首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinal and bulbar muscular atrophy (SBMA) is an adult-onset motor neuron disease, caused by the expansion of a trinucleotide repeat (TNR) in exon 1 of the androgen receptor (AR) gene. This disorder is characterized by degeneration of motor and sensory neurons, proximal muscular atrophy, and endocrine abnormalities, such as gynecomastia and reduced fertility. We describe the development of a transgenic model of SBMA expressing a full-length human AR (hAR) cDNA carrying 65 (AR(65)) or 120 CAG repeats (AR(120)), with widespread expression driven by the cytomegalovirus promoter. Mice carrying the AR(120) transgene displayed behavioral and motor dysfunction, while mice carrying 65 CAG repeats showed a mild phenotype. Progressive muscle weakness and atrophy was observed in AR(120) mice and was associated with the loss of alpha-motor neurons in the spinal cord. There was no evidence of neurodegeneration in other brain structures. Motor dysfunction was observed in both male and female animals, showing that in SBMA the polyglutamine repeat expansion causes a dominant gain-of-function mutation in the AR. The male mice displayed a progressive reduction in sperm production consistent with testis defects reported in human patients. These mice represent the first model to reproduce the key features of SBMA, making them a useful resource for characterizing disease progression, and for testing therapeutic strategies for both polyglutamine and motor neuron diseases.  相似文献   

2.
3.
X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease) is a polyglutamine (polyQ) disease in which the affected males suffer progressive motor neuron degeneration accompanied by signs of androgen insensitivity, such as gynecomastia and reduced fertility. SBMA is caused by CAG repeat expansions in the androgen receptor (AR) gene resulting in the production of AR protein with an extended glutamine tract. SBMA is one of nine polyQ diseases in which polyQ expansion is believed to impart a toxic gain-of-function effect upon the mutant protein, and initiate a cascade of events that culminate in neurodegeneration. However, whether loss of a disease protein's normal function concomitantly contributes to the neurodegeneration remains unanswered. To address this, we examined the role of normal AR function in SBMA by crossing a highly representative AR YAC transgenic mouse model with 100 glutamines (AR100) and a corresponding control (AR20) onto an AR null (testicular feminization; Tfm) background. Absence of endogenous AR protein in AR100Tfm mice had profound effects upon neuromuscular and endocrine-reproductive features of this SBMA mouse model, as AR100Tfm mice displayed accelerated neurodegeneration and severe androgen insensitivity in comparison to AR100 littermates. Reduction in size and number of androgen-sensitive motor neurons in the spinal cord of AR100Tfm mice underscored the importance of AR action for neuronal health and survival. Promoter-reporter assays confirmed that AR transactivation competence diminishes in a polyQ length-dependent fashion. Our studies indicate that SBMA disease pathogenesis, both in the nervous system and the periphery, involves two simultaneous pathways: gain-of-function misfolded protein toxicity and loss of normal protein function.  相似文献   

4.
The significance of neuronal intranuclear inclusions (NIIs) and extranuclear inclusions (ENNIs) in the brains of patients with polyglutamine repeat diseases and transgenic mice modelling these diseases is hotly debated. We examined inclusions in the brains of mice transgenic for the human Huntington's disease mutation and found that their size, number and location varied markedly with age and neuronal phenotype. In striatum and hippocampus particularly, inclusions appeared at different times in different cell types. Further, the mechanism of formation of inclusions appears to be complex, with several distinct phases. These include a precipitous formation of NIIs followed by NII growth, and the concomitant formation ENNIs. While the timing of appearance of NIIs and ENNIs parallels the cognitive and motor decline of the mice, the precise role of NIIs and ENNIs is unknown. It has been variously suggested that NIIs may be deleterious, benign or beneficial. However, our data allows the possibility that each of these is possible, and suggest also that the role of inclusions changes with time. The precipitous formation of NIIs may play a protective role by removing polyglutamine, while the subsequent growth of NIIs may be deleterious, since it would allow other proteins to be sequestered into inclusions. The formation of ENNIs in neurites and synapses is also more likely to have deleterious than beneficial consequences for a cell. Thus, our study suggests that the relationship between inclusion formation and neurological dysfunction depends not only upon the phenotype of the neurons involved, but also upon the molecular composition and the subcellular localisation of the inclusions.  相似文献   

5.
Spinal and bulbar muscular atrophy (SBMA) is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. SBMA exclusively affects males, while females are usually asymptomatic. The molecular basis of SBMA is the expansion of a trinucleotide CAG repeat, which encodes the polyglutamine (polyQ) tract in the first exon of the androgen receptor (AR) gene. The histopathological hallmark is the presence of nuclear inclusions containing mutant truncated ARs with expanded polyQ tracts in the residual motor neurons in the brainstem and spinal cord, as well as in some other visceral organs. The AR ligand, testosterone, accelerates AR dissociation from heat shock proteins and thus its nuclear translocation. Ligand-dependent nuclear accumulation of mutant ARs has been implicated in the pathogenesis of SBMA. Transgenic mice carrying the full-length human AR gene with an expanded polyQ tract demonstrate neuromuscular phenotypes, which are profound in males. Their SBMA-like phenotypes are rescued by castration, and aggravated by testosterone administration. Leuprorelin, an LHRH agonist that reduces testosterone release from the testis, inhibits nuclear accumulation of mutant ARs, resulting in the rescue of motor dysfunction in the male transgenic mice. However, flutamide, an androgen antagonist promoting nuclear translocation of the AR, yielded no therapeutic effect. The degradation and cleavage of the AR protein are also influenced by the ligand, contributing to the pathogenesis. Testosterone thus appears to be the key molecule in the pathogenesis of SBMA, as well as main therapeutic target of this disease.  相似文献   

6.
7.
8.
9.
Expansion of the CAG trinucleotide repeat encoding glutamine in the androgen receptor gene leads to spinobulbar muscular atrophy (SBMA), a neurodegenerative disorder in a family of polyglutamine diseases with enigmatic pathogenic mechanisms. One established property of glutamine residues is their ability to act as an amine accepter in a transglutaminase-catalyzed reaction, resulting in a proteolytically resistant glutamyl-lysine cross-link. To examine underlying disease mechanisms we investigated the relationship between polyglutamine-expanded androgen receptor and transglutaminase. We found androgen receptor N-terminal fragments are a substrate for transglutaminase. Western blots of the proteins following incubation with transglutaminase show that several different epitopes of the AR appear to be lost. We propose that this is due to the transglutaminase cross-linking of the AR, which interferes with antibody recognition. Furthermore, HEK GFP(u)-1 cells expressing polyglutamine-expanded androgen receptor and transglutaminase exhibit ligand-dependent proteasome dysfunction; this effect was not observed in the presence of cystamine, a transglutaminase inhibitor. In addition, transglutaminase-mediated isopeptide bonds were detected in brains of SBMA transgenic mice, but not in controls, suggesting involvement of transglutaminase-catalyzed reactions in polyglutamine disease pathogenesis. Our hypothesis is that cross-linked AR cannot to be degraded by the proteasome and obstructs the proteasome pore, preventing normal function. Because of the central role the ubiquitin-proteasome degradation system plays in fundamental cellular processes, any alteration in its function could cause cell death, ultimately contributing to SBMA pathogenesis.  相似文献   

10.
Neuronal intranuclear inclusions (NIIs) are a pathological hallmark of CAG repeat diseases. To elucidate the influence of NII formation on intranuclear substructures, we investigated the relationship of NIIs with nuclear bodies in brains of dentatorubral-pallidoluysian atrophy and Machado-Joseph disease. In both diseases, promyelocytic leukemia protein, a major component of the promyelocytic leukemia protein nuclear bodies, altered the normal distribution and was rearranged around NII, forming a single capsular structure. We further demonstrated that NIIs were present in close contact with coiled bodies, a highly dynamic domain that may be involved in the biogenesis of small nuclear ribonucleoproteins. The preferential association of intranuclear polyglutamine aggregates with coiled bodies was also confirmed in the dentatorubral-pallidoluysian atrophy transgenic mouse brain and culture cells expressing mutant atrophin-1. The results suggest that the interaction between NIIs and nuclear bodies may play a role in the pathogenesis of CAG repeat diseases.  相似文献   

11.
Abnormal accumulation of disease-causing protein is a commonly observed characteristic in chronic neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and polyglutamine (polyQ) diseases. A therapeutic approach that could selectively eliminate would be a promising remedy for neurodegenerative disorders. Spinal and bulbar muscular atrophy (SBMA), one of the polyQ diseases, is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. The pathogenic gene product is polyQ-expanded androgen receptor (AR), which belongs to the heat shock protein (Hsp) 90 client protein family. 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a novel Hsp90 inhibitor, is a new derivative of geldanamycin that shares its important biological activities but shows less toxicity. 17-AAG is now in phase II clinical trials as a potential anti-cancer agent because of its ability to selectively degrade several oncoproteins. We have recently demonstrated the efficacy and safety of 17-AAG in a mouse model of SBMA. The administration of 17-AAG significantly ameliorated polyQ-mediated motor neuron degeneration by reducing the total amount of mutant AR. 17-AAG accomplished the preferential reduction of mutant AR mainly through Hsp90 chaperone complex formation and subsequent proteasome-dependent degradation. 17-AAG induced Hsp70 and Hsp40 in vivo as previously reported; however, its ability to induce HSPs was limited, suggesting that the HSP induction might support the degradation of mutant protein. The ability of 17-AAG to preferentially degrade mutant protein would be directly applicable to SBMA and other neurodegenerative diseases in which the disease-causing proteins also belong to the Hsp90 client protein family. Our proposed therapeutic approach, modulation of Hsp90 function by 17-AAG treatment, has emerged as a candidate for molecular-targeted therapies for neurodegenerative diseases. This review will consider our research findings and discuss the possibility of a clinical application of 17-AAG to SBMA and other neurodegenerative diseases.  相似文献   

12.
13.
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disease caused by the expansion of a polyglutamine repeat within the androgen receptor (AR). We have studied the mutant AR in an in vitro system, and find both aggregation and proteolytic processing of the AR protein to occur in a polyglutamine repeat length-dependent manner. In addition, we find the aberrant metabolism of expanded repeat AR to be coupled to cellular toxicity, indicating a likely molecular basis for the toxic gain of AR function that produces neuronal degeneration in SBMA.   相似文献   

14.
We generated transgenic mice that expressed a highly expanded 239 polyglutamine (polyQ) repeat under the control of the human androgen receptor promoter. These transgenic mice developed progressive neurological phenotypes of muscular weakness and ataxia, small body size and short life-span. PolyQ nuclear inclusions (NIs) were remarkable and widespread but found in selective regions of the central nervous system (CNS) such as the spinal cord, cerebrum and cerebellum as well as in selective peripheral visceral organs. This distribution pattern resembled that of spinal and bulbar muscular atrophy somewhat, but was more widespread. In neuronal tissues, NIs were present in astrocytes as well as neurons. Cytoplasmic and axonal inclusions were not observed. In the CNS regions with abundant NIs, neuronal populations were well-preserved, and neither neuronal cell death, reactive astrogliosis nor microglial invasions were detected. These findings suggest that polyQ alone can induce the neuronal dysfunction that precedes gross neuronal degeneration and provides a clue for investigating molecular mechanisms that underly the pathway to neuronal dysfunction from polyQ expansion.  相似文献   

15.
Spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis are two distinct forms of motor neuron disease with different genetic causes, pathology, and clinical course. However, both disorders are characterized by the progressive loss of lower motor neurons and by a similar protective response to growth factors in animal models, therefore raising the possibility of an overlap in the final pathogenic cascade. Mutations in the FUS gene and fused in sarcoma (FUS) protein pathology have now been identified in some amyotrophic lateral sclerosis cases, while a CAG expansion in the androgen receptor gene is known to cause SBMA. Recently, multiple lines of evidence have identified FUS as a major target of the androgen receptor, suggesting that FUS could be dysregulated in SBMA motor neurons. We have investigated this possibility by using a well-established mouse model of SBMA and our analysis of primary motor neuron cultures, spinal cords, and microdissected motor neurons show no evidence for FUS dysregulation.  相似文献   

16.
Expansion of the polyglutamine (polyQ) stretch in the androgen receptor (AR) protein leads to spinal and bulbar muscular atrophy (SBMA), a neurodegenerative disease characterized by lower motor neuron degeneration. The pathogenic mechanisms underlying SBMA remain unknown, but recent experiments show that inhibition of fast axonal transport (FAT) by polyQ-expanded proteins, including polyQ-AR, represents a new cytoplasmic pathogenic lesion. Using pharmacological, biochemical and cell biological experiments, we found a new pathogenic pathway that is affected in SBMA and results in compromised FAT. PolyQ-AR inhibits FAT in a human cell line and in squid axoplasm through a pathway that involves activation of cJun N-terminal kinase (JNK) activity. Active JNK phosphorylated kinesin-1 heavy chains and inhibited kinesin-1 microtubule-binding activity. JNK inhibitors prevented polyQ-AR-mediated inhibition of FAT and reversed suppression of neurite formation by polyQ-AR. We propose that JNK represents a promising target for therapeutic interventions in SBMA.  相似文献   

17.
Spinal and bulbar muscular atrophy (SBMA) is one of a growing number of neurodegenerative diseases caused by a polyglutamine-encoding CAG trinucleotide repeat expansion, and is caused by an expansion within exon 1 of the androgen receptor (AR) gene. The family of polyglutamine diseases is characterized by the presence of ubiquitinated, intranuclear inclusions associated with molecular chaperones and 26S proteasome components, although the role of these inclusions in the pathogenesis of polyglutamine diseases remains unclear. The over-expression of molecular chaperones of the Hsp70 and Hsp40 families has been shown to modulate inclusion frequency and cellular toxicity. We developed a cell culture system which enables the quantitative analysis of the effects of molecular chaperones on the biochemical properties of an expanded repeat AR. Using this approach, we demonstrate that Hsp70 and its co-chaperone Hsp40 not only increase expanded repeat AR solubility, but function to enhance the degradation of expanded repeat AR through the proteasome. Furthermore, our studies indicate that these molecular chaperones significantly decrease the half-life of an expanded repeat AR. Molecular chaperone enhancement of protein degradation points to the modulation of molecular chaperones as a potential therapeutic target for polyglutamine diseases.  相似文献   

18.
Polyglutamine diseases are characterized by neuronal intranuclear inclusions (NIIs) of expanded polyglutamine proteins, indicating the failure of protein degradation. UBB(+1), an aberrant form of ubiquitin, is a substrate and inhibitor of the proteasome, and was previously reported to accumulate in Alzheimer disease and other tauopathies. Here, we show accumulation of UBB(+1) in the NIIs and the cytoplasm of neurons in Huntington disease and spinocerebellar ataxia type-3, indicating inhibition of the proteasome by polyglutamine proteins in human brain. We found that UBB(+1) not only increased aggregate formation of expanded polyglutamines in neuronally differentiated cell lines, but also had a synergistic effect on apoptotic cell death due to expanded polyglutamine proteins. These findings implicate UBB(+1) as an aggravating factor in polyglutamine-induced neurodegeneration, and clearly identify an important role for the ubiquitin-proteasome system in polyglutamine diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号