首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
Our previous ifndings have demonstrated that acupuncture at the Taixi (KI3) acupoint in healthy youths can activate neurons in cognitive-related cerebral cortex. Here, we investigated whether acupuncture at this acupoint in elderly patients with mild cognitive impairment can also activate neurons in these regions. Resting state and task-related functional magnetic resonance imaging showed that the pinprick senstation of acupuncture at the Taixi acupoint differed signiifcantly between elderly patients with mild cognitive impairment and healthy elderly controls. Results showed that 20 brain regions were activated in both groups of participants, including the bi-lateral anterior cingulate gyrus (Brodmann areas [BA] 32, 24), left medial frontal cortex (BA 9, 10, 11), left cuneus (BA 19), left middle frontal gyrus (BA 11), left lingual gyrus (BA 18), right medial frontal gyrus (BA 11), bilateral inferior frontal gyrus (BA 47), left superior frontal gyrus (BA11), right cuneus (BA 19, 18), right superior temporal gyrus (BA 38), left subcallosal gyrus (BA 47), bilateral precuneus (BA 19), right medial frontal gyrus (BA 10), right superior frontal (BA 11), left cingulate gyrus (BA 32), left precentral gyrus (BA 6), and right fusiform gyrus (BA 19). These results suggest that acupuncture at the Taixi acupoint in elderly patients with mild cogni-tive impairment can also activate some brain regions.  相似文献   

2.
The needling sensation of Deqi during acupuncture is a key factor of influencing acupuncture outcome.Recent studies have mainly focused on the brain function effects of Deqi in a physiological state.Functional magnetic resonance imaging(f MRI)on the effects of acupuncture at Waiguan(SJ5)in pathological and physiological states is controversial.In this study,12 patients with ischemic stroke received acupuncture at Waiguan(SJ5)and simultaneously underwent f MRI scanning of the brain,with imaging data of the activated areas obtained.Based on the patient’s sensation,imaging data were allocated to either the Deqi group or non-Deqi group.In the Deqi group,the activated/deactivated areas were the left superior temporal gyrus(BA39)/right anterior lobe of the cerebellum and left thalamus.In the non-Deqi group,the activated areas included the medial frontal gyrus of the right frontal lobe(BA11),right limbic lobe(BA30,35),and left frontal lobe(BA47),while the only deactivated area was the right parietal lobe(BA40).Compared with the non-Deqi group,the Deqi group exhibited marked activation of the right anterior lobe of the cerebellum and right limbic lobe(BA30).These findings confirm that the clinical effect of Deqi during acupuncture is based on brain functional changes.Cerebellar activation may be one of the central mechanisms of acupuncture in the treatment of ischemic stroke.  相似文献   

3.
Most studies addressing the specificity of meridians and acupuncture points have focused mainly on the different neural effects of acupuncture at different points in healthy individuals. This study examined the effects of acupuncture on brain function in a pathological context. Sixteen patients with ischemic stroke were randomly assigned to true point group (true acupuncture at right Waiguan (SJ5)) and sham point group (sham acupuncture). Results of functional magnetic resonance imaging revealed activation in right parietal lobe (Brodmann areas 7 and 19), the right temporal lobe (Brodmann area 39), the right limbic lobe (Brodmann area 23) and bilateral oc-cipital lobes (Brodmann area 18). Furthermore, inhibition of bilateral frontal lobes (Brodmann area 4, 6, and 45), right parietal lobe (Brodmann areas 1 and 5) and left temporal lobe (Brodmann area 21 ) were observed in the true point group. Activation in the precuneus of right parietal lobe (Brodmann area 7) and inhibition of the left superior frontal gyrus (Brodmann area 10) was observed in the sham group. Compared with sham acupuncture, acupuncture at Waiguan in stroke patients inhibited Brodmann area 5 on the healthy side. Results indicated that the altered specificity of sensation-associated cortex (Brodmann area 5) is possibly associated with a central mechanism of acupuncture at Waiguan for stroke patients.  相似文献   

4.
Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong(LR3) and Taixi(KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus(Brodmann area 18/19), inferior occipital gyrus(Brodmann area 18) and cuneus(Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe(Brodmann area 11), inferior frontal gyrus(Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.  相似文献   

5.
Functional magnetic resonance imaging was used during emotion recognition to identify changes in functional brain activation in 21 first-episode, treatment-naive major depressive disorder patients before and after antidepressant treatment. Following escitalopram oxalate treatment, patients exhibited decreased activation in bilateral precentral gyrus, bilateral middle frontal gyrus, left middle temporal gyrus, bilateral postcentral gyrus, left cingulate and right parahippocampal gyrus, and increased activation in right superior frontal gyrus, bilateral superior parietal lobule and left occipital gyrus during sad facial expression recognition. After antidepressant treatment, patients also exhibited decreased activation in the bilateral middle frontal gyrus, bilateral cingulate and right parahippocampal gyrus, and increased activation in the right inferior frontal gyrus, left fusiform gyrus and right precuneus during happy facial expression recognition. Our experimental findings indicate that the limbic-cortical network might be a key target region for antidepressant treatment in major depressive disorder.  相似文献   

6.
The specific mechanisms by which acupuncture affects the central nervous system are unclear. In the International Standard Scalp Acupuncture system, acupuncture needles are applied at the middle line of the vertex, anterior parietal-temporal oblique line, and the posterior parietal-temporal oblique line. We conducted a single-arm prospective clinical trial in which seven healthy elderly volunteers(three men and four women; 50–70 years old) received International Standard Scalp Acupuncture at MS5(the mid-sagittal line between Baihui(DU20) and Qianding(DU21)), the left MS6(line joining Sishencong(EX-HN1) and Xuanli(GB6)), and the left MS7(line joining DU20 and Qubin(GB7)).After acupuncture, resting-state functional magnetic resonance imaging demonstrated changes in the fractional amplitude of low frequency fluctuations and regional homogeneity in various areas, showing remarkable enhancement of regional homogeneity in the bilateral anterior cingulate, left medial frontal gyrus, supramarginal gyrus, right middle frontal gyrus, and inferior frontal gyrus. Functional connectivity based on a seed region at the right middle frontal gyrus(42, 51, 9) decreased at the bilateral medial superior frontal gyrus. Our data preliminarily indicates that the international standard scalp acupuncture in healthy elderly participants specifcally enhances the correlation between the brain regions involved in cognition and implementation of the brain network regulation system and the surrounding adjacent brain regions.The study was approved by the Ethics Committee of the China-Japan Union Hospital at Jilin University, China, on July 18, 2016(approval No.2016 ks043).  相似文献   

7.
The present study conducted a multi-scale dynamic functional connectivity analysis to evaluate dynamic behavior of acupuncture at Taichong (LR3) and sham acupoints surrounding Taichong. Results showed differences in wavelet transform coherence characteristic curves in the declive, precuneus, postcentral gyrus, supramarginal gyrus, and occipital lobe between acupuncture at Taichong and acupuncture at sham acupoints. The differences in characteristic curves revealed that the specific effect of acupuncture existed during the post-acupuncture rest state and lasted for 5 minutes.  相似文献   

8.
Few studies have examined the effects of different stimuli at a single acupoint using functional magnetic resonance imaging.The present study applied acupuncture at the Neiguan(PC 6),Waiguan(SJ 5),Zhigou(SJ 6) and Yanglingquan(GB 34) acupoints in healthy volunteers.fMRI was used to examine the activation of brain areas in response to different types of acupuncture(cutaneous or routine acupuncture) at each acupoint.There were no significant differences in the distribution of activation in the regions of interest between cutaneous and routine acupuncture at the Neiguan,Waiguan,and Zhigou acupoints,but some differences were observed between the two methods of acupuncture at the Yanglingquan acupoint.There were no significant differences in the intensity of induced activation between cutaneous and routine acupuncture at the Neiguan,Zhigou and Yanglingquan acupoints,but the activation intensity in the right cerebellum induced by routine acupuncture at the Waiguan acupoint was greater than that induced by cutaneous acupuncture.Results confirmed that cutaneous and routine acupuncture at the Neiguan,Waiguan,Zhigou and Yanglingquan acupoints activated different functional brain areas,and caused activation of different intensities in some areas.  相似文献   

9.
BACKGROUND: Go, a traditional Chinese chess-like game, requires many unknown functions of the brain including attention, imaging, problem solving and processing of spatial working memory. To date, it remains uncertain whether the intellectual activities required to play Go are related to the frontal lobe. OBJECTIVE: To investigate various patterns of brain region activity while schizophrenic patients and normal subjects engaged in memorizing piece placement in the Chinese game of Go. Spatial working memory was measured in order to validate whether the prefrontal lobe participates in this memory process.
DESIGN, TIME AND SETTING: Non-randomized, concurrent control trial was performed at Second Xiangya Hospital of Central South University, between May and December 2004.
PARTICIPANTS: A total of nine Chinese schizophrenic patients with no brain or bodily diseases and not undergoing electroshock treatment, who were in accordance with the DSM-Ⅳ criteria for schizophrenia, as well as thirteen healthy staffs and students with matched age, sex, and education were included. Patients and control subjects had no neurological disorders or mental retardation. In addition, all participants were right-handed. METHODS: The cognitive task for functional magnetic resonance imaging was a block design experiment. Both groups were asked to remember the placement of pieces in the Chinese game of Go on a computer screen. A brain activation map was analyzed in SPM99.
MAIN OUTCOME MEASURES: Brain responses were compared with regard to activation region size, volume, and asymmetry indices. RESULTS: Compared with the control group, the reaction time was significantly delayed in schizophrenics performing the working memory task (P 〈 0.05). When performing the tasks, normal subjects showed significant activation of the bilateral dorsolateral prefrontal lobe with left dominance; the asymmetry indices were: frontal lobe, +0.32; temporal lobe, 0.58; parietal lobe, 0.41 ; and occipital lobe, 0.34. On the other hand, schizophrenics showed right dominance and had a broader activation region of the prefrontal lobe (asymmetry indices: frontal lobe, 0.10; temporal lobe, +0.38; parietal lobe, +0.24; and occipital lobe, 0.00). When comparing the normal group subtracted with the schizophrenic group, no significant lateralization was found in the frontal lobes but significant activation was found in the left anterior central gyrus, left middle frontal gyrus and in both sides of the cingulate gyrus. Comparing the schizophrenic group subtracted with the normal group, there was significant right lateralization of the frontal lobe and abnormally activated regions on both sides of the anterior central gyrus, middle frontal gyrus, left inferior frontal gyrus, right medial frontal gyrus and the right insular lobe. CONCLUSION: Different brain activation regions are involved in memorizing the placement of pieces in Chinese Go between schizophrenia and healthy subjects. Schizophrenics showed right dominance and border activation range, indicating that the prefrontal cortex plays an important role in memory information processing and resource allocation when remembering piece placement in the game of Go.  相似文献   

10.
This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder,7 cases of improved post-traumatic stress disorder symptoms,and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder,using the voxel-based morphometry method.The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated.Results showed that the gray matter volume was the highest in the trauma control group,followed by the symptoms-improved group,and the lowest in the chronic post-traumatic stress disorder group.Compared with the symptoms-improved group,the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group.Compared with the trauma control group,the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group.Compared with the trauma control group,the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group.The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group(r=0.477,P=0.039).Our findings indicate that(1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe,occipital lobe,and parietal lobe,(2) after post-traumatic stress,the disorder symptoms are improved and gray matter structural damage is reduced,but cannot recover to the trauma-control level,and(3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder.Post-traumatic stress disorder patients exhibit gray matter abnormalities.  相似文献   

11.
目的:观察功能磁共振成像了解捻转刺激太溪穴和非捻转刺激所引起的脑激活区状态。 方法:纳入健康青年志愿者12名,选取右侧太溪穴,采用组块刺激模式,静息阶段与刺激阶段交替出现,重复3次,分为3个组块。刺激为手法捻转行针或非捻转,非捻转即手放在针柄,但不进行任何操作。扫描后图像使用SPM2进行后处理。 结果:捻转刺激太溪穴主要激活了右侧颞上回BA22,左侧的额中回BA46,其次为左右顶叶的中央后回BA2,BA3,左额叶的额下回BA45和左顶叶的顶下小叶BA40;而非捻转刺激则没有激活。 结论:捻转刺激太溪穴和非捻转刺激的激活不同,与本经相关的经络、脏腑联系密切相关。  相似文献   

12.
汉语单字词音、义加工的脑激活模式   总被引:27,自引:0,他引:27  
目的:研究汉字音、义加工的脑机制。方法:采用汉字单字词为实验材料,通过功能磁共振成像扫描执行语音和语义两种认知任务的脑区。结果:语音任务激活的脑区有,左侧顶叶下部和颞上回(BA 40/39/22,BA:Brodmann Area,即布鲁德曼分区,下同),左侧枕中回(BA18/19),右侧枕下回(BA18/19),以及左中央前回(BA6)。语义任务激活的脑区有,左侧顶叶下部(BA40/39)和左侧颞上回(BA22),左侧额下回(BA10/47),右侧额中回和额上回(BA10/11),以及左侧额中回(BA11)。语义任务减去语音任务激活的脑区有,左侧额下回(BA47),左侧海马(BA36)和右侧海马旁回(BA36)。语音任务减去语义任务没有发现任何脑区的显著激活。结论:在语义任务中与语音有关的脑区得到激活;而在语音任务中与语义有关的脑区没有激活。  相似文献   

13.
Functional magnetic resonance imaging (fMRI) was used to explore the neural correlates of semantic judgments to visual words in a group of 9- to 15-year-old children. Subjects were asked to indicate if word pairs were related in meaning. Consistent with previous findings in adults, children showed activation in bilateral inferior frontal gyri (Brodmann area [BA] 47, 45) and left middle temporal gyrus (BA 21). Words with strong semantic association elicited significantly greater activation in bilateral inferior parietal lobules (BA 40), suggesting stronger integration of highly related semantic features. By contrast, words with weak semantic association elicited greater activation in left inferior frontal gyrus (BA 45) and middle temporal gyrus (BA 21), suggesting more difficult feature search and more extensive access to semantic representations. We also examined whether age and skill explained unique variance in the patterns of activation. Increasing age was correlated with greater activation in left middle temporal gyrus (BA 21) and inferior parietal lobule (BA 40), suggesting that older children have more elaborated semantic representations and more complete semantic integration processes, respectively. Decreasing age was correlated with activation in right superior temporal gyrus (BA 22) and decreasing accuracy was correlated with activation in right middle temporal gyrus (BA 21), suggesting the engagement of ancillary systems in the right hemisphere for younger and lower-skill children.  相似文献   

14.
It has recently been shown that syllogistic reasoning engages two dissociable neural systems. Reasoning about familiar situations engages a frontal-temporal lobe system, whereas formally identical reasoning tasks involving unfamiliar situations recruit a frontal-parietal visuospatial network. These two systems may correspond to the "heuristic" and "formal" methods, respectively, postulated by cognitive theory. To determine if this dissociation generalizes to reasoning about transitive spatial relations, we studied 14 volunteers using event-related fMRI, as they reasoned about landmarks in familiar and unfamiliar environments. Our main finding is a task (reasoning and baseline) by spatial content (familiar and unfamiliar) interaction. Modulation of reasoning toward unfamiliar landmarks resulted in bilateral activation of superior and inferior parietal lobules (BA 7, 40), dorsal superior frontal cortex (BA 6), and right superior and middle frontal gyri (BA 8), regions widely implicated in visuospatial processing. By contrast, modulation of the reasoning task toward familiar landmarks, engaged the right inferior/orbital frontal gyrus (BA 11/47), bilateral occipital (BA 18, 19), and temporal lobes. The temporal lobe activation included the right inferior temporal gyrus (BA 37), posterior hippocampus, and parahippocampal gyrus, regions implicated in spatial memory and navigation tasks. These results provide support for the generalization of dual mechanism theory to transitive reasoning and highlight the importance of the hippocampal system in reasoning about familiar spatial environments.  相似文献   

15.
目的 探讨基于颅骨骨窗划分的国人大脑重要功能区定位关系。方法 选取13具成人尸头,保留颞上线、鳞状线、矢状缝、冠状缝、人字缝、前囟点、冠状点、鼻根等骨性标志,形成额骨上窗、额骨下窗、顶骨上窗、顶骨下窗、颞骨窗、枕骨窗共六个骨窗,观测中央前回、中央后回、额下回等重要脑功能区以及脑膜中动脉在各骨窗内的定位和分布情况。结果 中央前回分布于额骨上窗、顶骨上窗,其中点在中线上位于前囟点后方约4.2 cm[右侧(4.17±0.92)cm,左侧(4.31±1.1)cm],与矢状缝夹角约54°[右侧(53.6±7.47)°,左侧(54.63±3.54)°]。中央后回位于顶骨下窗,其中点在中线上位于前囟点后方约6.2 cm[右侧(64.51±0.87)°,左侧(63.63±1.76)°],与矢状缝夹角约64°[右侧(64.51±0.87)°,左侧(63.63±1.76)°]。额下回位于额骨下窗,而颞上回及颞横回的大部分位于颞骨窗,距状沟则位于枕骨窗;脑膜中动脉仅分布在顶骨上、下窗,其出现率分别为73.12%、67.42%。结论 基于颅骨骨窗划分的大脑重要功能区的定位关系对于术前规划及术中定位有一定指导意义。  相似文献   

16.
We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe(superior frontal, middle frontal, precentral, and orbital gyri), right parietal lobe(postcentral and inferior parietal gyri), right temporal lobe(caudate nucleus), right occipital lobe(middle occipital gyrus), right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.  相似文献   

17.
The specific brain areas required to execute each of three fundamental cognitive tasks - object naming, same-different discrimination, and integer computation - are determined by whole-brain functional magnetic resonance imaging (fMRI) using a novel technique optimized for the isolation of neurocognitive systems. This technique (1) conjoins the activity associated with identical or nearly identical tasks performed in multiple sensory modalities (conjunction) and (2) isolates the activity conserved across multiple subjects (conservation). Cortical regions isolated by this technique are, thus, presumed associated with cognitive functions that are both distinguished from primary sensory processes and from individual differences. The object-naming system consisted of four brain areas: left inferior frontal gyrus, Brodmann's areas (BAs) 45 and 44; left superior temporal gyrus, BA 22; and left medial frontal gyrus, BA 6. The same-different discrimination system consisted of three brain areas: right inferior parietal lobule, BA 40; right precentral gyrus, BA 6; and left medial frontal gyrus, BA 6. The integer computation system consisted of five brain areas: right middle frontal gyrus, BA 6; right precentral gyrus, BA 6; left inferior parietal lobule, BA 40; left inferior frontal gyrus, BA 44; and left medial frontal gyrus, BA 6. All three neurocognitive systems shared one common cortical region, the left medial frontal gyrus, the object-naming and integer computation systems shared the left inferior frontal gyrus, and the integer computation and same-different discrimination systems shared the right precentral gyrus. These results are consistent with connectionist models of cognitive processes where specific sets of remote brain areas are assumed to be transiently bound together as functional units to enable these functions, and further suggest a superorganization of neurocognitive systems where single brain areas serve as elements of multiple functional systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号