CD16+ DCs, and pDCs from the same donors. Collectively, these functional data strongly indicate that human CD141+ DCs are the homologue of mouse CD8+ DCs. At the same time, the professional capacity of human CD141+ DCs to cross-present antigen is of major interest in the ongoing quest to develop vaccines capable of inducing antiviral or antitumor cytotoxicity in the human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号