首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the expression of 5-hydroxytryptamine(7) (5-HT(7)) receptor protein in developing and adult rats with immunohistochemical technique. In adult male rats, 5-HT(7) receptor immunoreactivity was detected in the septum, striatum, indusium griseum, tenia tecta, thalamus, hippocampus and hypothalamus in the forebrain as well as the pons and cerebellum. In brains of 1, 7, 15 and 21 days old male rats but not of adult ones, 5-HT(7) receptor immunoreactivity-positive dot-like structures were detected. The dot-like structures were visualized in hypothalamus, hippocampus, frontal cortex, brainstem and cerebellum at 1 day old male rats. In 7 days old male rats, the dot-like structures were found in the hypothalamus, medial preoptic area (MPA), bed nucleus of the stria terminalis (BST), amygdaloid nucleus and brainstem reticular formation. In 15 and 21 days old male and female rats, 5-HT(7) receptor immunoreactive dots were most clearly detected in MPA, hypothalamus, raphe pallidus, raphe magnus and brainstem reticular formation. The 5-HT(7) receptor immunoreactivity-positive dot-like structures were shown in the cytoplasm and they were less than 1 microm in diameter in 1 and 7 days old rats and became larger to 1-3 microm in 15 and 21 days old rats. From the distribution and morphologic features, the 5-HT(7) receptor immunoreactivity-positive dot-like structure found in developing rat brains is considered to be identical to a cytoplasmic inclusion named 'stigmoid body'.  相似文献   

2.
We evaluated the effects of adrenalectomy (ADX) and replacement with glucocorticoid receptor agonists on serotonin (5-HT) 5-HT1A and 5-HT2 receptor binding in rat brain. 5-HT1A receptor binding was increased in the CA2–CA4 and the dentate gyrus of the hippocampus 1 week after ADX. This effect was prevented by the systemic administration of aldosterone (10 μg/μl/h) but not by RU28362 (10 μg/μl/h). No significant effect was observed on 5-HT2 receptor binding in rat cortex. The expression of 5-HT transporter mRNA was unchanged in the raphe nucleus as measured by in situ hybridization.  相似文献   

3.
The muscarinic acetylcholine receptor antagonist scopolamine significantly increased the number of errors (attempts to pass through two incorrect panels of the three panel-gates at four choice points) in the working memory task with a three-panel runway setup, when injected bilaterally at 3.2 μg/side into the dorsal hippocampus. Concurrent infusion of the selective and potent 5-hydroxytryptamine3 (5-HT3) receptor antagonist Y-25130 (0.32 and 1.0 μg/side) significantly attenuated the increase in working memory errors induced by intrahippocampal 3.2 μg/side scopolamine. Intrahippocampal Y-25130 (1.0 μg/side) by itself did not affect working memory errors. On the other hand, intrahippocampal administration of the competitive NMDA receptor antagonist (±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) at 32 ng/side caused a significant increase in the number of working memory errors. However, Y-25130 at 1.0 μg/side did not affect the increase in working memory errors when infused intrahippocampally together with 32 ng/side CPP. These results suggest that antagonism of hippocampal 5-HT3 receptors is ineffective against working memory failure resulting from blockade of NMDA receptor-mediated neurotransmission, but that it can compensate deficiency of septohippocampal cholinergic activity involved in working memory function of rats.  相似文献   

4.
Summary Serotonergic abnormalities have been identified in the brain of suicide victims independent of psychiatric diagnosis. We report the first study of serotonin 5-HT3 receptors in the brain of suicide victims. There were no differences in the number (Bmax) or affinity (K d ) of 5-HT3 receptors in the temporal cortex of suicide victims compared to matched controls. There was a negative correlation between brain serotonin levels and receptor number (r=–0.5, p=0.04) in both groups. This study indicates that alterations in serotonergic function in the brain of suicide victims do not appear to directly involve the 5-HT3 receptor.  相似文献   

5.
Summary We examined the characteristics of [3H]clozapine binding sites in four rat brain regions (frontal cortex, limbic area, hippocampus and striatum) in order to elucidate the pharmacological profile of this unique atypical antipsychotic drug. The specific [3H]clozapine binding was found to be saturable and reversible in all these brain regions. Scatchard analysis of the saturation data indicated that the specific binding consisted of high- and low-affinity components. Displacement experiments showed that the muscarinic cholinergic receptor represented about 50% of [3H]clozapine binding in each brain area. Serotonin 5-HT2 and dopamine D4 receptor binding sites could also be detected by displacement experiments using ketanserin and nemonapride, respectively, in frontal cortex and limbic area, but not in hippocampus or striatum. Alpha-1, alpha-2, histamine H1, dopamine D1, D2, or D3 receptor components could not be determined within the high-affinity [3H]clozapine binding sites in any brain region. It is possible that the atypical property of clozapine may depend on the modulatory effect on dopaminergic function via 5-HT2 receptor blockade and/or may be mediated via D4 receptor blockade in the mesocortical and mesolimbic area.  相似文献   

6.
The aims of this work were to determine the influence of chronic electroconvulsive shock (ECS) on presynaptic 5-HT(1A) receptor function, postsynaptic 5-HT(1A) receptor function in hippocampus and hypothalamus, and presynaptic 5-HT(1B) receptor function in hippocampus and hypothalamus. This represents part of an on-going study of the effects of ECS on serotonergic receptor activity in selected brain areas which may be relevant to the effects of electroconvulsive therapy (ECT) in humans. Chronic ECS reduced the ability of the 5-HT(1A) receptor agonist 8-hydroxy-2(di-n-propylamino)tetraline (8-OH-DPAT) (0.2 mg/kg s.c.) to decrease 5-HT levels in hypothalamus as shown by in vivo microdialysis, indicative of a reduction in sensitivity of presynaptic 5-HT(1A) autoreceptors. The ability of the 5-HT(1B) receptor antagonist GR 127935 (5 mg/kg s.c.) to increase 5-HT levels in both hippocampus and hypothalamus was unaffected by chronic ECS. 8-OH-DPAT (0.2 mg/kg s.c.) increased cyclic AMP levels in hippocampus measured by in vivo microdialysis approximately 2-fold. The degree of stimulation of cyclic AMP formation was not altered by chronic ECS. However the cyclic AMP response to forskolin (50 micro M) administered via the microdialysis probe, which was approximately 4-fold of basal in sham-treated rats, was almost completely abolished in ECS-treated rats. Since this indicates that either adenylate cyclase catalytic unit activity or Gs protein activity is reduced in the hippocampus after chronic ECS, the lack of change in 8-OH-DPAT-induced cyclic AMP formation may be taken as possible evidence of an increase in sensitivity of postsynaptic 5-HT(1A) receptors in the hippocampus by chronic ECS. Chronic ECS increased basal plasma levels of corticosterone, ACTH and oxytocin. The ACTH response to s.c. injections of 0.2 mg/kg or 0.5 mg/kg 8-OH-DPAT was reduced by chronic ECS. Postsynaptic 5-HT(1A) receptor activity in the hypothalamus, in contrast to the hippocampus, thus appears to be desensitized after chronic ECS. We conclude that chronic ECS has regionally specific effects on both pre- and post-synaptic 5-HT(1A) receptors, but, in contrast to some antidepressant drugs, does not affect presynaptic 5-HT(1B) receptor activity.  相似文献   

7.
Zhang YQ  Gao X  Ji GC  Wu GC 《Brain research》2001,900(1):831-151
The expression of 5-hydroxytryptamine 5-HT2A receptor mRNA was studied in the lumbar spinal dorsal horn, nucleus of raphe magnus (NRM), ventrolateral periaqueductal gray (vlPAG) and dorsal raphe nucleus (DRN) following carrageenan inflammation using in situ hybridization technique. The findings of this study demonstrated that 5-HT2A receptor mRNA was expressed with low to moderate levels in lumbar spinal dorsal horn, NRM, vlPAG and DRN. Following carrageenan inflammation, the expression of 5-HT2A receptor mRNA in ipsilateral dorsal horn, bilateral NRM, vlPAG and DRN was significantly increased. The peak occurred at 3 h and then there was a clear decrease but still a substantial number of labeled cells at 24 h after injection of carrageenan. This result suggested that the synthesis of 5-HT2A receptor is enhanced in spinal dorsal horn, NRM, vlPAG and DRN during inflammatory pain.  相似文献   

8.
Summary Serotonin2 (5-HT2) receptor binding was studied, using3H-spiperone as the ligand, in post-mortem brain specimens obtained from schizophrenic patients (N=11) and non-psychiatric controls (N=11). The maximum number of binding sites (Bmax) was significantly decreased in schizophrenic patients as compared to normal controls. This difference did not appear to be due to neuroleptic treatment. No difference in Kd (an inverse measure of the affinity of3H-spiperone to its binding sites) was observed between the two groups. However, studies with unmedicated schizophrenic patients are needed to draw any definite conclusion. The role of serotonergic processes in the psychobiology of schizophrenia is discussed.  相似文献   

9.
Post-mortem studies of the human brain indicate that certain GABA(A) receptor subtypes may be differentially altered in schizophrenia. Increased binding to the total population of GABA(A) receptors using [3H]muscimol is observed in the post-mortem schizophrenic brain, yet a proportion of these receptors which bind benzodiazepines and are labelled with [3H]flunitrazepam, show decreased or unaltered expression. Data from animal studies suggest that antipsychotic drugs alter GABA(A) receptor expression in a subtype selective manner, but in the opposite direction to that observed in schizophrenia. To broaden our understanding of the effects of antipsychotic drugs on GABA(A) receptors, we examined the saturation binding maximum (B(max)) and binding affinity (K(D)) of [3H]muscimol and [3H]flunitrazepam in the prefrontal cortex (PFC), hippocampus and thalamus of male SD rats that received a sucrose solution containing either haloperidol (1.5 mg/kg), olanzapine (6.5 mg/kg) or no drug daily for up to 28 days using quantitative receptor autoradiography. [3H]Muscimol binding density was increased most prominently in the PFC after 7 days, with larger and more prolonged effects being induced by the atypical antipsychotic drug olanzapine in subcortical regions. While no changes were observed in [3H]muscimol binding in any region after 28 days of drug administration, [3H]flunitrazepam binding density (B(max)) was increased for both antipsychotic treatments in the PFC only. These findings confirm that the subset of GABA(A) receptors sensitive to benzodiazepines are regulated differently from other GABA(A) receptor subtypes following antipsychotic drug administration, in a time- and region-dependent manner.  相似文献   

10.
Participation of adenosine receptors in the depression of synaptic transmission during hypoxia, and the production of multiple populations spikes in the pyramidal neurons following hypoxia, has been investigated in the CA1 area of the rat hippocampal slice. A method is presented for analysing such hyperexcitability, using input/output curves of the second population spike. This method provides evidence that rebound hyperexcitability following hypoxia or prolonged adenosine-mediated inhibition results from an increase in excitability of the CA1 pyramidal neurons rather than from an increase in excitatory neurotransmitter release. Hypoxia-induced depression of the synaptic components of evoked field potentials was blocked in a concentration dependent manner by the selective A1 receptor antagonist 8-cyclopenthyltheophylline (8-CPT), demonstrating extracellular accumulation of adenosine during hypoxia. Upon reoxygenation of slices following 30 min hypoxia, multiple population spikes were evoked by a single orthodromic stimulus in slices that exhibited only a single population spike prior to hypoxia. Such post-hypoxic hyperexcitability was not prevented by superfusion of slices with 8-CPT during hypoxia. Depression of synaptic transmission by 30 min superfusion of slices with 50 μM adenosine was also followed, upon washout, by the appearance of multiple population spikes. However, such hyperexcitability could not be produced by superfusion with adenosine analogues selective for A1 receptors, cyclopentyladenosine, selective for A2a receptors, 2-p-(2-carboxyethyl)phenetheylamino-5′-ethylcarboxamidoadenosine (CGS 21680), or active at A2a and A2b receptors,N6-[2-(3,5-dimethyoxyphenyl)-2-(2-methyl-phenyl)ethyl]adenosine, suggesting that adenosine receptors other than the A1, A2a or A2b subtypes are involved in its generation.  相似文献   

11.
The effect of WAY 100635, a 5-HT1A receptor antagonist, on the impairment of spatial learning caused by intrahippocampal administration of scopolamine, a cholinergic muscarinic receptor antagonist, or 7-chloro-kynurenic acid, an antagonist at the glycine site associated with the NMDA receptor complex, was studied in a two-platform spatial discrimination task. Scopolamine (4 μg/μl) or 7-chloro-kynurenic acid (3 μg/μl), administered bilaterally into the CA1 region of the dorsal hippocampus 10 min before each training session, impaired choice accuracy with no effect on choice latency and errors of omission. Administered subcutaneously at 1 (but not at 0.3) mg/kg 30 min before each training session, WAY 100635 did not modify the acquisition of spatial learning, but prevented the impairment of choice accuracy caused by intrahippocampal scopolamine or 7-chloro-kynurenic acid. These findings suggest that blockade of 5-HT1A receptors can compensate the loss of cholinergic or NMDA-mediated excitatory input to pyramidal cells in the hippocampus. The mechanisms involved and the importance of these findings for the symptomatic treatment of memory disorders in man are discussed.  相似文献   

12.
A transient forebrain ischemia produced a delayed neuronal death of the hippocampus pyramidal cells in stroke-prone spontaneously hypertensive rats (SHRSP). Long term exposure of rats to stress has been reported to induce deleterious effects on the brain including morphological neuronal degeneration in the hippocampus. The present study was designed to examine the effects of psychological and physical stress on the ischemia-related neuronal death and the effects of 5-hydroxytryptamine(4) (5-HT(4)) receptor antagonist. SHRSP were exposed to the psychological or physical stress for 60 min in the communication box once or repeatedly for 3 days and occluded. SB204070, a 5-HT(4) receptor antagonist was injected before the occlusion. Seven days after the occlusion, the number of the neurons damaged morphologically was examined. A transient bilateral carotid occlusion produced a neuronal death of the CA1 subfield of the hippocampus in a time-dependent manner between 3 and 10 min. A 4 min occlusion induced very little morphological damage and a 5 min one produced a significant neuronal death. Exposure of rats to the psychological stress during 60 min for 3 days before the ischemic insults damaged the pyramidal cells by 4 min ischemia much more than without stress. Physical stress daily for 3 times also increased the damaged neurons. Pretreatment of SB204070 0.1 mg/kg after the stress exposure for 3 days significantly decreased the neuronal damage exacerbated by the stress exposure; however, it did not alter the damage induced by 4 or 10 min occlusion without stress. These results suggest that the repeated exposure of animals to the stress dramatically exacerbates the neuronal death by a transient ischemia and the 5-HT(4) receptor may be involved in the stress-induced exacerbating mechanism of the neuronal damage.  相似文献   

13.
The 5-hydroxytryptamine7 (5-HT7) receptor is a G-protein coupled receptor for serotonin that has been implicated in the pathophysiology of psychiatric and neurological disorders including anxiety, depression and schizophrenia. A number of studies have attempted to evaluate the potential role of the 5-HT7 receptor in schizophrenia by utilising genetic or pharmacological tools but to date these have provided conflicting results. Here we investigate the effect of a selective 5-HT7 receptor antagonist, SB-269970, in in vivo psychosis and cognition models and relate efficacy to brain exposures of the compound. SB-269970 significantly attenuated amphetamine-induced rearing and circling in rats. A similar effect was observed in an N-methyl d-aspartic acid (NMDA) receptor antagonist driven psychosis model, where SB-269970 significantly reversed phencyclidine-induced hyperlocomotion, rearing and circling; although the effect was not as robust as with the 5-HT2a receptor antagonist positive control, MDL100,907. SB-269970 also attenuated a temporal deficit in novel object recognition (NOR), indicative of an improvement in recognition memory. Pharmacokinetic analysis of plasma and brain samples taken after behavioural testing confirmed that efficacy was achieved at doses and pre-treatment times where receptor occupancy was substantial. These findings highlight the anti-psychotic and pro-cognitive potential of 5-HT7 receptor antagonists and warrant further studies to explore their therapeutic potential in schizophrenia.  相似文献   

14.
The subiculum may be the key structure in the transfer of relevant processed information from the hippocampal formation to cortical areas. We investigated the location of the serotonin 1B receptor (5-HT1B) in the hippocampus with the specific ligand serotonin-O-carboxymethyl-glycyl[125I]tyrosinamide in rat brain sections using in vitro autoradiography. A high density of 5-HT1B binding sites was found in the dorsal subiculum (DS), in the lacunosum moleculare, and in the most dorsal layer of the stratum oriens of the CAI field. CAI pyramidal neurons that contain 5-HT1B mRNA project primarily to the DS. We interrupted the pyramidal CA1 axons unilaterally by a stereotaxic knife cut. Histological analysis showed that the lesion was restricted to a trail of cells lost between CA1 and DS. Specific 5-HT1B binding site density was decreased in the DS on the ipsilateral side of the lesion compared to the contralateral side. We conclude that 5-HT1B receptors are located on CA1 pyramidal axon terminals in the DS. Serotonin, acting on these receptors, should inhibit CA1 neurotransmitter release and, in this way, modulate subicular functions.  相似文献   

15.
Serotonin1B (5-HT1B) receptor binding in the suprachiasmatic nucleus (SCN) following impairment of serotoninergic transmission was studied by quantitative autoradiography. Serotonin (5-HT) denervation with 5,7-dihydroxytryptamine (5,7-DHT) caused a significant increase in the density of 5-HT1B receptors in both the ventral (62%) and dorsal (53%) parts of the SCN as early as 3 days after axotomy. The magnitude of this increase did not differ 3, 15 or 21 days post-lesion. An up-regulation of 5-HT1B receptors with similar magnitude was obtained in the two parts of the SCN after inhibition of 5-HT synthesis by chronic parachlorophenylalanine treatment. In this case, up-regulation was shown to be reversible after restoration of 5-HT synthesis with -5-hydroxytryptophan. These results indicate that 5-HT1B receptor density in the SCN was inversely correlated with 5-HT levels. These plastic properties exhibited by 5-HT1B receptors in the SSN are discussed in relation to the mode of 5-HT transmission and possible localization of the receptors onto the main chemically defined cell populations of the nucleus.  相似文献   

16.
An involvement of serotonin (5-HT) 1A receptors in the etiology of psychiatric disorders has been suggested. Hypo-responsiveness of the 5-HT1A receptor is linked to anxiety and constitutive deletion of the 5-HT1A receptor produces anxiety-like behaviors in the mouse. Evidence that 5-HT1A receptor inactivation increases the therapeutic effects of antidepressants has also been presented. The present studies used in vivo microdialysis and homologous recombination techniques to examine the contribution of 5-HT1A autoreceptors to these effects. Basal and fluoxetine-evoked extracellular concentrations of 5-HT were quantified in the striatum, a projection area of dorsal raphe neurons (DRN), of wild-type (WT) and 5-HT1A receptor knock out (KO) mice. The density of 5-HT transporters was also determined. Basal 5-HT concentrations did not differ in WT and KO mice. Fluoxetine (10 mg/kg) increased 5-HT concentrations in both genotypes. This increase was, however, 2-fold greater in KO mice. In contrast, no differences in K+-evoked 5-HT concentrations were seen. Similarly, neither basal nor stimulation-evoked DA differed across genotype. Autoradiography revealed no differences between genotype in the density of 5-HT transporters or post-synaptic 5-HT2A receptors, an index of 5-HT neuronal activity. These experiments demonstrate that, under basal and KCl stimulated conditions, adaptive mechanisms in the 5-HT system compensate for the lack of 5-HT1A autoreceptor regulation of DRN. Furthermore, they suggest that the absence of release-regulating 5-HT1A autoreceptors in the DRN can not account for the anxiety phenotype of KO mice. The enhanced response to fluoxetine in KO mice is consistent with pharmacological studies and suggests that adaptive mechanisms that occur in response to 5-HT1A receptor deletion are insufficient to oppose increases in 5-HT concentrations produced by acute inhibition of the 5-HT transporter.  相似文献   

17.
We tested the antinociceptive effect of intrathecal (i.t.) administration of 5-HT and the 5-HT3 receptor agonist, 1-(m-chlorophenyl)-biguanide (mCPBG), in rats submitted to a mechanical noxious stimulus and the influence of the 5-HT3 receptor selective antagonists, tropisetron and granisetron. Both 5-HT and mCPBG (0.01, 0.1, 1, 10, 20 μg/rat) produced a significant dose-dependent antinociception. The lowest active doses were 0.1 and 1 μg for 5-HT and mCPBG, respectively. The effect, observed with 20 μg, was significantly lower with mCPBG (+33±6%) than with 5-HT (+63±7%). For 5-HT-induced antinociception, the minimal inhibitory doses were 0.001 μg/rat for tropisetron and 10 μg/rat for granisetron. In contrast, the same doses of the two antagonists (from 0.1 μg/rat) similarly inhibited the effect of mCPBG. This study provides evidence that contrary to tropisetron, doses of granisetron able to inhibit the effect of a 5-HT3 receptor agonist failed to reduce that of 5-HT. This demonstrates a heterogeneity between 5-HT3 receptor antagonists and questions the true involvement of these receptors in spinal 5-HT-induced antinociception.  相似文献   

18.
Summary The human platelet 5-HT2 receptor may resemble a peripheral model of central 5-HT2 binding sites and has been linked to changes in 5-HT2 receptor function in depression. Therefore, evaluation of the human platelet 5-HT2 binding characteristics is important. Comparing [3H]ketanserin and [3H]LSD as ligands clearly indicated [3H]LSD as ligand of choice for binding studies dealing with the human platelet 5-HT2 receptor. [3H]LSD binding was specific, saturable, and depended upon incubation time, protein concentration and previous handling of tissue, i.e., use of fresh or frozen tissue. In contrast, studies with [3H]ketanserin were unsatisfactory. Although mean receptor densities and affinities have been relatively constant between individuals and over time in healthy subjects with [3H]LSD, examination of the individual data showed considerable variations within single subjects. Thus, KD ranged between 0.50 and 0.68 nM, and Bmax was in the range of 64.9 to 97.1 fmol/mg protein in healthy individual subjects. Therefore, we recommend [3H]LSD as ligand of choice to study platelet 5-HT2 receptor binding in humans. Furthermore, repeated measurement of individual data over time should be interpreted cautiously, especially when data from depressed patients are under examination.  相似文献   

19.
Two-day-old rats were pretreated with 50 mg/kg of capsaicin. After 3–4 months, specific binding of [3H]muscimol and [3H]strychnine was measured in membrane preparations from dorsal spinal cord. A 20–30% decrease of the number of [3H]muscimol binding sites was observed after capsaicin treatment. In contrast, [3H]strychnine binding was unchanged. The results provide indirect evidence for a presynaptic location of GABA receptors on capsaicin-sensitive primary afferent neurons.  相似文献   

20.
Seo K  Fujiwara N  Hu JW  Cairns BE  Someya G 《Brain research》2002,934(2):157-161
The effect of intrathecal administration of the 5-HT(3) receptor agonist 2-methyl-5-hydroxytryptamine (2m-5HT) on jaw muscle activity evoked by mustard oil (MO) injection into the temporomandibular joint of anesthetized rats was examined. One microgram or 100 microg of 2m-5HT significantly enhanced or suppressed jaw muscle responses, respectively. Pre-administration of tropisetron, a 5-HT(3) receptor antagonist, attenuated the effect of 2m-5HT. These results indicate that activation of 5-HT(3) receptors can modulate trigeminal nociceptive responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号