首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When conjugated to various proteins, the nontoxic B-chain of cholera toxin (CTB) significantly increases the ability of these proteins to induce immunological tolerance after oral administration. Here, we investigated if a nonconjugated form of CTB enhances the induction of immune tolerance after oral insulin administration. Induction of immunological tolerance was studied after oral administration of insulin preparations in three mouse models; an insulin/ovalbumin coimmunization model, a model of virus-induced diabetes in transgenic RIP-LCMV-NP mice and in nonobese diabetic (NOD) mice serving as a model of spontaneous diabetes. In the immunization model, we demonstrate that mixing with CTB increases the tolerogenic potential of insulin, approximately 10 fold. Titration of the CTB concentration in this system revealed that an insulin : CTB ratio of 100 : 1 was optimal for the induction of bystander suppression. Further studies revealed that this insulin : CTB ratio also was optimal for the prevention of diabetes in a virus-induced, transgenic diabetes model. In addition, the administration of this optimal insulin-CTB preparation significantly prevented the onset of diabetes in old NOD mice with established islet infiltration. The data presented here demonstrate that CTB, even in its unconjugated form, functions as a mucosal adjuvant, increasing the specific tolerogenic effect of oral insulin.  相似文献   

2.
Cholera toxin is a potent oral mucosal adjuvant for enteric immunization. Several studies suggest that commercial cholera toxin B subunit (cCTB; purified from holotoxin) may be an effective non-toxic alternative for oral immunization. The present study was performed, using an infectious disease model, to determine if the oral mucosal adjuvanticity of CTB is dependent on contaminating holotoxin. Mice were orally immunized with Helicobacter felis sonicate and either cholera holotoxin, cCTB or recombinant cholera toxin B subunit (rCTB). Serum immunoglobulin G (IgG) and intestinal immunoglobulin A (IgA) antibody responses were determined and the mice were challenged with live H. felis to determine the degree of protective immunity induced. All orally immunized mice responded with serum IgG antibody titres regardless of the adjuvant used. However, only mice immunized with either holotoxin or the cCTB responded with an intestinal mucosal IgA response. Consistent with the production of mucosal antibodies, mice immunized with either holotoxin or cCTB as adjuvants were protected from challenge while mice receiving H. felis sonicate and rCTB all became infected. cCTB induced the accumulation of cAMP in mouse thymocytes at a level equal to 0.1% of that induced by holotoxin, whereas rCTB was devoid of any activity. These results indicate that CTB possesses no intrinsic mucosal adjuvant activity when administered orally. Therefore, when used as an oral adjuvant, CTB should also include small, non-toxic doses of cholera toxin.  相似文献   

3.
Cholera toxin B subunit (CTB) has been shown to augment the antibody responses to influenza virus haemagglutinin (HA) in BALB/c mice immunized with HA vaccine together with CTB. In this study, mouse strain differences in the adjuvant effect of CTB on anti-HA antibody responses were investigated along with those in the antibody responses to CTB or HA, using various inbred and H-2 congenic strains. The antibody responsiveness to CTB depended on the H-2 haplotype of the strain: strains with the H-2b haplotype were high responders, those with H-2a, H-2k and H-2s were low responders, and those with H-2d were intermediate. The responsiveness to HA was also related to the H-2 haplotype: H-2a and H-2k strains were high responders, H-2b and H-2s strains were low responders, and H-2d strains were intermediate. However, the degree of the adjuvant effect of CTB on anti-HA antibody responses was almost constant, regardless of the H-2 haplotype or other genetic backgrounds of the strain. The lack of genetic restriction of the adjuvant effect would be favourable for application of CTB-combined HA vaccine to humans, who are genetically diverse. Moreover, these results suggest that the immunogenicity and adjuvanticity of CTB differ essentially in their mechanisms.  相似文献   

4.
A single oral intragastric administration of cholera toxin B subunit (CTB) conjugated to allogeneic thymocytes (ATC, 4 x 10(7) cells) under conditions allowing the CTB to bind the complex to GM1 ganglioside receptors was shown to be efficacious in inducing peripheral T cell tolerance associated with significant suppression of both primary and secondary accelerated rejection of heart allografts when tested in mice. Allogeneic in vivo delayed-type hypersensitivity (DTH), in vitro cytotoxicity responses, and mixed lymphocyte reactions (MLR) by T cells from mesenteric lymph nodes (MLN), popliteal lymph nodes (PLN), and spleen were significantly reduced in mice treated with the CTB-ATC conjugate, as were also the numbers of cells in these organs producing IL-2, IFN-gamma, or IL-4. In contrast, a marked increase in the production of IL-4 in Peyer's patches (PP) and of TGF-beta(1) in PLN was observed. The suppressive potential of T cells from PP and/or MLN after oral treatment with CTB-ATC was further evident by intraperitoneal transfer of such cells from CTB-ATC-treated animals to primed recipients, which led to marked suppression of both allogen-specific DTH and MLR responses. A critical role for PP in inducing peripheral tolerance after oral CTB-ATC treatment was indicated by the absence of tolerance induction in animals whose PP had been destroyed before treatment with CTB-ATC. The results indicate that the protection against allograft rejection by oral treatment with CTB-ATC is mediated by T cells and associated with a strong induction of IL-4 production at mucosal sites and TGF-beta(1) at the effector sites.  相似文献   

5.
We studied the effect of mucosal presentation of ovalbumin (OVA) conjugated to cholera toxin (CT) or cholera toxin B subunit (CTB) on the intestinal immune responses against OVA. Mice were primed intraperitoneally (i.p.) with OVA in a water-in-oil emulsion and boosted intraduodenally (i.d.) with OVA conjugated to CT or CTB in various molar ratios. Responses were evaluated by testing intestinal secretions for OVA-specific antibodies and by quantifying the OVA-specific antibody secreting cells (ASC) in the lamina propria of the small intestine. OVA-CT conjugates were tested in a molar ratio ranging from 1.8:1 to 4500:1. OVA-CTB conjugates were tested in a molar ratio ranging from 0.25:1 to 500:1. The optimum intestinal immune response was reached at a molar ratio of 1.8:1 for OVA-CT and 5:1 for OVA-CTB. The binding capacity of OVA-CTB, but not of OVA-CT, to GM1 ganglioside corresponded with the capacity to enhance the intestinal immune response. The effect of conjugating CTB or CT to OVA on the immune response against OVA was more striking when mice were not only boosted i.d., but also primed i.d. Both OVA-CT and OVA-CTB induced detectable immune responses, whereas free OVA did not. Therefore, the carrier effect of CT or CTB is essential to trigger a mucosal immune response against OVA when presented mucosally only. We conclude that enhancing antigen uptake greatly facilitates mucosal immune responses.  相似文献   

6.
Antigen presenting cells, specifically dendritic cells (DCs) are a focal point in the delicate balance between T cell tolerance and immune responses contributing to the onset of type I diabetes (T1D). Weak adjuvant proteins like the cholera toxin B subunit when linked to autoantigens may sufficiently alter the balance of this initial immune response to suppress the development of autoimmunity. To assess adjuvant enhancement of autoantigen mediated immune suppression of Type 1 diabetes, we examined the cholera toxin B subunit (CTB)-proinsulin fusion protein (CTB-INS) activation of immature dendritic cells (iDC) at the earliest detectable stage of the human immune response. In this study, Incubation of human umbilical cord blood monocyte-derived immature DCs with CTB-INS autoantigen fusion protein increased the surface membrane expression of DC Toll-like receptor (TLR-2) while no significant upregulation in TLR-4 expression was detected. Inoculation of iDCs with CTB stimulated the biosynthesis of both CD86 and CD83 co-stimulatory factors demonstrating an immunostimulatory role for CTB in both DC activation and maturation. In contrast, incubation of iDCs with proinsulin partially suppressed CD86 co-stimulatory factor mediated DC activation, while incubation of iDCs with CTB-INS fusion protein completely suppressed iDC biosynthesis of both CD86 and CD83 costimulatory factors. The incubation of iDCs with increasing amounts of insulin did not increase the level of immune suppression but rather activated DC maturation by stimulating increased biosynthesis of both CD86 and CD83 costimulatory factors. Inoculation of iDCs with CTB-INS fusion protein dramatically increased secretion of the immunosuppressive cytokine IL-10 and suppressed synthesis of the pro-inflammatory cytokine IL12/23 p40 subunit protein suggesting that linkage of CTB to insulin (INS) may play an important role in mediating DC guidance of cognate naïve Th0 cell development into immunosuppressive T lymphocytes. Taken together, the experimental data suggests Toll like receptor 2 (TLR-2) plays a dominant role in CTB mediated INS inhibition of DC induced type 1 diabetes onset in human Type 1 diabetes autoimmunity. Further, fusion of CTB to the autoantigen was found to be essential for enhancement of immune suppression as co-delivery of CTB and insulin did not significantly inhibit DC costimulatory factor biosynthesis. The experimental data presented supports the hypotheses that adjuvant enhancement of autoantigen mediated suppression of islet beta cell inflammation is dependent on CTB stimulation of dendritic cell TLR2 receptor activation and co-processing of both CTB and the autoantigen in the same dendritic cell.  相似文献   

7.
The heat-labile toxin (LT) of Escherichia coli is a potent mucosal adjuvant that has been used to induce protective immunity against Helicobacter felis and Helicobacter pylori infection in mice. We studied whether recombinant LT or its B subunit (LTB) has adjuvant activity in mice when delivered with H. pylori urease antigen via the parenteral route. Mice were immunized subcutaneously or intradermally with urease plus LT, recombinant LTB, or a combination of LT and LTB prior to intragastric challenge with H. pylori. Control mice were immunized orally with urease plus LT, a regimen shown previously to protect against H. pylori gastric infection. Parenteral immunization using either LT or LTB as adjuvant protected mice against H. pylori challenge as effectively as oral immunization and enhanced urease-specific immunoglobulin G (IgG) responses in serum as effectively as aluminum hydroxide adjuvant. LT and LTB had adjuvant activity at subtoxic doses and induced more consistent antibody responses than those observed with oral immunization. A mixture of a low dose of LT and a high dose of LTB stimulated the highest levels of protection and specific IgG in serum. Urease-specific IgG1 and IgG2a antibody subclass responses were stimulated by all immunization regimens tested, but relative levels were dependent on the adjuvant used. Compared to parenteral immunization with urease alone, LT preferentially enhanced IgG1, while LTB or the LT-LTB mixture preferentially enhanced IgG2a. Parenteral immunization using LT or LTB as adjuvant also induced IgA to urease in the saliva of some mice. These results show that LT and LTB stimulate qualitatively different humoral immune responses to urease but are both effective parenteral adjuvants for immunization of mice against H. pylori infection.  相似文献   

8.
Sublingual immunotherapy has been applied for allergic diseases, but whether sublingual immunization in neonates can prevent sensitization has not been studied. In this study, we evaluate the effect of neonatal sublingual vaccination with native or denatured allergens alone or plus adjuvant on allergy prevention. Newborn BALB/ c mice were sublingually vaccinated daily for the first 3 days with native or denatured ovalbumin (OVA) only, or combined adjuvant CpG or cholera toxin (CT). They were sensitized with OVA adsorbed onto alum 7 weeks after the last vaccination. Specific secretory IgA antibody responses were readily induced by neonatal vaccination with antigen plus CpG or CT, but not with antigen alone. Whereas vaccination with denatured OVA plus CpG markedly enhanced T helper 1 (Th1) responses and inhibited IgE production, vaccination with denatured OVA plus CT increased cervical lymph node cell production of interleukin-4 (IL-4), IL-5, IL-6, and serum IgG1 responses. These data demonstrate that neonatal sublingual vaccination with denatured OVA and CpG not only preferentially induces systemic Th1 responses and mucosal immunity, but also simultaneously abrogates IgE production. Neonatal sublingual vaccines may play a role for the strategy of allergy prevention.  相似文献   

9.
Oral administration of the uveitogenic peptide (aa 336-351) derived from human HSP60 induced clinical and histological manifestations of uveitis in 65.8% (48/73) of Lewis rats. Uveitis was significantly decreased to 16.7% (11/66) in parallel experiments with the peptide linked to recombinant cholera toxin B subunit (rCTB), also given by mouth (chi(2)=34.2, p<0.0001). The protective efficacy between tolerized and immunized animals was 74.7%. Adoptive transfer of mesenteric lymph node cells from tolerized rats prevented the development of uveitis. A significantly higher proportion of regulatory CD4(+)CD45RC(low)RT6(+) subset of Th2 memory cells were found in the mesenteric lymph nodes (p<0.005) and spleens (p相似文献   

10.
Intranasal immunization of mice with Rib, a cell surface protein of group B streptococcus (GBS), conjugated to or simply coadministered with the recombinant cholera toxin B subunit, induces systemic immunoglobulin G (IgG) and local IgA antibody responses and confers protection against lethal GBS infection. These findings have implications for the development of a human GBS vaccine.  相似文献   

11.
Animals can be rendered immune to Ascaris parasites by immunization with infectious-stage larvae. The specific parasite gene products that mediate protective responses in ascariasis are unknown. We have identified a cDNA encoding Ascaris suum 14-kDa antigen (As14) and evaluated the vaccinal effect of the Escherichia coli-expressed recombinant protein (rAs14). GenBank analysis showed that As14 has low similarity at the amino acid level to a Caenorhabditis elegans gene product and to antigens of the filarial nematodes but not to other known proteins. In addition, As14 homologues were found to be expressed in human and dog roundworms. In mice that received intranasal administration of rAs14 coupled with cholera toxin B subunit (rAs14-CTB), there was a 64% reduction of recovery of larvae compared with that in the nontreated group. The vaccinated mice showed a significant increase in the total serum immunoglobulin G (IgG) levels and the mucosal IgA responses. Elevation of the rAs14-specific IgE response was also seen. Measurement of the IgG subclasses showed a higher level of IgG1 and a lower level of IgG2a antibody response in the sera of the immunized mice, suggesting that protection was associated with a type II immune response. As14 is the first protective antigen against A. suum infection to be identified. Our immunization trial results in laboratory animals suggest the possibility of developing a mucosal vaccine for parasitic diseases caused by ascarid nematodes.  相似文献   

12.
Colera toxin was evaluated as an oral immunogen against experimental canine cholera. Dogs were immunized orally with 100-microgram doses of purified cholera toxin or comparable doses of crude toxin. Both doses caused moderate diarrhea in most nonimmune dogs. Repeated oral doses (12 doses in 54 days) gave marked protection against the diarrheal effect of oral toxin, provoked a vigorous antitoxic response in jejunal mucosa, and gave nearly complete protection against subsequent oral challenge with living virulent Vibrio cholerae. Protection appeared to be due largely to the antitoxic response in intestinal mucosa. The effectiveness of cholera toxin as an oral vaccine contrasts with the previously described ineffectiveness of toxoid given orally. This study provides an example of mucosal immunity due to a nonreplicating vaccine given orally and suggests that cholera toxin may be useful as a component of an oral vaccine for cholera.  相似文献   

13.
《Mucosal immunology》2013,6(4):826-837
The lack of appropriate animal model for studying protective immunity has limited vaccine development against cholera. Here, we demonstrate a pulmonary cholera model conferred by intranasal administration of mice with live Vibrio cholerae. The bacterial components, but not cholera toxin, caused lethal and acute pneumonia by inducing massive inflammation. Intranasal immunization with Dukoral, comprising killed whole bacteria and recombinant cholera toxin B subunit (rCTB), developed both mucosal and systemic antibody responses with protection against the lethal challenge. Either rCTB-free Dukoral or rCTB alone partially protected the mice against the challenge. However, reconstitution of rCTB-free Dukoral with rCTB restored full protection. Parenteral immunization with Dukoral evoked strong systemic immunity without induction of mucosal immunity or protection from the challenge. These results suggest that both anti-bacterial and anti-toxic immunity are required for protection against V. cholerae–induced pneumonia, and this animal model is useful for pre-clinical evaluation of candidate cholera vaccines.  相似文献   

14.
The presence of Helicobacter pylori in the gastroduodenal mucosae is associated with chronic active gastritis, peptic ulcers and gastric cancers such as adenocarcinoma and low-grade gastric B-cell lymphoma. In response to the presence of antibiotic-resistant strains, the use of vaccines to combat this infection has become an attractive alternative. The present study used a murine model of infection by a mouse-adapted H. pylori strain to determine whether infection in BALB/c mice can be successfully eradicated by intragastric vaccination with H. pylori heparan sulphate-binding proteins (HSBP) covalently coupled to the beta-subunit of cholera toxin (CTB). It was shown that vaccination confers protection against exposure of BALB/c mice to the pathogen, as revealed by microbiological, histopathological and molecular methods.  相似文献   

15.
BACKGROUND: Sublingual immunotherapy has been recently used for allergic diseases, but its mechanisms are still unclear. OBJECTIVE: To examine the effect of sublingual administration of a native or denatured allergen alone or plus adjuvant on systemic T(H)2 responses and mucosal immunity in mice. METHODS: Naive or sensitized BALB/c mice were sublingually vaccinated biweekly for 3 weeks with ovalbumin (OVA) or urea-denatured OVA (CM-OVA) only or plus adjuvant CpG oligodeoxynucleotides (CpG) or cholera toxin (CT). Two weeks later, their specific serum IgG, IgG1, IgG2a, IgE, and saliva secretory IgA (SIgA) antibody responses and the cytokine profiles of spleen and cervical lymph node cells were investigated. RESULTS: Specific SIgA antibody responses were induced by vaccination with CM-OVA plus CpG or CT. Whereas vaccination with CM-OVA and CpG enhanced T(H)1 responses but inhibited IgE production, vaccination with CT and CM-OVA or OVA increased cervical lymph node cell production of interleukin (IL) 4, IL-5, and IL-6 and serum IgG1 antibody responses. In previously sensitized mice, sublingual vaccination with OVA or CM-OVA plus CT or CpG stimulated mucosal SIgA antibody responses, but did not enhance ongoing IgE antibody responses. CONCLUSIONS: Sublingual vaccination with OVA or CM-OVA plus adjuvant CT or CpG all can induce systemic and mucosal immunity, but CM-OVA plus CpG had the best prophylactic and therapeutic effects on IgE antibody production. It is likely that sublingual vaccines may have a role for the prophylaxis and immunotherapy of allergic reactions.  相似文献   

16.
目的:构建表达幽门螺杆菌(Hp)细胞毒素相关蛋白(CagA)及粘膜免疫佐剂量霍乱毒素B亚单位(CTB)的重组质粒,并在大肠杆菌中表达获得基因重组蛋白。方法:用PCR方法从幽门螺杆菌扩增CagA基因片段,从霍乱弧菌扩增CTB基因片段,将它们转入原核载体质粒pGEMEX-1,在大肠杆菌DH5α中克隆,并在JM109DE3中表达。结果:重组质粒pEGEMEX-CTB的全长序列经分析与GenBank公布的序列相符;各表达蛋白经SDS-PAGE分析,相对分子量与文献相符;重组蛋白经Westem blot检测有较强的抗原性。结论:基因重组菌表达的融合蛋白有可能作为有效抗原用于幽门螺杆菌疫苗的研制及检测试剂盒的制备。  相似文献   

17.
Oral administration to mice of ovalbumin (OVA), if given together with cholera toxin (CT) or its B subunit (CTB) prevented the hyporesponsiveness to OVA subsequently injected parenterally. Oral immunization with CT plus OVA or OVA plus CTB in fact primed the immune system, inducing a stronger response to a subsequent parenteral injection of OVA with complete Freund's adjuvant than in mice prefed only with OVA or with saline. Oral CT plus OVA also induced good serum IgG1 and IgA anti-OVA responses, with slightly (not significant) decreased IgG2a and IgG2b responses. Our in vivo findings agree well with earlier in vitro data from others, including CT inhibition of the Th1 CD4+ T cell subset and with CT effect on B cells (induction of LPS-stimulated IgM+ B cells to undergo increased switch differentiation to IgG1- and IgA-secreting cells).  相似文献   

18.
The level and distribution of isotype-specific antibodies in various secretions and of antibody-secreting cells in corresponding lymphoid organs and tissues were compared in mice immunized with Streptococcus mutans surface protein antigen I/II (AgI/II) conjugated to the cholera toxin B subunit (CTB), given intranasally (i.n.) or intragastrically (i.g.), with or without free cholera toxin (CT) as an adjuvant. Immunization i.n. induced stronger initial antibody responses to AgI/II in both serum and saliva than immunization i.g., but salivary immunoglobulin A (IgA)-specific antibody responses to immunization about 3 months later were not increased relative to total salivary IgA concentrations. Specific antibodies induced by i.n. immunization were as widely distributed in serum, saliva, tracheal wash, gut wash, and vaginal wash as those induced by i.g. immunization. Likewise, specific antibody-secreting cells were generated in the spleen, salivary glands, intestinal lamina propria, and mesenteric and cervical lymph nodes by either route of immunization. The strongest salivary IgA antibody response was induced by AgI/II-CTB conjugate given i.n., but the addition of CT did not further enhance it. However, free CTB could effectively replace CT as an adjuvant in i.n. immunization with unconjugated AgI/II. Booster i.n. immunization with AgI/II plus either free CT or CTB induced stronger recall serum antibody responses than conjugated AgI/II-CTB with or without CT as an adjuvant. Therefore, i.n. immunization with a protein antigen and free or coupled CTB is an effective means of generating IgA antibody responses expressed at several mucosal sites where protective immunity may be beneficial.  相似文献   

19.
Although cholera toxin (Ctx) and Escherichia coli heat-labile enterotoxin (Etx) are known to be potent mucosal adjuvants, it remains controversial whether the adjuvanticity of the holotoxins extends to their nontoxic, receptor-binding B subunits. Here, we have systematically evaluated the comparative adjuvant properties of highly purified recombinant EtxB and CtxB. EtxB was found to be a more potent adjuvant than CtxB, stimulating responses to hen egg lysozyme when the two were coadministered to mice intranasally, as assessed by enhanced serum and secretory antibody titers as well as by stimulation of lymphocyte proliferation in spleen and draining lymph nodes. These results indicate that, although structurally very similar, EtxB and CtxB have strikingly different immunostimulatory properties and should not be considered equivalent as prospective vaccine adjuvants.  相似文献   

20.
Behcet's disease (BD) specific peptide (p336-351) was identified within the human 60 kD heat shock protein (HSP60). Oral p336-351 induced uveitis in rats which was prevented by oral tolerization with the peptide linked to recombinant cholera toxin B subunit (CTB). This strategy was adopted in a phase I/II clinical trial by oral administration of p336-351-CTB, 3 times weekly, followed by gradual withdrawal of all immunosuppressive drugs used to control the disease in 8 patients with BD. The patients were monitored by clinical and ophthalmological examination, as well as extensive immunological investigations. Oral administration of p336-351-CTB had no adverse effect and withdrawal of the immunosuppressive drugs showed no relapse of uveitis in 5 of 8 patients or 5 of 6 selected patients who were free of disease activity prior to initiating the tolerization regimen. After tolerization was discontinued, 3 of 5 patients remained free of relapsing uveitis for 10-18 months after cessation of all treatment. Control of uveitis and extra-ocular manifestations of BD was associated with a lack of peptide-specific CD4+ T cell proliferation, a decrease in expression of TH1 type cells (CCR5, CXCR3), IFN-gamma and TNF-alpha production, CCR7+ T cells and costimulatory molecules (CD40 and CD28), as compared with an increase in these parameters in patients in whom uveitis had relapsed. The efficacy of oral peptide-CTB tolerization will need to be confirmed in a phase III trial, but this novel strategy in humans might be applicable generally to autoimmune diseases in which specific antigens have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号