首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cellular drug resistance is thought to be an important cause of the poor prognosis for children with relapsed or refractory acute lymphoblastic leukemia (ALL), but it is unknown when, to which drugs, and to what extent resistance is present. We determined in vitro resistance to 13 drugs with the MTT assay. Compared with 141 children with initial ALL, cells from 137 children with relapsed ALL were significantly more resistant to glucocorticoids, L-asparaginase, anthracyclines, and thiopurines, but not to vinca-alkaloids, cytarabine, ifosfamide, and epipodophyllotoxins. Relapsed ALL cells expressed the highest level of resistance to glucocorticoids, with a median level 357- and >24-fold more resistant to prednisolone and dexamethasone, respectively, than initial ALL cells, whereas the resistance ratios for the other drugs differed from 0.8- to 1.9-fold, intraindividual comparisons between initial and relapsed samples from 16 children with ALL showed that both de novo and acquired drug resistance were involved. Specific in vitro drug-resistance profiles were associated with high-risk relapsed ALL groups. In vitro drug resistance was also related to the clinical response to chemotherapy in relapsed/refractory childhood ALL. We conclude that drug resistance may explain the poor prognosis for children with relapsed/refractory ALL. These day may be helpful to design alternative treatment regimens for relapsed childhood ALL.  相似文献   

3.
4.
Relapse of drug-resistant acute lymphoblastic leukemia (ALL) has been associated with increased expression of survivin/BIRC5, an inhibitor of apoptosis protein, suggesting a survival advantage for ALL cells. In the present study, we report that inhibition of survivin in patient-derived ALL can eradicate leukemia. Targeting survivin with shRNA in combination with chemotherapy resulted in no detectable minimal residual disease in a xenograft model of primary ALL. Similarly, pharmacologic knock-down of survivin using EZN-3042, a novel locked nucleic acid antisense oligonucleotide, in combination with chemotherapy eliminated drug-resistant ALL cells. These findings show the importance of survivin expression in drug resistance and demonstrate that survivin inhibition may represent a powerful approach to overcoming drug resistance and preventing relapse in patients with ALL.  相似文献   

5.
The effect of dipyridamole (DPM) on cell sensitivity to anticancer drugs was examined in acute lymphoblastic leukemia (ALL) cell lines. We established two ALL cell lines (KMO-90 and KMO-R) from bone marrow samples of a 12-year-old girl with ALL. The drug concentrations needed to reduce optical density to 50% of that of control cells (IC50) showed that KMO-R was about twofold more resistant to doxorubicin (DOX), mitxantrone (MIT), vincristine (VCR), and etoposide (VP-16) than was KMO-90. Considering that both KMO-90 and KMO-R were established from a patient with ALL at the time of presentation and relapse, respectively, these two cell lines might be novel and useful models for research into the acquisition of drug resistance in ALL cells. Although cytotoxicity of DPM in KMO-90 was about 6% at 1 μg/ml, DPM enhanced cell sensitivity to DOX, MIT, VCR, and VP-16 at this concentration. Cytotoxicity of DPM in KMO-R was less than 5% at 1,5, and 10 μgg/ml. In KMO-R, DPM enhanced cell sensitivity to these four drugs in a dose-dependent manner. The plasma concentrations achieved by oral administration of DPM is about 1 μg/ml. At clinically achievable concentrations, DPM enhanced cell sensitivity to DOX, MIT, VCR, and VP-16 in both KMO-90 and KMO-R, thus showing DPM to be a useful agent for potentiating anticancer chemotherapy of hematopoietic malignancy.  相似文献   

6.
Entry into the cell cycle is mediated by cyclin-dependent kinase 4/6 (CDK4/6) activation, followed by CDK2 activation. We found that pharmacologic inhibition of the Flt3 internal tandem duplication (ITD), a mutated receptor tyrosine kinase commonly found in patients with acute myelogenous leukemia (AML), led to the down-regulation of cyclin D2 and D3 followed by retinoblastoma protein (pRb) dephosphorylation and G(1) cell-cycle arrest. This implicated the D-cyclin-CDK4/6 complex as a downstream effector of Flt3 ITD signaling. Indeed, single-agent PD0332991, a selective CDK4/6 inhibitor, caused sustained cell-cycle arrest in Flt3 ITD AML cell lines and prolonged survival in an in vivo model of Flt3 ITD AML. PD0332991 caused an initial cell-cycle arrest in well-established Flt3 wild-type (wt) AML cell lines, but this was overcome by down-regulation of p27(Kip) and reactivation of CDK2. This acquired resistance was not observed in a Flt3 ITD and a Flt3 wt sample from a patient with primary AML. In summary, the mechanism of cell-cycle arrest after treatment of Flt3 ITD AML with a Flt3 inhibitor involves down-regulation of cyclin D2 and D3. As such, CDK4/6 can be a therapeutic target in Flt3 ITD AML but also in primary Flt3 wt AML. Finally, acquired resistance to CDK4/6 inhibition can arise through activation CDK2.  相似文献   

7.
Acute kidney injury (AKI) is a potentially fatal syndrome characterized by a rapid decline in kidney function caused by ischemic or toxic injury to renal tubular cells. The widely used chemotherapy drug cisplatin accumulates preferentially in the renal tubular cells and is a frequent cause of drug-induced AKI. During the development of AKI the quiescent tubular cells reenter the cell cycle. Strategies that block cell-cycle progression ameliorate kidney injury, possibly by averting cell division in the presence of extensive DNA damage. However, the early signaling events that lead to cell-cycle activation during AKI are not known. In the current study, using mouse models of cisplatin nephrotoxicity, we show that the G1/S-regulating cyclin-dependent kinase 4/6 (CDK4/6) pathway is activated in parallel with renal cell-cycle entry but before the development of AKI. Targeted inhibition of CDK4/6 pathway by small-molecule inhibitors palbociclib (PD-0332991) and ribociclib (LEE011) resulted in inhibition of cell-cycle progression, amelioration of kidney injury, and improved overall survival. Of additional significance, these compounds were found to be potent inhibitors of organic cation transporter 2 (OCT2), which contributes to the cellular accumulation of cisplatin and subsequent kidney injury. The unique cell-cycle and OCT2-targeting activities of palbociclib and LEE011, combined with their potential for clinical translation, support their further exploration as therapeutic candidates for prevention of AKI.Cell division is a fundamental biological process that is tightly regulated by evolutionarily conserved signaling pathways (1, 2). The initial decision to start cell division, the fidelity of subsequent DNA replication, and the final formation of daughter cells is monitored and regulated by these essential pathways (26). The cyclin-dependent kinases (CDKs) are the central players that orchestrate this orderly progression through the cell cycle (1, 2, 6, 7). The enzymatic activity of CDKs is regulated by complex mechanisms that include posttranslational modifications and expression of activating and inhibitory proteins (1, 2, 6, 7). The spatial and temporal changes in the activity of these CDK complexes are thought to generate the distinct substrate specificities that lead to sequential and unidirectional progression of the cell cycle (1, 8, 9).Cell-cycle deregulation is a universal feature of human cancer and a long-sought-after target for anticancer therapy (1, 1013). Frequent genetic or epigenetic changes in mitogenic pathways, CDKs, cyclins, or CDK inhibitors are observed in various human cancers (1, 4, 11). In particular, the G1/S-regulating CDK4/6–cyclin D–inhibitors of CDK4 (INK4)–retinoblastoma (Rb) protein pathway frequently is disrupted in cancer cells (11, 14). These observations provided an impetus to develop CDK inhibitors as anticancer drugs. However, the earlier class of CDK inhibitors had limited specificity, inadequate clinical activity, poor pharmacokinetic properties, and unacceptable toxicity profiles (10, 11, 14, 15). These disappointing initial efforts now have been followed by the development of the specific CDK4/6 inhibitors palbociclib (PD0332991), ribociclib (LEE011), and abemaciclib (LY2835219), which have demonstrated manageable toxicities, improved pharmacokinetic properties, and impressive antitumor activity, especially in certain forms of breast cancer (14, 16). Successful early clinical trials with these three CDK4/6 inhibitors have generated cautious enthusiasm that these drugs may emerge as a new class of anticancer agents (14, 17). Palbociclib recently was approved by Food and Drug Administration for the treatment of metastatic breast cancer and became the first CDK4/6 inhibitor approved for anticancer therapy (18).In addition to its potential as an anticancer strategy, CDK4/6 inhibition in normal tissues could be exploited therapeutically for wide-ranging clinical conditions. For example, radiation-induced myelosuppression, caused by cell death of proliferating hematopoietic stem/progenitor cells, can be rescued by palbociclib (19, 20). Furthermore, cytotoxic anticancer agents cause significant toxicities to normal proliferating cells, which possibly could be mitigated by the concomitant use of CDK4/6 inhibitors (20, 21). More broadly, cell-cycle inhibition could have beneficial effects in disorders in which maladaptive proliferation of normal cells contributes to the disease pathology, as observed in vascular proliferative diseases, hyperproliferative skin diseases, and autoimmune disorders (22, 23). In support of this possibility, palbociclib treatment recently was reported to ameliorate disease progression in animal models of rheumatoid arthritis through cell-cycle inhibition of synovial fibroblasts (24).Abnormal cellular proliferation also is a hallmark of various kidney diseases (25), and cell-cycle inhibition has been shown to ameliorate significantly the pathogenesis of polycystic kidney disease (26), nephritis (27), and acute kidney injury (AKI) (28). Remarkably, during AKI, the normally quiescent renal tubular cells reenter the cell cycle (2934), and blocking cell-cycle progression can reduce renal injury (28). Here, we provide evidence that the CDK4/6 pathway is activated early during AKI and demonstrate significant protective effects of CDK4/6 inhibitors in animal models of cisplatin-induced AKI. In addition, we found that the CDK4/6 inhibitors palbociclib and LEE011 are potent inhibitors of organic cation transporter 2 (OCT2), a cisplatin uptake transporter highly expressed in renal tubular cells (3537). Our findings provide a rationale for the clinical development of palbociclib and LEE011 for the prevention and treatment of AKI.  相似文献   

8.
Determining in vitro drug resistance may reveal clinically relevant information in childhood leukemia. Using the methyl-thiazol-tetrazolium assay, the resistance of untreated leukemic cells to 21 drugs was compared in 128 children with acute myeloid leukemia (AML) and 536 children with acute lymphoblastic leukemia (ALL). The differences between 3 French-American-British (FAB) types (M1/M2, M4, and M5) were also compared. AML was significantly more resistant than ALL to the following drugs, as noted by the median resistance: glucocorticoids (greater than 85-fold), vincristine (4.4-fold), L-asparaginase (6.9-fold), anthracyclines (1.8- to 3.4-fold), mitoxantrone (2.6-fold), etoposide (4.9-fold), platinum analogues (2.4- to 3.4-fold), ifosfamide (3.5-fold), and thiotepa (3.9-fold). For cytarabine and thiopurines, the median LC50 values (the drug concentration that kills 5% of the cells) were equal. Also, busulfan, amsacrine, teniposide, and vindesine showed no significant differences, but the numbers were smaller, and the median LC50 values were 1.3- to 5.2-fold higher in AML. None of the drugs demonstrated greater cytotoxicity in AML. FAB M5 was significantly more sensitive than FAB M4 to most drugs frequently used in AML, as indicated by the following ratios of median sensitivities: the anthracyclines (2.6- to 3.2-fold), mitoxantrone (12.5-fold), etoposide (8.7-fold), and cytarabine (2.9-fold). For etoposide and cytarabine (5.4- and 3.4-fold, respectively) FAB M5 was also significantly more sensitive than FAB M1/M2. FAB M5 was equally sensitive to L-asparaginase and vincristine as ALL. Only 15% of the AML samples were "intermediately" sensitive to glucocorticoids, mainly in FAB M1/M2. The poorer prognosis of childhood AML is related to resistance to a large number of drugs. Within AML, FAB M5 had a distinct resistance pattern. These resistance profiles may be helpful in the rational design of further treatment protocols. (Blood. 2000;96:2879-2886)  相似文献   

9.
ALL blast cells express a variety of specific antigens e.g. CD19, CD20, CD22, CD33, and CD52, which serve as targets for Monoclonal Antibodies (MoAbs). So far, the most experience is available for anti-CD20 (rituximab), which has been combined with chemotherapy for treatment of mature B-ALL/Burkitt's lymphoma. Studies with rituximab have also been completed in B-precursor ALL. Another antigen, CD19, is of great interest due to a very high rate of expression in ALL. It can be targeted by a bispecific monoclonal antibody, Blinatumomab, directed against CD19 and CD3. Smaller studies or case reports are also available for the anti CD52 antibody (Alemtuzumab), for anti CD22 (Epratuzumab) or anti CD33 (Gemtuzumab). Available data demonstrate that MoAb therapy in ALL is a highly promising targeted treatment. However, several details for an optimal treatment approach e.g. the required level of antigen expression, timing, schedule, dosage and stage of disease still need to be defined.  相似文献   

10.
The T-cell variant accounts for about 15 to 25% of acute lymphoblastic leukemias in children and adults. In this perspective article. Drs. Chiaretti and Foà examine our present understanding of this disorder. See related article on page 224.T-cell acute lymphoblastic leukemia (T-ALL) accounts for about 15% and 25% of ALL in pediatric and adult cohorts respectively.1 Patients usually have high white blood cell counts and may present with organomegaly, particularly mediastinal enlargement and CNS involvement. The biological knowledge of TALL has until recently been rather limited. Flow cytometry allowed the stage of differentiation of the leukemic clone to be defined, while cytogenetic analyses were often uninformative. The introduction of novel technologies has allowed an increasing number of alterations to be unraveled. The most relevant results have been obtained by using FISH (Fluorescent In Situ Hybridization), molecular biology and gene expression profiling, which have enabled five subgroups to be recognized, i.e. immature/LYL1, TAL1, HOX11, HOX11L2 and HOX.2The most important biological findings of T-ALL, their role in leukemia initiation and their possible therapeutic implications will be hereby revised.  相似文献   

11.
Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors are considered a breakthrough in cancer therapy. Currently approved for breast cancer treatment, CDK4/6 inhibitors are extensively tested in other cancer subtypes. Frequently observed side effects include hematological abnormalities such as reduced numbers of neutrophils, erythroid cells and platelets that are associated with anemia, bleeding and a higher risk of infections. In order to understand whether the adverse effects within the hematopoietic system are related to CDK4 or CDK6 we generated transgenic mice that lack either CDK4 or CDK6 in adult hematopoiesis. Anemia and perturbed erythroid differentiation are associated with the absence of CDK6 but did not manifest in CDK4- deficient mice. Total CDK6 knockout mice accumulate the most dormant fraction of hematopoietic stem cells due to an impaired exit of the quiescent state. We recapitulated this finding by deleting CDK6 in adult hematopoiesis. In addition, unlike total CDK6 knockout, all stem cell fractions were affected and increased in numbers. The deletion of CDK6 was also accompanied by neutropenia which is frequently seen in patients receiving CDK4/6 inhibitors. This was not the case in the absence of CDK4; CDK4 deficiency resulted in elevated numbers of myeloid progenitors without translating into numeric changes of differentiated myeloid cells. By using Cdk4fl/fl and Cdk6fl/fl mice we assign side effects of CDK4/6 inhibitors predominantly to the absence of CDK6. These mice represent a novel and powerful tool that will enable to study the distinct functions of CDK4 and CDK6 in a tissue-dependent manner.  相似文献   

12.
13.
Relling MV  Hancock ML  Boyett JM  Pui CH  Evans WE 《Blood》1999,93(9):2817-2823
6-Mercaptopurine (6MP) and methotrexate are the backbone of continuation therapy for childhood acute lymphoblastic leukemia (ALL). In studies of oral 6MP and methotrexate, indices of chronic systemic exposure to active metabolites of these agents, namely, red blood cell (RBC) concentrations of methotrexate polyglutamates (MTXPGs) and thioguanine nucleotides (TGNs) have positively correlated with event-free survival (EFS). Our objective was to evaluate whether MTXPGs, TGNs, and the dose intensity of administered methotrexate and 6MP were prognostic in the setting of a treatment protocol in which all treatment was coordinated through a single center, and the weekly doses of methotrexate were given parenterally. On protocol Total XII, 182 children achieved remission and received weekly methotrexate 40 mg/m2 parenterally and daily oral 6MP, interrupted every 6 weeks during the first year by pulse chemotherapy. A total of 709 TGN, 418 MTX-PG, and 267 thiopurine methyltransferase (TPMT) measurements, along with complete dose intensity information (dose received divided by protocol dose per week) for 19,046 weeks of 6MP and methotrexate, were analyzed. In univariate analyses, only higher dose intensity of 6MP and of weekly methotrexate were significant predictors of overall EFS (P =.006 and. 039, respectively). The occurrence of neutropenia was associated with worse outcome (P =.040). In a multivariate analysis, only higher dose intensity of 6MP (P =.020) was a significant predictor of EFS, with lower TPMT activity (P =.096) tending to associate with better outcome. 6MP dose intensity was also associated (P =.007) with EFS among patients with homozygous wild-type TPMT phenotype. Lower 6MP dose intensity was primarily due to missed weeks of therapy and not to reductions in daily dose. We conclude that increased dose-intensity of oral 6MP is an important determinant of EFS in ALL, particularly among those children with a homozygous wild-type TPMT phenotype. However, increasing intensity of therapy such that neutropenia precludes chemotherapy administration may be counterproductive.  相似文献   

14.

Background

MicroRNA regulate the activity of protein-coding genes including those involved in hematopoietic cancers. The aim of the current study was to explore which microRNA are unique for seven different subtypes of pediatric acute lymphoblastic leukemia.

Design and Methods

Expression levels of 397 microRNA (including novel microRNA) were measured by quantitative real-time polymerase chain reaction in 81 cases of pediatric leukemia and 17 normal hematopoietic control cases.

Results

All major subtypes of acute lymphoblastic leukemia, i.e. T-cell, MLL-rearranged, TEL-AML1-positive, E2A-PBX1-positive and hyperdiploid acute lymphoblastic leukemia, with the exception of BCR-ABL-positive and ‘B-other’ acute lymphoblastic leukemias (defined as precursor B-cell acute lymphoblastic leukemia not carrying the foregoing cytogenetic aberrations), were found to have unique microRNA-signatures that differed from each other and from those of healthy hematopoietic cells. Strikingly, the microRNA signature of TEL-AML1-positive and hyperdiploid cases partly overlapped, which may suggest a common underlying biology. Moreover, aberrant down-regulation of let-7b (~70-fold) in MLL-rearranged acute lymphoblastic leukemia was linked to up-regulation of oncoprotein c-Myc (PFDR<0.0001). Resistance to vincristine and daunorubicin was characterized by an approximately 20-fold up-regulation of miR-125b, miR-99a and miR-100 (PFDR≤0.002). No discriminative microRNA were found for prednisolone response and only one microRNA was linked to resistance to L-asparaginase. A combined expression profile based on 14 microRNA that were individually associated with prognosis, was highly predictive of clinical outcome in pediatric acute lymphoblastic leukemia (5-year disease-free survival of 89.4%±7% versus 60.8±12%, P=0.001).

Conclusions

Genetic subtypes and drug-resistant leukemic cells display characteristic microRNA signatures in pediatric acute lymphoblastic leukemia. Functional studies of discriminative and prognostically important microRNA may provide new insights into the biology of pediatric acute lymphoblastic leukemia.  相似文献   

15.
16.
Granular acute lymphoblastic leukemia with hypereosinophilic syndrome   总被引:1,自引:0,他引:1  
9 /l), features of hypereosinophilic syndrome, and acute lymphoblastic leukemia (ALL-L2), the latter characterized by the presence of granular blasts. Blasts were negative for myeloperoxidase, non-specific esterase, acid phosphatase, periodic-acid Schiff stain, and toluidine blue. They exhibited an early pre-B immunophenotype (TdT, CD19, CD10, CD20 and CD22 positive) and stained negative for T (CD7, CD2, CD5 and CD3) and myeloid markers (MPO, CD33 and CD13). Chromosomal analysis revealed a normal karyotype. To the best of our knowledge, this case represents the first report of the coexistence of granular ALL and hypereosinophilic syndrome. Received: 11 May 1999 / Accepted: 20 October 1999  相似文献   

17.
18.
EFS for children with ALL continues to increase and is predicted to reach 90% with current therapy. Better understanding of leukemia cell biology and pharmacogenetics has led to the design of more effective treatment and also refined the prognostic features associated with a poor outcome. ALL characterized by the translocation t(9;22) or t(4;11), or by a hypodiploid karyotype or by an incomplete response to induction therapy is likely to relapse. SCT for ALL is largely used to treat patients failing primary chemotherapy but is selectively included as part of initial therapy for children at high risk for relapse. If SCT is going to become the primary therapy for children with ALL in first remission, the regimen-related mortality must approach 0%, and the risk for severe acute and chronic GVHD should be less than 5%. Salvage therapy after ALL relapse remains the major indication for SCT. The time required to find a suitable match has led to the use of cord blood and haploidentical related donors as stem cell sources. For children who relapse, SCT is likely to remain the principal option to promote survival. Efforts to reduce both the risk of relapse and the transplant regimen toxicity, both immediate and delayed, must continue.  相似文献   

19.
20.
Cancer procoagulant in acute lymphoblastic leukemia   总被引:1,自引:0,他引:1  
In a previous study we characterized cancer procoagulant (CP), a 68 kd cysteine proteinase which directly activates coagulation factor X in various subtypes (from M1 to M5) of acute non-lymphoblastic leukemia (ANLL). The aim of this study was to determine whether CP is also expressed by acute lymphoblastic leukemia (ALL) cells. Blasts from 25 ALL patients were extracted and tested for their procoagulant properties. 16 samples (64%) shortened the recalcification time of normal human plasma, and 9 (36%) did not. 8 of the 16 active samples showed properties compatible with CP, i.e. independence from factor VII in triggering blood coagulation and sensitivity to cysteine proteinase inhibitors. Selected samples also cross-reacted with a polyclonal antibody raised against purified CP. The specific activity of CP in ALL extracts was significantly lower than in most ANLL types previously studied (all but M4). These finding indicate that CP can be a property of the lymphoid phenotype although its expression may be lower than in the myeloid phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号