首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antiarrhythmic agent propafenone and its primary electropharmacologically active metabolite, 5-hydroxypropafenone, are known inhibitors of cardiac myocyte repolarizing currents. We recently documented potent propafenone inhibition of the transient outward potassium current (Ito) in human atrial myocytes from patients in the newborn and infant age range. In the current study we characterized ventricular Ito inhibition by propafenone and 5-hydroxypropafenone in neonatal myocytes enzymatically isolated from 2-day-old Sprague-Dawley rat pups. Using the whole-cell patch-clamp technique in ventricular myocytes kept in primary culture for 1-4 days, we observed comparably potent Ito inhibition by both agents, yielding 50% maximal inhibitory concentration (IC50) values of 2.1 +/- 0.5 and 1.5 +/- 0.2 microM for propafenone and 5-hydroxypropafenone, respectively. Ito blockade by both of these agents was time, concentration, and voltage dependent, but use independent. There was no drug effect on steady-state voltage dependence of Ito inactivation, or on the time course of Ito recovery from inactivation. These findings are consistent with an open channel-blocking mechanism as suggested by other models. We conclude that both propafenone and 5-hydroxypropafenone are potent Ito inhibitors in neonatal rat ventricular myocytes, with potencies exceeding those demonstrated for propafenone in adult rat ventricular myocytes or in human atrial myocytes from patients of all ages.  相似文献   

2.
1. Anti-acetylcholine effects of pilsicainide, flecainide, disopyramide and propafenone on the acetylcholine (ACh)-induced K+ current (IK.ACh) were examined in dissociated guinea-pig atrial myocytes under whole-cell voltage clamp by the use of the 'concentration-clamp' technique. 2. The IK.ACh was activated with a latency of about 100 ms after 1 microM ACh application and desensitized to a steady-state level. The latent period and the time to peak response were shortened with increasing ACh concentration. 3. The values of half-maximal inhibition (IC50) on the peak and steady state responses were 25 and 25 microM for pilsicainide, 1.7 and 2.0 microM for disopyramide, 19 and 2.0 microM for flecainide and 0.7 and 0.2 microM for propafenone, respectively. 4. Pilsicainide and disopyramide increased the latent period and the time to peak of IK.ACh in a concentration-dependent manner. Flecainide and propafenone did not change the latent period, but shortened the time to peak and hastened the decay of IK.ACh in a voltage-independent manner. 5. The results suggest that the mechanisms underlying the anti-acetylcholine effect of antiarrhythmic drugs are different among these drugs: i.e., pilsicainide and disopyramide mainly block the muscarinic ACh receptors while flecainide and propafenone inhibit the K+ channel itself as open channel blockers.  相似文献   

3.
1 It was the aim of our study to investigate the effects of the sulphonylurea glibenclamide on voltage dependent potassium currents in human atrial myocytes. 2 The drug blocked a fraction of the quasi steady state current (ramp response) which was activated positive to -20 mV, was sensitive to 4-aminopyridine (500 microM) and was different from the ATP dependent potassium current IK(ATP). 3 Glibenclamide dose dependently inhibited both, the peak as well as the late current elicited by step depolarization positive to -20 mV. The IC50 for reduction in charge area of total outward current was 76 microM. 4 The double-exponential inactivation time-course of the total outward current was accelerated in the presence of glibenclamide with a tau(fast) of 12.7+/-1.5 ms and a tau(slow) of 213+/-25 ms in control and 5.8+/-1.9 ms (P<0.001) and 101+/-20 ms (P<0.05) under glibenclamide (100 microM). 5 Our data suggest, that both repolarizing currents in human atrial myocytes, the transient outward current (Ito1) and the ultrarapid delayed rectifier current (IKur) were inhibited by glibenclamide. 6 In human ventricular myocytes glibenclamide inhibited Ito1 without affecting the late current. 7 Our data suggest that glibenclamide inhibits human voltage dependent cardiac potassium currents at concentrations above 10 microM.  相似文献   

4.
The effects of 8-oxoberberine (JKL1073A) on contractions and electrophysiological characteristics of atrial tissues were examined. In driven left atria of the rat JKL1073A (10-100 microM) increased twitch tension dose-dependently. In spontaneously beating right atria, JKL1073A increased twitch tension but decreased beating rate slightly. The positive inotropic and the negative chronotropic effect of 30 microM JKL1073A was not affected by prazosin (1 microM), propranolol (1 microM) and 3-isobutyl-1-methyl-xanthine (10 microM) but significantly suppressed by 4-aminopyridine (2 mM 4-AP). Current-clamp study revealed that JKL1073A prolonged rat atrial action potential duration (APD). This prolongation of APD by JKL1073A was decreased by pretreating the cells with 2 mM 4-AP. Voltage-clamp study showed that JKL1073A inhibited the integral of the transient outward current (I(to)) dose-dependently with a KD value of 3.66 +/- 0.93 microM in rat atrial myocytes. The equilibrium dissociation constant (Kd) for JKL1073A bindings to open state I(to) was 0.50 +/- 0.08 microM. The suppression of I(to) by 3 microM JKL1073A was accompanied by shortening of its inactivation time constant from 52.5 +/- 0.9 ms to 16.8 +/- 0.7 ms. V(0.5) for the steady-state inactivation curve of I(to) was shifted from -25.7 +/- 3.3 mV to -34.8 +/- 3.2 mV. In human atrial cells, similar inhibition of I(to) and prolongation of APD by JKL1073A was found. The KD value of JKL1073A for inhibition of the integral of I(to) in human atrial cells is 4.03 +/- 0.02 microM. The Kd for bindings to open state I(to) is 0.5 microM. Currents through K1 channels of rat and human atrial myocytes were not inhibited by JKL1073A at concentrations up to 10 microM. These results indicate that JKL1073A exerts a positive inotropic effect by inhibition of I(to). JKL1073A inhibit I(to) by binding to open state channels or shifting of the steady-state inactivation curve of I(to).  相似文献   

5.
1. The effects of propafenone on the inward calcium current (ICa) were investigated in isolated single ventricular myocytes of the guinea-pig by the whole-cell clamp method. Propafenone inhibited ICa in a dose-dependent manner at concentrations of propafenone ranging from 1 x 10(-8) to 1 x 10(-3) M and half maximal block of ICa occurred at a propafenone concentration of 1.5 x 10(-6) M. Propafenone did not change the current-voltage relation of ICa other than a reduction in amplitude and showed no clear use- or frequency-dependent effects upon ICa (stimulation frequencies from 0.03 to 2 Hz). Propafenone did not alter the steady-state inactivation process: the half maximal activation potentials were 18.5 +/- 2.2 mV in the control state and 20.9 +/- 5.0 mV in the presence of 1 x 10(-6) M propafenone (n = 12, NS). Propafenone (1 x 10(-6) M) increased the half-time of reactivation by 73.9% (n = 6, 212.3 +/- 1.2 ms vs 369.2 +/- 1.5 ms, P < 0.05). 2. We conclude that propafenone blocks ICa in a concentration-dependent and a channel state-, use- or frequency-independent manner. The ICa blockade elicited by propafenone at clinically therapeutic plasma concentration is significant and may be involved in its anti-arrhythmic effects.  相似文献   

6.
The effects of trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide methanesulfonate salt (U50,488H), a selective kappa-opioid receptor agonist, on transient outward K+ current (Ito1) and ultra-rapid delayed rectifier K+ current (IKur) in young human atrial myocytes were evaluated with a whole-cell patch-clamp technique. At +10 mV, U50,488H decreased Ito1 in a concentration-dependent manner (IC50=12.4+/-3.5 microM), while at +50 mV, U50,488H produced biphasic effects on Ito1-increasing and decreasing the current at 1-3 and 10-30 microM, respectively. U50,488H at 10 microM shifted the midpoint (V0.5) of Ito1 activation in a depolarizing direction by approximately 5 mV, accelerated the inactivation, and slowed the recovery from inactivation of Ito1. In addition, U50,488H inhibited IKur in a concentration-dependent manner (IC50=3.3+/-0.6 microM). The effects of U50,488H on the two types of K+ currents were not antagonized by either 5 microM nor-binaltorphimine or 300 nM naloxone. These results indicate that U50,488H affects both Ito1 and IKur in young human atrial myocytes in an opioid receptor-independent manner.  相似文献   

7.
1. The antiarrhythmic potential and electromechanical effects of liriodenine, an aporphine alkaloid isolated from the plant, Fissistigma glaucescens, were examined. 2. In the Langendorff perfused (with constant pressure) rat heart, at a concentration of 0.3 to 3 microM, liriodenine was able to convert a polymorphic ventricular tachyrhythmia induced by the ischaemia-reperfusion (EC50 = 0.3 microM). 3. In isolated atrial and ventricular muscle, liriodenine increased the contractile force and slowed the spontaneous beating of the right atrium. 4. The liriodenine-induced positive inotropy was markedly attenuated by a transient outward K+ channel blocker, 4-aminopyridine (4-AP) but was not significantly affected by prazosin, propranolol, verapamil or carbachol. 5. In rat isolated ventricular myocytes, liriodenine prolonged action potential duration and decreased the maximal upstroke velocity of phase 0 depolarization (Vmax) and resting membrane potential in a concentration-dependent manner. The action potential amplitude was not significantly changed. 6. Whole-cell voltage clamp study revealed that liriodenine blocked the Na+ channel (INa) concentration-dependently (IC50 = 0.7 microM) and caused a leftward shift of its steady-state inactivation curve. However, its recovery rate from the inactivated state was not affected. The L-type Ca2+ currents (Ica) were also decreased, but to a lesser degree (IC50 = 2.5 microM, maximal inhibition = 35%). 7. Liriodenine inhibited the 4-AP-sensitive transient outward current (Ito) (IC50 = 2.8 microM) and moderately accelerated its rate of decay. The block of Ito was not associated with changes in the voltage-dependence of the steady-state inactivation curve or in the process of recovery from inactivation of the current. Liriodenine also reduced the amplitude of a slowly inactivating, steady-state outward current (Iss) (IC50 = 1.9 microM). These effects were consistent with its prolonging effect on action potential duration. The inwardly rectifying background K+ current (IK1), was also decreased but to a less degree. 8. Compared to quinidine, liriodenine exerted a stronger degree of block on INa, comparable degree of block on IK1, and lesser extent of block on ICa and Ito. 9. It is concluded that, through inhibition of Na+ and the Ito channel, liriodenine can suppress ventricular arrhythmias induced by myocardial ischaemia reperfusion. The positive inotropic effect can be explained by inhibition of the Ito channel and the subsequent prolongation of action potential duration. These results provide a satisfactory therapeutic potential for the treatment of cardiac arrhythmias.  相似文献   

8.
AIM: To study the properties of transient outward K+ current (Ito) and ultra-rapid delayed rectifier K+ current (IKur) in isolated human atrial myocytes from patients with congestive heart failure (CHF). METHODS: Single cells were isolated from CHF patients with collagenase and protease. Ito and IKur were recorded using whole cell patch-clamp technique. RESULTS: The activation and inactivation of I(to) were voltage-dependent and time-dependent. The half-activation and half-inactivation voltage were (15 +/- 12) mV and (-45 +/- 4) mV respectively. When membrane potential went up from -40 mV to +60 mV, the activation time constant means decreased from (6.9 +/- 2.3) ms to (1.40 +/- 0.20) ms, while the inactivation time constant means decreased from (69 +/- 17) ms to (21 +/- 14) ms. Otherwise, the mean reactivation time constants was (125 +/- 65) ms when the membrane potential was held at -80 mV, but the recovery was not complete during the interval observed. Ito showed less frequency-dependent reduction at test frequency between 0.2-2 Hz. Compared with Ito, the activation of IKur only showed voltage-dependence, without time-dependence. Its mean current densities was (3.4 +/- 0.7) pA/pF when test potential was +60 mV. The half activation voltage of IKur was (23 +/- 14) mV. No clear frequency-dependence was observed at the same frequency range of Ito either. CONCLUSION: I(to) and IKur are important outward potassium channel currents in isolated human atrial myocytes from CHF patients and they have different kinetic properties.  相似文献   

9.
梁勇  孙秀梅 《中国药理学报》1999,20(11):1005-1010
AIM: To study the properties of transient outward K+ current (Ito) and inward rectifier K+ current (IKl) in immature human heart. METHODS: Ito and IKl were recorded using whole-cell patch-clamp technique in atrial myocytes isolated from 12 immature (aged from 6 months to 5 a) human hearts. RESULTS: Ito was voltage-dependent, activated and inactivated rapidly. The IC50 (95% confidence limits) of 4-AP on Ito was 0.64 (0.48-0.87) mmol.L-1. 4-AP 1 mmol.L-1 shifted V1/2 of activation from (6.6 +/- 2.0) mV to (19.8 +/- 3.0) mV (n = 4-10, P < 0.01). 4-AP 0.3 mmol.L-1 changed V1/2 of inactivation from (-49 +/- 4) mV to (-61.4 +/- 2.1) mV (n = 3, P < 0.01), but there were no obvious influence on voltage-dependent activation of Ito (P > 0.05). At the same concentration, the recovery time constant (tau value) was prolonged from (108 +/- 16) ms to (220 +/- 67) ms (n = 3-12, P < 0.01). IKl was also voltage-dependent. Its reverse potential was -40 mV. CONCLUSION: Both Ito and IKl are important K+ channel currents in immature human atrial myocytes. 4-AP can affect the inactivation and recovery of Ito at low concentration (0.3 mmol.L-1) and affect its activation at high concentration (1 mmol.L-1).  相似文献   

10.
The antifungal antibiotic clotrimazole (CLT) shows therapeutic effects on cancer, sickle cell disease, malaria, etc. by inhibiting membrane intermediate-conductance Ca2+ -activated K+ channels (IKCa). However, it is unclear whether this drug would affect human cardiac K+ currents. The present study was therefore designed to investigate the effects of CLT on transient outward K+ current (Ito1), and ultra-rapid delayed rectifier K+ current (IKur) in isolated human atrial myocytes, and cloned hERG channel current (IhERG) and recombinant human cardiac KCNQ1/KCNE1 channel current (IKs) expressed in HEK 293 cells. It was found that CLT inhibited Ito1 with an IC50 of 29.5 microM, accelerated Ito1 inactivation, and decreased recovery of Ito1 from inactivation. In addition, CLT inhibited human atrial I(Kur) in a concentration-dependent manner (IC50 = 7.6 microM). CLT substantially suppressed IhERG (IC50 = 3.6 microM), and negatively shifted the activation conductance of IhERG. Moreover, CLT inhibited IKs (IC50 = 15.1 microM), and positively shifted the activation conductance of the current. These results indicate that the antifungal antibiotic CLT substantially inhibits human cardiac repolarization K+ currents including Ito1, IKur, IhERG, and IKs. However, caution is recommended when correlating the observed in vitro effects on cardiac ion currents to the clinical relevance.  相似文献   

11.
The selective estrogen receptor modulator raloxifene is widely used in the treatment of postmenopausal osteoporosis, and has cardioprotective properties. However, effects of raloxifene on cardiac ion channels are unclear. The present study was designed to investigate the effects of raloxifene and beta-estradiol on transient outward and ultra-rapid delayed rectifier potassium currents (Ito1 and IKur) in human atrial myocytes with a whole cell patch-clamp technique. Ito1 was inhibited by raloxifene in a concentration-dependent manner with an IC50 of 0.9 microM. Raloxifene at 1 microM decreased Ito1 by 40.2+/-1.9% (at +50 mV, n=14, P<0.01 vs control). Time-dependent recovery from inactivation was slowed, and time to peak and time-dependent inactivation of Ito1 were significantly accelerated, while steady-state voltage dependent activation and inactivation of Ito1 were not affected by raloxifene. In addition, raloxifene remarkably suppressed IKur (IC50=0.7 microM). Raloxifene at 1 microM decreased IKur by 57.3+/-3.3% (at +50 mV, n=10, P<0.01 vs control). However, beta-estradiol inhibited Ito1 (IC50=10.3 microM) without affecting IKur. The inhibitory effects of raloxifene and beta-estradiol on Ito1 and/or IKur were unaffected by the estrogen receptor antagonist ICI 182,780. Our results indicate that raloxifene directly inhibits the human atrial repolarization potassium currents Ito1 and IKur. Whether raloxifene is beneficial for supraventricular arrhythmias remains to be studied.  相似文献   

12.
The antihistamine loratadine is widely prescribed for the treatment of symptoms associated with allergies. Although generally believed to be free of adverse cardiac effects, there are a number of recent reports suggesting that loratadine use may be associated with arrhythmias, in particular atrial arrhythmias. Nothing is known regarding the potassium channel blocking properties of loratadine in human cardiac cells. Using the whole-cell patch clamp technique, the effects of loratadine on the transient outward K current (Ito), sustained current (Isus), and current measured at -100 mV (IK1 and Ins), the major inward and outward potassium currents present in human atrial myocytes, were examined in order to provide a possible molecular mechanism for the observed atrial arrhythmias reported with loratadine use. Loratadine rate-dependently inhibited Ito at therapeutic concentrations with 10 nM loratadine reducing Ito amplitude at a pacing rate of 2 Hz by 34.9+/-6.0%. In contrast, loratadine had no effect on either Isus or current measured at -100 mV. These results may provide a possible mechanism for the incidences of supraventricular arrhythmias reported with the use of loratadine.  相似文献   

13.
普罗帕酮对钾通道亚型Kv4.2和Kv4.3电流的影响   总被引:2,自引:0,他引:2  
目的 研究普罗帕酮对钾通道亚型Kv4 2和Kv4 3电流的影响。方法 采用全细胞膜片钳技术记录稳定表达Kv4 2和Kv4 3电流的人胚胎肾细胞株 (HEK2 93细胞 )电流的变化。结果 ①普罗帕酮明显抑制Kv4 2和Kv4 3电流 ,呈浓度依赖性 ,IC50 分别为 1 0 3 μmol·L- 1 和 71 μmol·L- 1 ;②普罗帕酮明显加速Kv4 2和Kv4 3电流失活 ,1 0μmol·L- 1 的普罗帕酮可使Kv4 2电流衰减时间常数τ由(38 9± 2 1 )ms变为 (9 9± 1 8)ms ,半数最大失活膜电位V1 /2 由 (- 66 6± 0 8)mV左移至 (- 70 9± 1 1 )mV ;1 0 0μmol·L- 1 的普罗帕酮可使Kv4 3电流衰减时间常数τ(1 4 4 8± 2 0 8)ms变为 (1 8 5± 2 8)ms,半数最大失活膜电位V1 /2 由 (- 4 5 6± 1 9)mV左移至 (- 52 3± 2 1 )mV ;③普罗帕酮明显左移Kv4 2和Kv4 3电流的激活曲线 ,1 0μmol·L- 1 的普罗帕酮可使Kv4 2电流半数最大激活膜电位V1 /2 由 (- 4 1± 0 5)mV左移至 (- 1 6 1± 2 4)mV ;1 0 0μmol·L- 1 的普罗帕酮可使Kv4 3半数最大激活膜电位V1 /2由 (- 6 0± 1 1 )mV左移至 (- 1 6 5± 3 0 )mV。结论 普罗帕酮明显抑制Kv4 2 ,Kv4 3电流 ,该作用可能是其治疗心律失常的机制之一。  相似文献   

14.
The antipsychotic and anxiolytic phenothiazine, cyamemazine, was investigated for its effects on the hERG (human ether-à-go-go related gene) channel expressed in HEK 293 cells and on native INa, ICa, Ito, Isus, or IK1 of human atrial myocytes. Moreover, cyamemazine and terfenadine were compared for their effects on the QT interval in anesthetized guinea pigs. Cyamemazine reduced hERG current amplitude with an IC50 value of 470 nM. Cyamemazine 1 microM failed to significantly affect INa, Ito, Isus, or IK1 amplitudes and slightly decreased ICa (18%). For comparison, haloperidol (30 nM) and olanzapine (300 nM) reduced hERG current amplitude by 44.2+/-3.9% and 49.7+/-4.2%, respectively. The cardiac safety ratio of cyamemazine, calculated from the IC50/receptor affinity ratios, is 81 and 313 against dopamine D2 receptors and 5-HT2A receptors, respectively. In guinea pigs, QT and QTcBazett were not significantly modified by intravenous cyamemazine when compared to the effects produced by the vehicle. Conversely, terfenadine (5 mg/kg iv) increased significantly QTcBazett (+58 ms), QTcFrediricia (+83 ms) and QTcVan de Water (+78 ms). In conclusion, cyamemazine concentrations required to inhibit hERG current exceed substantially those necessary to achieve therapeutic activity in humans. Moreover, cyamemazine, in contrast to terfenadine, does not delay cardiac repolarization in the anesthetized guinea pig. These non-clinical findings confirm the excellent cardiac safety records of cyamemazine during its 30 years of extensive therapeutic use.  相似文献   

15.
A novel benzopyran derivative, NIP-141, effectively terminates experimental atrial fibrillation in canine hearts by prolonging atrial refractoriness. However, the effects of this drug on human atrial myocytes are unknown. This experiment evaluated the effects of NIP-141 on K currents in isolated human atrial myocytes using a whole-cell voltage-clamp method. NIP-141 inhibited the transient outward current (I(to)) and the ultra-rapid delayed rectifier K current (I(Kur)), each in a dose-dependent manner, with half-maximal inhibition concentrations of 16.3 microM and 5.3 microM, respectively (n = 5). NIP-141 inhibited both K currents in a voltage- and use-independent fashion, and it preferentially blocked them in the open state and dissociated rapidly from the channel. Because both K currents contribute significantly to the repolarization of the atrial action potential, these findings suggest that NIP-141 may terminate atrial fibrillation by prolonging action potential duration.  相似文献   

16.
The alpha1-adrenoceptor agonist methoxamine acted independently of receptor activation to reduce Ito and the sustained outward current in rat ventricular myocytes, and hKv 1.5 and Kv 4.2 cloned K+ channel currents. Two hundred microM methoxamine reduced Ito by 36% in the presence of 2 microM prazosin, and by 37 and 38% after preincubation of myocytes with either N-ethylmaleimide or phenoxybenzamine (n=6). The EC50 values at +60 mV for direct reduction of Ito, hKv 1.5, and Kv 4.2 by methoxamine were 239, 276, and 363 microM, respectively, with Hill coefficients of 0.87-1.5. Methoxamine accelerated Ito and Kv 4.2 current inactivation in a concentration- and voltage-dependent manner. Apparent rate constants for methoxamine binding and unbinding gave Kd values in agreement with EC50 values measured from dose-response relations. The voltage-dependence of block supported charged methoxamine binding to a putative intracellular site that sensed approximately 20% of the transmembrane electrical field. In the presence of methoxamine, deactivating Kv 4.2 tail currents displayed a distinct rising phase, and were slowed relative to control, such that tail current crossover was observed. These observations support a dominant mechanism of open channel block, although closed channel block could not be ruled out. Single-channel data from hKv 1.5 patches revealed increased closed times with blank sweeps and decreased burst duration in the presence of drug, and a reduction of mean channel open time from 1.8 ms in control to 0.4 ms in 500 microM methoxamine. For this channel, therefore, both open and closed channel block appeared to be important mechanisms for the action of methoxamine.  相似文献   

17.
Propafenone, encainide and flecainide have been categorized as class Ic antiarrhythmic drugs, since they produce similar clinical electrophysiological effects. However, propafenone has also modes of action that differ substantially from pure class Ic activity. The most distinctive electrophysiological difference from other class Ic antiarrhythmic drugs stems from its structural similarity with other beta-adrenoceptor antagonists. The potency of the β-adrenoceptor blocking property of propafenone has been estimated to range from 1/20 to 1/50 that of propranolol on a molar basis. Because the plasma concentrations of propafenone during long-term treatment may be up to 50 or more times that of propranolol, the β-adrenoceptor blocking effect may be clinically relevant. However, although the β-adrenoceptor blocking effects are readily demonstrable in vitro, clinical data are more inconsistent, because the β-adrenoceptor blocking action has been reported as being undetectable to significant. During atrial fibrillation, with or without accessory pathways, propafenone exerts effective and prompt control of the ventricular rate in patients who fail to convert to sinus rhythm. However, compared with other class Ic antiarrhythmic drugs, propafenone has not been proved generally better in controlling the ventricular rate. Received: 22 December 1995/Accepted in revised form: 13 May 1996  相似文献   

18.
PURPOSE: Pilsicainide, classified as a relatively pure Na+ channel blocker, occasionally causes QT prolongation, suggesting inhibitory actions on K+ currents. We studied effects of pilsicainide on the K+ channel current of the human ether-a-go-go-related gene (HERG) in heterologous expression system. METHODS: The Patch-clamp technique in whole-cell configuration was used to record the channel current of HERG stably expressed in HEK293 cells. RESULTS: Pilsicainide suppressed peak currents of HERG channel during depolarizing pulses and tail currents upon repolarization. Pilsicainide blocked HERG current with IC50 = 20.4 microM and Hill coefficient = 0.98. Voltage-dependent activation was shifted in a negative direction by approximately 10 mV by 10 to 20 microM pilsicainide. Block increased with depolarization to voltages between -20 and 0 mV and reached the maximum level at positive voltages to 0 mV without further increase. Following drug equilibration for 10 minutes (holding potential at -100 mV), the peak outward current upon the first depolarization showed time-dependent block; tail current block was maximal. Frequency-dependent block evaluated from tail current was absent with pulse frequencies of 1.33, 0.5, and 0.2 Hz. After a steady state block was achieved, time course of current activation and deactivation was slowed by pilsicainide, and steady-state inactivation and time course of fast inactivation were mildly affected. CONCLUSIONS: Pilsicainide blocks HERG current with a preferential affinity, at least, to the open state of the channels with a fast access to binding sites.  相似文献   

19.
1. Amitriptyline has been known to induce QT prolongation and torsades de pointes which causes sudden death. We studied the effects of amitriptyline on the human ether-a-go-go-related gene (HERG) channel expressed in Xenopus oocytes and on the rapidly activating delayed rectifier K(+) current (I(Kr)) in rat atrial myocytes. 2. The amplitudes of steady-state currents and tail currents of HERG were decreased by amitriptyline dose-dependently. The decrease became more pronounced at more positive potential, suggesting that the block of HERG by amitriptyline is voltage dependent. IC(50) for amitriptyline block of HERG current was progressively decreased according to depolarization: IC(50) values at -30, -10, +10 and +30 mV were 23.0, 8.71, 5.96 and 4.66 microM, respectively. 3. Block of HERG by amitriptyline was use dependent: exhibiting a much faster block at higher activation frequency. Subsequent decrease in frequency after high activation frequency resulted in a partial relief of HERG blockade. 4. Steady-state block by amitriptyline was obtained while depolarization to +20 mV for 0.5 s was applied at 0.5 Hz: IC(50) was 3.26 microM in 2 mM [K(+)](o). It was increased to 4. 78 microM in 4 mM [K(+)](o), suggesting that the affinity of amitriptyline on HERG was decreased by external K(+). 5. In rat atrial myocytes bathed in 35 degrees C, 5 microM amitriptyline blocked I(Kr) by 55%. However, transient outward K(+) current (I(to)) was not significantly affected. 6. In summary, the data suggest that the block of HERG currents may contribute to arrhythmogenic side effects of amitriptyline.  相似文献   

20.
1. The effects of imipramine on action potential characteristics and transient outward potassium current (It) of rabbit isolated atrial myocytes were studied using the whole-cell configuration of the patch-clamp technique. 2. Imipramine, 3 microM, decreased action potential amplitude and lengthened the action potential duration measured at 50% of repolarization, whereas it did not modify the final phase of repolarization or the resting membrane potential. These results are similar to those reported in multicellular rabbit atrial preparations. 3. Imipramine, 0.1-100 microM, induced a concentration-dependent inhibition of the peak amplitude of It, a shortening of the time to peak current and an increase in the inactivation rate. The acceleration of the current inactivation is to a major extent responsible for the decrease in the integral of the outward current measured at 50 ms after the start of the pulse. 4. The drug-induced block of It was not associated with changes in the voltage-dependence of the steady-state inactivation curve or in the process of recovery from inactivation of the current. Extrapolation to zero block shows that imipramine did not block It before its activation at the onset of the depolarization. These results suggested that imipramine does not affect the inactivated or the resting state of It channels. 5. It is concluded that in rabbit isolated atrial cells, imipramine inhibits It and that this effect is responsible for the lengthening of the action potential duration produced by this drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号