首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endocannabinoid system has recently been shown to play a role in the regulation of bone metabolism. The type 2 cannabinoid receptor (CB2) has been reported to regulate bone mass, but conflicting results have been reported with regard to its effects on bone resorption and osteoclast function. Here we investigated the role that CB2 plays in regulating bone mass and osteoclast function using a combination of pharmacological and genetic approaches. The CB2-selective antagonist/inverse agonist AM630 inhibited osteoclast formation and activity in vitro, whereas the CB2-selective agonists JWH133 and HU308 stimulated osteoclast formation. Osteoclasts generated from CB2 knockout mice (CB2-/-) were resistant to the inhibitory effects of AM630 in vitro, consistent with a CB2-mediated effect. There was no significant difference in peak bone mass between CB2-/- mice and wild-type littermates, but after ovariectomy, bone was lost to a greater extent in wild-type compared with CB2-/- mice. Furthermore, AM630 protected against bone loss in wild-type mice, but the effect was blunted in CB2-/- mice. We conclude that CB2 regulates osteoclast formation and bone resorption in vitro and that under conditions of increased bone turnover, such as after ovariectomy, CB2 regulates bone loss. These observations indicate that CB2 regulates osteoclast formation and contributes to ovariectomy-induced bone loss and demonstrate that cannabinoid receptor antagonists/inverse agonists may be of value in the treatment of bone diseases characterized by increased osteoclast activity.  相似文献   

2.
Peripheral cannabinoid receptor, CB2, regulates bone mass   总被引:8,自引:0,他引:8  
The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered. These changes are reminiscent of human osteoporosis and may result from differential regulation of trabecular and cortical bone remodeling. The CB2(-/-) phenotype is also characterized by increased activity of trabecular osteoblasts (bone-forming cells), increased osteoclast (the bone-resorbing cell) number, and a markedly decreased number of diaphyseal osteoblast precursors. CB2 is expressed in osteoblasts, osteocytes, and osteoclasts. A CB2-specific agonist that does not have any psychotropic effects enhances endocortical osteoblast number and activity and restrains trabecular osteoclastogenesis, apparently by inhibiting proliferation of osteoclast precursors and receptor activator of NF-kappaB ligand expression in bone marrow-derived osteoblasts/stromal cells. The same agonist attenuates ovariectomy-induced bone loss and markedly stimulates cortical thickness through the respective suppression of osteoclast number and stimulation of endocortical bone formation. These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries.  相似文献   

3.
4.
One of the well characterized cell biologic actions of lithium is the inhibition of glycogen synthase kinase-3beta and the consequent activation of canonical Wnt signaling. Because deficient Wnt signaling has been implicated in disorders of reduced bone mass, we tested whether lithium could improve bone mass in mice. We gavage-fed lithium chloride to 8-week-old mice from three different strains (Lrp5(-/-), SAMP6, and C57BL/6) and assessed the effect on bone metabolism after 4 weeks of therapy. Lrp5(-/-) mice lack the Wnt coreceptor low-density lipoprotein receptor-related protein 5 and have markedly reduced bone mass. Lithium, which is predicted to act downstream of this receptor, restored bone metabolism and bone mass to near wild-type levels in these mice. SAMP6 mice have accelerated osteoporosis due to inadequate osteoblast renewal. Lithium significantly improved bone mass in these mice and in wild-type C57BL/6 mice. We found that lithium activated canonical Wnt signaling in cultured calvarial osteoblasts from Lrp5(-/-) mice ex vivo and that lithium-treated mice had increased expression of Wnt-responsive genes in their bone marrow cells in vivo. These data lead us to conclude that lithium enhances bone formation and improves bone mass in mice and that it may do so via activation of the canonical Wnt pathway. Lithium has been used safely and effectively for over half a century in the treatment of bipolar illness. Prospective studies in patients receiving lithium should determine whether it also improves bone mass in humans.  相似文献   

5.
Bone remodeling, comprising resorption of existing bone and de novo bone formation, is required for the maintenance of a constant bone mass. Prostaglandin (PG)E2 promotes both bone resorption and bone formation. By infusing PGE2 to mice lacking each of four PGE receptor (EP) subtypes, we have identified EP4 as the receptor that mediates bone formation in response to this agent. Consistently, bone formation was induced in wild-type mice by infusion of an EP4-selective agonist and not agonists specific for other EP subtypes. In culture of bone marrow cells from wild-type mice, PGE2 induced expression of core-binding factor alpha1 (Runx2/Cbfa1) and enhanced formation of mineralized nodules, both of which were absent in the culture of cells from EP4-deficient mice. Furthermore, administration of the EP4 agonist restored bone mass and strength normally lost in rats subjected to ovariectomy or immobilization. Histomorphometric analysis revealed that the EP4 agonist induced significant increases in the volume of cancellous bone, osteoid formation, and the number of osteoblasts in the affected bone of immobilized rats, indicating that activation of EP4 induces de novo bone formation. In addition, osteoclasts were found on the increased bone surface at a density comparable to that found in the bone of control animals. These results suggest that activation of EP4 induces bone remodeling in vivo and that EP4-selective drugs may be beneficial in humans with osteoporosis.  相似文献   

6.
Parathyroid hormone (PTH) signaling via PTH 1 receptor (PTH1R) involves mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase 1 (MKP1) dephosphorylates and inactivates MAPKs in osteoblasts, the bone-forming cells. We previously showed that PTH1R activation in differentiated osteoblasts upregulates MKP1 and downregulates pERK1/2-MAPK and cyclin D1. In this study, we evaluated the skeletal phenotype of Mkp1 knockout (KO) mice and the effects of PTH in vivo and in vitro. Microcomputed tomography analysis of proximal tibiae and distal femora from 12-week-old Mkp1 KO female mice revealed osteopenic phenotype with significant reduction (8-46%) in bone parameters compared with wild-type (WT) controls. Histomorphometric analysis showed decreased trabecular bone area in KO females. Levels of serum osteocalcin (OCN) were lower and serum tartrate-resistant acid phosphatase 5b (TRAP5b) was higher in KO animals. Treatment of neonatal mice with hPTH (1-34) for 3 weeks showed attenuated anabolic responses in the distal femora of KO mice compared with WT mice. Primary osteoblasts derived from KO mice displayed delayed differentiation determined by alkaline phosphatase activity, and reduced expressions of Ocn and Runx2 genes associated with osteoblast maturation and function. Cells from KO females exhibited attenuated PTH response in mineralized nodule formation in vitro. Remarkably, this observation was correlated with decreased PTH response of matrix Gla protein expression. Expressions of pERK1/2 and cyclin D1 were inhibited dramatically by PTH in differentiated osteoblasts from WT mice but much less in osteoblasts from Mkp1 KO mice. In conclusion, MKP1 is important for bone homeostasis, osteoblast differentiation and skeletal responsiveness to PTH.  相似文献   

7.
Periostin (Postn) is a matricellular protein preferentially expressed by osteocytes and periosteal osteoblasts in response to mechanical stimulation and parathyroid hormone (PTH). Whether and how periostin expression influences bone anabolism, however, remains unknown. We investigated the skeletal response of adult Postn(-/-) and Postn(+/+) mice to intermittent PTH. Compared with Postn(+/+), Postn(-/-) mice had a lower bone mass, cortical bone volume, and strength response to PTH. PTH-stimulated bone-forming indices were all significantly lower in Postn(-/-) mice, particularly at the periosteum. Furthermore, in vivo stimulation of Wnt-β-catenin signaling by PTH, as evaluated in TOPGAL reporter mice, was inhibited in the absence of periostin (TOPGAL;Postn(-/-) mice). PTH stimulated periostin and inhibited MEF2C and sclerostin (Sost) expression in bone and osteoblasts in vitro. Recombinant periostin also suppressed Sost expression, which was mediated through the integrin αVβ3 receptor, whereas periostin-blocking antibody prevented inhibition of MEF2C and Sost by PTH. In turn, administration of a Sost-blocking antiboby partially restored the PTH-mediated increase in bone mass in Postn(-/-) mice. In addition, primary osteoblasts from Postn(-/-) mice showed a lower proliferation, mineralization, and migration, both spontaneously and in response to PTH. Osteoblastic gene expression levels confirmed a defect of Postn(-/-) osteoblast differentiation with and without PTH, as well as an increased osteoblast apoptosis in the absence of periostin. These data elucidate the complex role of periostin on bone anabolism, through the regulation of Sost, Wnt-β-catenin signaling, and osteoblast differentiation.  相似文献   

8.
Deficiency of osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL), in mice induces osteoporosis caused by enhanced bone resorption, but also accelerates bone formation. We examined whether bone formation is coupled with bone resorption in OPG-deficient (OPG-/-) mice using risedronate, an inhibitor of bone resorption. Histomorphometric analysis showed that bone formation-related parameters (e.g. mineral apposition rate and osteoblast surface/bone surface) in OPG-/- mice sharply decreased with suppression of bone resorption by daily injection of risedronate for 30 d. OPG-/- mice exhibited high serum alkaline phosphatase activity and osteocalcin concentration, both of which were decreased to the levels in wild-type mice by the risedronate injection. Serum levels of RANKL were markedly elevated in OPG-/- mice, but were unaffected by risedronate. The ectopic bone formation induced by bone morphogenetic protein-2 implantation into OPG-/- mice was not accelerated even with a high turnover rate of bone, but attenuation of mineral density from the ectopic bone was more pronounced than that in wild-type mice. These results suggest that bone formation is coupled with bone resorption at local sites in OPG-/- mice, and that serum RANKL levels do not reflect this coupling.  相似文献   

9.
Bone anabolic action of PTH has been suggested to be mediated by induction of IGF-I in osteoblasts; however, little is known about the molecular mechanism by which IGF-I leads to bone formation under the PTH stimulation. This study initially confirmed in mouse osteoblast cultures that PTH treatment increased IGF-I mRNA and protein levels and alkaline phosphatase activity, which were accompanied by phosphorylations of IGF-I receptor, insulin receptor substrate (IRS)-1 and IRS-2, essential adaptor molecules for the IGF-I signaling. To learn the involvement of IRS-1 and IRS-2 in the bone anabolic action of PTH in vivo, IRS-1-/- and IRS-2-/- mice and their respective wild-type littermates were given daily injections of PTH (80 mug/kg) or vehicle for 4 wk. In the wild-type mice, the PTH injection increased bone mineral densities of the femur, tibia, and vertebrae by 10-20% without altering the serum IGF-I level. These stimulations were similarly seen in IRS-2-/- mice; however, they were markedly suppressed in IRS-1-/- mice. Although the PTH anabolic effects were stronger on trabecular bones than on cortical bones, the stimulations on both bones were blocked in IRS-1-/- mice but not in IRS-2-/- mice. Histomorphometric and biochemical analyses showed an increased bone turnover by PTH, which was also blunted by the IRS-1 deficiency, though not by the IRS-2 deficiency. These results indicate that the PTH bone anabolic action is mediated by the activation of IRS-1, but not IRS-2, as a downstream signaling of IGF-I that acts locally as an autocrine/paracrine factor.  相似文献   

10.
Glucocorticoid administration to mice results in a rapid loss of bone mineral density due to an imbalance in osteoblast and osteoclast numbers. Whereas excess glucocorticoids reduce both osteoblast and osteoclast precursors, cancellous osteoclast number surprisingly does not decrease as does osteoblast number, presumably due to the ability of glucocorticoids to promote osteoclast life span. Whether glucocorticoids act directly on osteoclasts in vivo to promote their life span and whether this contributes to the rapid loss of bone with glucocorticoid excess remains unknown. To determine the direct effects of glucocorticoids on osteoclasts in vivo, we expressed 11beta-hydroxysteroid dehydrogenase type 2, an enzyme that inactivates glucocorticoids, specifically in the osteoclasts of transgenic mice using the tartrate-resistant acid phosphatase promoter. Bone mass, geometry, and histomorphometry were similar in untreated wild-type and transgenic animals. Glucocorticoid administration for 7 d caused equivalent increases in cancellous osteoblast apoptosis, and equivalent decreases in osteoblasts, osteoid, and bone formation, in wild-type and transgenic mice. In contrast, glucocorticoids stimulated expression of the mRNA for calcitonin receptor, an osteoclast product, in wild-type but not transgenic mice. Consistent with the previous finding that glucocorticoids decrease osteoclast precursors and prolong osteoclast life span, glucocorticoids decreased cancellous osteoclast number in the transgenic mice but not wild-type mice. In accord with this decrease in osteoclast number, the loss of bone density observed in wild-type mice was strikingly prevented in transgenic mice. These results demonstrate for the first time that the early, rapid loss of bone caused by glucocorticoid excess results from direct actions on osteoclasts.  相似文献   

11.
Calcineurin-nuclear factor of activated T cells signaling controls the differentiation and function of osteoclasts and osteoblasts, and regulator of calcineurin-2 (Rcan2) is a physiological inhibitor of this pathway. Rcan2 expression is regulated by T(3), which also has a central role in skeletal development and bone turnover. To investigate the role of Rcan2 in bone development and maintenance, we characterized Rcan2(-/-) mice and determined its skeletal expression in T(3) receptor (TR) knockout and thyroid-manipulated mice. Rcan2(-/-) mice had normal linear growth but displayed delayed intramembranous ossification, impaired cortical bone formation, and reduced bone mineral accrual during development as well as increased mineralization of adult bone. These abnormalities resulted from an isolated defect in osteoblast function and are similar to skeletal phenotypes of mice lacking the type 2 deiodinase thyroid hormone activating enzyme or with dominant-negative mutations of TRα, the predominant TR isoform in bone. Rcan2 mRNA was expressed in primary osteoclasts and osteoblasts, and its expression in bone was differentially regulated in TRα and TRβ knockout and thyroid-manipulated mice. However, in primary osteoblast cultures, T(3) treatment did not affect Rcan2 mRNA expression or nuclear factor of activated T cells c1 expression and phosphorylation. Overall, these studies establish that Rcan2 regulates osteoblast function and its expression in bone is regulated by thyroid status in vivo.  相似文献   

12.
Qin X  Wergedal JE  Rehage M  Tran K  Newton J  Lam P  Baylink DJ  Mohan S 《Endocrinology》2006,147(12):5653-5661
Pregnancy-associated plasma protein (PAPP)-A, a protease for IGF binding protein (IGFBP)-2, -4, and -5, may enhance IGF action by increasing its bioavailability. Here we have determined the role and mechanism of action of PAPP-A in the regulation of osteoblast proliferation in vitro and bone metabolism in vivo. Recombinant PAPP-A (100 ng/ml) significantly increased osteoblast proliferation and free IGF-I concentration. These effects were abolished by noncleavable IGFBP-4, suggesting that PAPP-A promotes osteoblast proliferation by increasing IGF bioavailability. To determine whether PAPP-A exerts an anabolic effect on bone in vivo, we developed transgenic mice that overexpress PAPP-A in osteoblasts using the 2.3-kb rat type I collagen promoter. Consistent with the increase in IGFBP-4 proteolysis, free IGF-I concentration was significantly increased in the conditioned medium of cultured osteoblasts derived from transgenic mice compared with the wild-type littermates. Calvarial bone thickness, bone marrow cavity, and skull bone mineral density were significantly increased in transgenic mice. Bone size-related parameters in femur and tibia such as total bone area and periosteal circumference as determined by peripheral quantitated computed tomography and histological analysis were significantly increased in transgenic mice. Bone formation rate and osteoid surface were increased by more than 2-fold, whereas bone resorbing surface was unaffected. These anabolic effects were sustained with aging. These findings provide strong evidence that PAPP-A acts as a potent anabolic factor in the regulation of bone formation. Thus, enhancing IGF bioavailability by PAPP-A can be a powerful strategy in the treatment of certain metabolic diseases such as osteoporosis.  相似文献   

13.
Regulation of canonical Wnt signaling in osteoblasts has been shown to play an important role in bone formation. Loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein (LRP)5, cause osteoporosis pseudoglioma syndrome in humans, whereas gain-of-function mutations like G171V lead to high bone mass phenotypes. Mouse models of these conditions have enabled the mechanisms of LRP5 action on bone to be elucidated, and allation of additional pathway components like LRP6, Wnt-10b, and the antagonist secreted frizzled-related protein (sFRP)-1 has extended our understanding of Wnt action in the skeleton. LRP5−/− mice exhibit decreased trabecular bone volume (TBV) at an early age owing to reduced osteoblast proliferation and activity, whereas transgenic LRP5G171V/+ mice demonstrate increased TBV at a young age owing to reduced osteoblast and osteocyte apoptosis. Canonical Wnt signaling also plays a role in mechanosensory stimulation of osteoblasts in vitro, and the LRP5G171V/+ transgenic mice are resistant to disuse-induced bone loss. LRP6−/+ mice display diminished TBV indicating that LRP5 and LRP6 are both required for optimal osteoblast function. Wnt-10b−/− mice also exhibit reduced TBV, demonstrating that this is one of the ligands that controls bone formation. In contrast, sFRP-1−/− mice show heightened TBV, but not until adulthood when enhanced osteoblast proliferation, differentiation and activity, as well as diminished osteoblast and osteocyte apoptosis are observed. sFRP-1 also modulates osteoclast formation in vitro, and other family members like sFRP-4 are able to control phosphate metabolism in vivo. Moreover, anabolic factors like bone morphogenetic protein-2 and parathyroid hormone appear to at least partly control bone formation through intersection with Wnt signaling. Finally, new components of the Wnt pathways like the orphan tyrosine kinase receptor Ror2 have recently been identified as modulators of osteoblast physiology. Thus, Wnt signaling plays a substantial role in the regulation of bone and mineral metabolism. Future research will provide for a better understanding of the mechanisms for Wnt action in the skeleton.  相似文献   

14.
Osteoblasts are essential for maintaining bone mass, avoiding osteoporosis, and repairing injured bone. Activation of osteoblast G protein-coupled receptors (GPCRs), such as the parathyroid hormone receptor, can increase bone mass; however, the anabolic mechanisms are poorly understood. Here we use "Rs1," an engineered GPCR with constitutive G(s) signaling, to evaluate the temporal and skeletal effects of G(s) signaling in murine osteoblasts. In vivo, Rs1 expression induces a dramatic anabolic skeletal response, with midfemur girth increasing 1,200% and femur mass increasing 380% in 9-week-old mice. Bone volume, cellularity, areal bone mineral density, osteoblast gene markers, and serum bone turnover markers were also elevated. No such phenotype developed when Rs1 was expressed after the first 4 weeks of postnatal life, indicating an exquisite temporal sensitivity of osteoblasts to Rs1 expression. This pathway may represent an important determinant of bone mass and may open future avenues for enhancing bone repair and treating metabolic bone diseases.  相似文献   

15.
Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone normally following ovariectomy but exhibited a significantly blunted anabolic response to high dose exogenous estrogen. We conclude that the eNOS pathway plays an essential role in regulating bone mass and bone turnover by modulating osteoblast function.  相似文献   

16.
Although it has been established that PTH exerts potent anabolic effects on bone in animals and humans, the mechanism of PTH action on bone remains controversial. Based on the previous findings that PTH treatment increased production of IGF-I in bone cells and that PTH effects on bone cells in vitro were blocked by IGF-I-blocking antibodies, we proposed that IGF-I action is required for the stimulatory effects of PTH on bone formation. To test this hypothesis, we evaluated the effects of PTH on bone formation parameters in growing mice lacking functional IGF-I genes. Five-week-old IGF-I(-/-) mice and wild-type littermates were given daily sc injections of 160 microg/kg body weight of PTH (1-34) or vehicle for 10 d. In wild-type animals, PTH caused a significant increase in serum osteocalcin levels (113%), serum alkaline phosphatase activity (48%), and alkaline phosphatase activity in femoral bone extracts (>80%), compared with the vehicle-treated control group. In contrast, in IGF-I(-/-) mice, there was no significant effect of PTH on any bone formation parameters. PTH treatment increased total bone mineral density, as evaluated by peripheral quantitative computer tomography, at the distal metaphysis of the femur by 40% in wild-type mice, but it had no effect on bone mineral density in mice lacking functional IGF-I genes. In vitro studies using osteoblasts derived from control and IGF-I(-/-) mice revealed that PTH treatment increased cell number in osteoblasts derived from IGF-I knockout mice in the presence of exogenously added IGF-I but not without IGF-I. These data to our knowledge provide the first direct evidence that the anabolic effects of PTH on bone formation in vivo require IGF-I action in growing mice.  相似文献   

17.
Diseases such as osteoporosis are associated with reduced bone mass. Therapies to prevent bone loss exist, but there are few that stimulate bone formation and restore bone mass. Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily, which act as pleiotropic regulators of skeletal organogenesis and bone homeostasis. Ablation of the BMPR1A receptor in osteoblasts increases bone mass, suggesting that inhibition of BMPR1A signaling may have therapeutic benefit. The aim of this study was to determine the skeletal effects of systemic administration of a soluble BMPR1A fusion protein (mBMPR1A-mFc) in vivo. mBMPR1A-mFc was shown to bind BMP2/4 specifically and with high affinity and prevent downstream signaling. mBMPR1A-mFc treatment of immature and mature mice increased bone mineral density, cortical thickness, trabecular bone volume, thickness and number, and decreased trabecular separation. The increase in bone mass was due to an early increase in osteoblast number and bone formation rate, mediated by a suppression of Dickkopf-1 expression. This was followed by a decrease in osteoclast number and eroded surface, which was associated with a decrease in receptor activator of NF-κB ligand (RANKL) production, an increase in osteoprotegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentration. mBMPR1A treatment also increased bone mass and strength in mice with bone loss due to estrogen deficiency. In conclusion, mBMPR1A-mFc stimulates osteoblastic bone formation and decreases bone resorption, which leads to an increase in bone mass, and offers a promising unique alternative for the treatment of bone-related disorders.  相似文献   

18.
Whether the negative impact of excess glucocorticoids on the skeleton is due to direct effects on bone cells, indirect effects on extraskeletal tissues, or both is unknown. To determine the contribution of direct effects of glucocorticoids on osteoblastic/osteocytic cells in vivo, we blocked glucocorticoid action on these cells via transgenic expression of 11beta-hydroxysteroid dehydrogenase type 2, an enzyme that inactivates glucocorticoids. Osteoblast/osteocyte-specific expression was achieved by insertion of the 11beta-hydroxysteroid dehydrogenase type 2 cDNA downstream from the osteoblast-specific osteocalcin promoter. The transgene did not affect normal bone development or turnover as demonstrated by identical bone density, strength, and histomorphometry in adult transgenic and wild-type animals. Administration of excess glucocorticoids induced equivalent bone loss in wild-type and transgenic mice. As expected, cancellous osteoclasts were unaffected by the transgene. However, the increase in osteoblast apoptosis that occurred in wild-type mice was prevented in transgenic mice. Consistent with this, osteoblasts, osteoid area, and bone formation rate were significantly higher in glucocorticoid-treated transgenic mice compared with glucocorticoid-treated wild-type mice. Glucocorticoid-induced osteocyte apoptosis was also prevented in transgenic mice. Strikingly, the loss of vertebral compression strength observed in glucocorticoid-treated wild-type mice was prevented in the transgenic mice, despite equivalent bone loss. These results demonstrate for the first time that excess glucocorticoids directly affect bone forming cells in vivo. Furthermore, our results suggest that glucocorticoid-induced loss of bone strength results in part from increased death of osteocytes, independent of bone loss.  相似文献   

19.
Postmenopausal osteoporosis represents a failure of the response by which bone cells adapt bone mass and architecture to be sufficiently strong to withstand loading without fracture. To address why this failure should be associated with oestrogen withdrawal, we investigated the ulna's adaptive response to mechanical loading in adult female mice lacking oestrogen receptor-alpha (ERalpha(-/-)), those lacking oestrogen receptor-beta (ERbeta(-/-)) and their wild-type littermates. In wild-type mice, short periods of physiologic cyclic compressive loading of the ulna in vivo over a 2-week period stimulates new bone formation. In ERalpha(-/-) and ERbeta(-/-) mice this osteogenic response was respectively threefold and twofold less (P<0.05). In vitro, primary cultures of osteoblast-like cells derived from these mice were subjected to a single short period of mechanical strain. Twenty-four hours after strain the number of wild-type cells was 61+/-25% higher than in unstrained controls (P<0.05), whereas in ERalpha(-/-) cells there was no strain-related increase in cell number. However, the strain-related response of ERalpha(-/-) cells could be partially rescued by transfection with functional human ERalpha (P<0.05). ERbeta(-/-) cells showed a 125+/-40% increase in cell number following strain. This was significantly greater than in wild types (P<0.05).These data support previous findings that functional ERalpha is required for the full osteogenic response to mechanical loading and particularly the stage of this response, which involves an increase in osteoblast number. ERbeta appears to depress the ERalpha-mediated strain-related increase in osteoblast number in vitro, but in female transgenic mice in vivo the constitutive absence of either ERalpha or ERbeta appears to diminish the osteogenic response to loading.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号