首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
While the early studies of the inhibins, activins and follistatins concentrated on their role as endocrine regulators of FSH secretion, recent data has emphasized the local actions of the activins and follistatin. Inhibin, through its capacity to suppress FSH secretion can modulate numerous processes within the testis. However, to date, evidence to support a local role for inhibin is limited. In contrast, activin and its binding protein follistatin are produced by a large number of cell-types within the testis raising the possibility of a range of paracrine and autocrine actions. These include the modulation of androgen production, influence on the proliferation of Sertoli cells and germ cells as well as the capacity to influence the structural and functional features of mitochondria within germ cells. Some of these actions are carefully controlled in a temporal relationship during the development of testicular function in the rat in which there is no separation in time between birth and the onset of spermatogenesis. Given the range of actions of activin in different cell-types, recognition of systems that are designed to modulate its actions are crucial in enhancing our understanding of how these many roles can be compartmentalized.  相似文献   

2.
In this short review, the authors summarise the inhibin, activin and follistatin assays developed by the Oxford group and collaborators, and some of the main purposes for which they have been applied. Over 500 research publications have used these assays. We also discuss new assays recently developed at the request of our collaborators for particular applications, and comment on outstanding assay problems.  相似文献   

3.
4.
Activin and inhibin research has provided important insight into reproductive physiology as well as many areas involving regulation of cell growth, differentiation and function. Progress in understanding the roles of these hormones in various cell and tissue types has been complimented by novel discoveries at the molecular level that have shed light on ligand/receptor interactions, signaling mechanisms and regulation. While the receptors and signaling pathway for activin are now well characterized, the molecular basis for inhibin action has remained relatively unclear. Here we summarize recent advances in understanding inhibin's mode of action focusing on our recent identification of betaglycan-glycan as an inhibin co-receptor capable of mediating inhibin action.  相似文献   

5.
激活素和卵泡抑素mRNA在肝纤维化形成过程中的作用   总被引:11,自引:0,他引:11  
目的 观察四氯化碳(CCl4)诱导实验性肝纤维化模型大鼠肝纤维化形成过程中激活素(ACT)βA、βC、βE及卵泡抑素(FS)mRNA的表达。方法 40%CCl4皮下注射制备大鼠实验性肝纤维化模型,注射 CCl4后1、2、3、4、5、6、7周分批处死动物,每次 6~12只,采用半定量 RT—PCR检测 ACT βA、βC、βE亚基及 FSmRNA的表达。结果 正常肝脏可检测到ACT βA、βC、βE及FS亚基mRNA,往射CCl42~3周后,βA水平下降至检测不到的水平,4周以后,又逐渐升高,注射 6~7周时其表达水平明显高于正常对照组(P<0.01);注射CCl41~4周可检测到βC亚基mRNA,5~7周后其表达水平明显高于正常对照组(P<0.05)。βE亚基mRNA在 CCl4注射1~5周后水平下降至检测下到的水平,注射 6~7周后其表达水平则明显高于正常对照组(P<0.05)。CCl4注射后的各个时期均未检测到FS mRNA表达。结论 肝纤维化形成过程中ACT、FS表达发生了不同的变化,ACT—FS系统失衡可能参与了肝纤维化的形成。  相似文献   

6.
Activin signals via complexes of type I (50–55 kDa) and II (70–75 kDa) activin receptors, but the mechanism of inhibin action is unclear. Proposed models range from an anti-activin action at the type II activin receptor to independent actions involving putative inhibin receptors. Two membrane-embedded proteoglycans, betaglycan and p120, have recently been implicated in inhibin binding, but neither appears to be a signalling receptor. The present studies on primary cultures of rat pituitary and adrenal cells, and several murine and human cell lines were undertaken to characterise inhibin binding to its physiological targets. High affinity binding of inhibin to the primary cultures and several of the cell lines, like that previously described for ovine pituitary cells, was saturable and reversible. Scatchard analysis revealed two classes of binding sites (Kd of 40–400 and 500–5000 pM, respectively). Affinity labelling identified [125I]inhibin binding proteins with apparent molecular weights of 41, 74, 114 and >170 kDa in all cell types that displayed high affinity, high capacity binding of inhibin. Additional labelling of a 124 kDa species was evident in gonadal TM3 and TM4 cell lines. In several cases, activin (≥20 nM) competed poorly or not at all for binding to these proteins. The 74, 114 and >170 kDa inhibin binding proteins in TM3 and TM4 cells were immunoprecipitated by an anti-betaglycan antiserum. These three proteins correspond in size to the activin receptor type II and the core protein and glycosylated forms of betaglycan, respectively, that have been proposed to mediate anti-activin actions of inhibin, but the identity of the 74 kDa species is yet to be confirmed. Studies of [125I]inhibin binding kinetics and competition for affinity labelling of individual binding proteins in several cell lines suggest these three species and the 41 and 124 kDa proteins form a high affinity inhibin binding complex. In summary, common patterns of inhibin binding and affinity labelling were observed in inhibin target cells. Novel inhibin binding proteins of around 41 and 124 kDa were implicated in the high affinity binding of inhibin to cells from several sources.  相似文献   

7.
The endocrine system displays highly complex interactions among its components. Excesses or deficiencies of hormone production in one gland may alter the production of hormones by others. Several physiological functions are affected by a balance among hormones acting either together or in sequence. For example, FSH secretion has been demonstrated to be affected by hypothalamic influences upon the anterior pituitary through a specific releasing factor, the decapeptide LRF. This decapeptide stimulates the release of both LH and FSH by the pituitary, and these gonadotropins cause the production of steroids by the testes and the ovaries. Gonadal steroids in the blood act directly upon the anterior pituitary to regulate the output of gonadotropins as originally proposed by Moore and Price in 1932 (3), or act indirectly upon the hypothalamus to adjust the output of pituitary hormones in accordance with the needs of the reproductive system. However, such a simple negative feedback of steroids on the hypothalamic-hypophysial axis cannot account for the differential secretion of FSH observed during the estrus cycle. Therefore, the concept that a gonadal protein, inhibin, specifically regulates FSH secretion was proposed. This concept has now been validated by the isolation and characterization of two forms of inhibin that exert their effects on the pituitary to suppress FSH secretion both in vitro and probably in vivo. Furthermore, the production of inhibin is stimulated by FSH, thus establishing a reciprocal relationship between the release of FSH and inhibin. Since hormones in the body are controlled through interlocking complexes of factors, a variety of secondary factors, in one way or another, may also exert influence on the regulation of FSH secretion. As an example, TGF beta, a protein growth factor found in all tissues, promotes the basal secretion of FSH by the pituitary and enhances FSH-mediated estrogen production by the granulosa cells. It is therefore not surprising that two forms of a novel protein, activin and activin A, isolated from the same FF from which inhibins were isolated, show bioactivities similar to those of TGF beta. These activins are formed as dimers of the two beta-subunits of inhibin, probably as a result of the rearrangement of the gene products. This novel observation that different arrangements of gene products can result in opposite biological activities may thus reflect a wholly different level of control of FSH secretion. If such a phenomenon occurs in other biosystems, it would represent an important form of homeostatic mechanism for controlling biologically active substances.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Activins are secreted proteins belonging to the TGF-β family of signaling molecules. Activin signals are crucial for differentiation and regulation of cell proliferation and apoptosis in multiple tissues. Signal transduction by activins relies mainly on the Smad pathway, although the importance of crosstalk with additional pathways is increasingly being recognized. Activin signals are kept in balance by antagonists at multiple levels of the signaling cascade. Among these, follistatin and FLRG, two members of the emerging family of follistatin-like proteins, can bind secreted activins with high affinity, thereby blocking their access to cell surface-anchored activin receptors. In the liver, activin A is a major negative regulator of hepatocyte proliferation and can induce apoptosis. The functions of other activins expressed by hepatocytes have yet to be more clearly defined. Deregulated expression of activins and follistatin has been implicated in hepatic diseases including inflammation, fibrosis, liver failure and primary cancer. In particular, increased follistatin levels have been found in the circulation and in the tumor tissue of patients suffering from hepatocellular carcinoma as well as in animal models of liver cancer. It has been argued that up-regulation of follistatin protects neoplastic hepatocytes from activin-mediated growth inhibition and apoptosis. The use of follistatin as biomarker for liver tumor development is impeded, however, due to the presence of elevated follistatin levels already during preceding stages of liver disease. The current article summarizes our evolving understanding of the multi-faceted activities of activins and follistatins in liver physiology and cancer.  相似文献   

9.
The adrenal gland is composed of two separate endocrine tissues that control a multitude of bodily functions in their adaptation to external and internal stressors through hormone secretion. The functions of the adrenal gland are regulated by circulating, neural and local factors that ensure proper cell growth and hormone production. Activins and inhibins are among the locally expressed growth factors affecting adrenal cell function. They have been found to influence several aspects of adrenal cell development, adrenocortical steroidogenesis, adrenocortical tumor formation and adrenomedullary cell differentiation. Especially the finding that inhibin α-subunit knockout mice develop adrenocortical carcinomas after gonadectomy has prompted research on the physiological and pathophysiological roles of activin and inhibin in the adrenal cortex. It is now clear that both peptides control adrenocortical physiology and are involved in adrenocortical tumorigenesis at multiple levels, both in murine models as well as in human patients.  相似文献   

10.
Activin A has been shown to be abundant in the theca layer of the large pre-ovulatory follicles of the hen whereas inhibin A is produced in the granulosa layer. The purpose of this study was to investigate the effects of activin A and inhibin A on granulosa cell expression of inhibin beta-B-subunit, FSH receptor (FSHR), and LH receptor (LHR). Granulosa cells were isolated from the F1, F3+F4, and small yellow follicles (SYF; 6-12 mm diameter) of laying hens and pooled according to size. The cells were dispersed and plated in the presence of 0, 10, or 50 ng/ml recombinant human activin A (n=5 replicate cultures). RNA was subsequently extracted from the cells and Northern blots performed. Cell proliferation was determined for all treatments. An identical set of experiments was performed in which the granulosa cells were treated with recombinant human inhibin A (n=4 replicate cultures). Treatment with activin A at 50 ng/ml significantly (p<0.05) increased expression of beta-B-subunit for granulosa cells from all follicles. This dose also significantly increased expression of FSHR in granulosa cells from all follicles (p<0.05) and increased expression of LHR in cells from F1 and F3+F4 follicles (p<0.01) with no significant effect on cells from the SYF. Overall, activin A treatment significantly (p<0.05) decreased cell proliferation at the 50 ng/ml dose. Inhibin A had no significant effect on expression of beta-B-subunit, FSHR or LHR at any dose. There was a moderate stimulatory effect of inhibin A on granulosa cell proliferation. These results suggest that activin A may have an important role in regulating granulosa cell responsiveness to gonadotropins while also modulating follicle development by attenuating cell proliferation.  相似文献   

11.
12.
Inhibin and activin, dimeric protein hormones originally isolated from mammalian gonads, are involved in the regulation of vertebrate reproduction. In the present study, we investigated the localization of inhibin and activin subunits (alpha, beta(A), and beta(B)) immunoreactivity in the brain, pituitary, and ovary of female Liza ramada using immunohistochemistry. We demonstrate that activin beta(A) subunit immunoreactivity is found in most of the brain regions: telencephalon (Tel), midbrain tegmentum (MT), and cerebellum (C). In the pituitary gland, activin beta(A) subunit immunoreactivity is observed in nerve fibers that are in close contact with somatotrophs and gonadotrophs. Strong immunostaining of activin beta(B) subunit is detected in melanotropin (MSH)-producing cells in pars intermedia (PI), which are in close contact with gonadotrophs. In the ovary, the cytoplasm as well as follicle cells of previtellogenic oocytes exhibited strong immunoreactivity of activin beta(A). However, the activin beta(A) and beta(B) immunoreactivity is decreased when the oocytes entered the vitellogenic stage (recrudescence). The progress in the accumulation of yolk within oocytoplasm is accompanied by a decrease in the activin beta(A) and beta(B) immunoreactivity and eventually the immunoreactivity disappears completely when the oocytes become fully mature. Interestingly, the vitellogenic oocytes of female L. ramada obtained from fresh water (captivity) contain only weak immunoreactivity of activin beta(A) compared to that of saline water (natural habitat). Moreover, immunoreactivity of activin beta(B) is observed in the phagocytic granulosa cells during resorption of oocytes (atresia) within the ovary of female reared in captivity. The immunostaining of inhibin alpha in the ovary is similar to that of activin beta(B) but the reaction intensity is weaker. However, the mature oocytes show a positive reaction for inhibin alpha. These results provide evidence for the presence of inhibin and activin-like molecules within L. ramada and reveal the distribution of these molecules in L. ramada brain-hypophysial-gonadal system. Our observations add some new informations to our current understanding of activin system in fish and suggest that inhibin and activin may play an important role for L. ramada reproduction in the event of oocyte growth and maturation.  相似文献   

13.
Recently, zebrafish has quickly risen as a model species for functional analysis of the brain-pituitary-gonad axis. However, one of the hurdles for such work in this popular model organism is the small size of its pituitary gland, which makes it difficult to investigate the regulation of pituitary hormone expression and secretion in vitro. To provide a solution to this problem and demonstrate the value of zebrafish in reproductive endocrinology, the present study was undertaken to establish a primary pituitary cell culture followed by investigating the regulation of FSHβ (fshb), LHβ (lhb), and GH (gh) expression by a variety of neuroendocrine, endocrine, and paracrine factors. All the factors examined influenced the expression of fshb, lhb, and ghin vitro except epidermal growth factor (EGF) despite the expression of its receptor egfr in the pituitary. Acting in a similar manner, gonadal steroids (estradiol and testosterone) stimulated both fshb and lhb, but had no effect on gh. In contrast, all other factors tested (gonadotropin-releasing hormone, GnRH; pituitary adenylate cyclase-activating polypeptide, PACAP; activin/follistatin, and insulin-like growth factor I, IGF-I) exhibited distinct effects on the expression of the three target genes studied, suggesting roles for these factors in the differential regulation of two gonadotropins and growth hormone and therefore the gonadotrophic and somatotrophic axes.  相似文献   

14.
15.
An aminopeptidase of the B-type, with an apparent Mr 72 000 and pI = 4.9, was isolated from rat testes and characterized. The enzyme was able to remove only Arg and/or Lys residues from -amino acid β-naphthylamide derivatives and from the N-terminus of several peptides. No cleavage occurred in the case of Arg-Pro bonds as found in bradykinin and substance P. The enzyme was sensitive to cysteinyl reagents and to aminopeptidase inhibitors, such as bestatin, amastatin and arphamenines A and B. The aminopeptidase activity, tested with -Arg β-naphthylamide and with Arg0-Met-enkephalin as substrates, was inhibited by o-phenanthroline, and restored by Zn2+ suggesting its metallopeptidase character. The partial characterization of an aminopeptidase-B activity in rat brain cortex identified a protein which is biochemically and immunologically related to the testis enzyme. By immunohistochemistry, the aminopeptidase-B was found to be particularly abundant in the seminiferous tubules at late stages of spermatogenesis and was clearly detected in a restricted area of elongated spermatids. Remarkably, the enzyme was observed to concentrate massively in the residual bodies. Since this aminopeptidase-B was able in vitro to trim out N-terminal Arg and/or Lys residues from peptides mimicking processing intermediates, it is proposed that this enzyme may be involved in propeptide and proprotein processing mechanisms in the course of spermatid differentiation.  相似文献   

16.
Glucocorticoids (GC) are the hormonal mediators of stress. In mammals, high levels of GC have negative effects on reproductive physiology. For instance, GC can inhibit testicular testosterone synthesis by acting via glucocorticoid receptors (GR), the extent of the inhibition being dependent on GC levels. However, the effect of GC on testicular function and even the presence of GR in amphibians are still unclear. The purpose of this work was to characterise testicular cytosolic GR in Bufo arenarum, determining the seasonal changes in its binding parameters as well as the intratesticular localisation. The binding assays were performed in testis cytosol with [3H]dexamethasone (DEX) and [3H]corticosterone (CORT). Binding kinetics of DEX and CORT fitted to a one-site model. Results were expressed as means +/- standard error. Apparent number of binding sites (Bapp) was similar for both steroids (Bapp DEX = 352.53 +/- 72.08 fmol/mg protein; Bapp CORT = 454.24 +/- 134.97 fmol/mg protein) suggesting that both hormones bind to the same site. Competition studies with different steroids showed that the order of displacement of [3H]DEX and [3H]CORT specific binding is: DEX approximately RU486 approximately deoxycorticosterone (DOC) > CORT > aldosterone > RU28362 > progesterone > 11-dehydroCORT. The affinity of GR for DEX (Kd = 11.2 +/- 1.5 nM) remained constant throughout the year while circulating CORT clearly increased during the reproductive season. Therefore, testis sensitivity to GC action would depend mainly on inactivating mechanisms (11beta-hydroxysteroid dehydrogenase type 2) and CORT plasma levels. Since total and free CORT are higher in the reproductive than in the non-reproductive period, the magnitude of GC actions could be higher during the breeding season. The intratesticular localisation of the GR was determined after separation of cells by a Percoll density gradient followed by binding assays in each fraction. DEX binds to two different fractions corresponding to Leydig and Sertoli cells. In conclusion, in the testis of B. arenarum GC could regulate the function of both cellular types particularly during breeding when CORT reaches the highest plasma concentration.  相似文献   

17.
In rat Leydig cells, glucocorticoids (GC) inhibit testosterone (T) synthesis via glucocorticoid receptor (GR). However, GC access to GR is regulated by the local expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD). Two isoforms were identified in mammals: type 1, a NADP+-preferring enzyme with K(m) in the muM range for GC and type 2, NAD+-dependent, with K(m) in the nM range for GC. In amphibians, a seasonal rhythm in baseline GC levels was described. However, a shift in the amount of deactivating 11beta-HSD activity could alter GC effects. The purpose of this work is to describe seasonal changes in testicular activity of 11beta-HSD in Bufo arenarum as well as the annual and seasonal patterns of plasma corticosterone (B) and T. The activity of 11beta-HSD was assayed in homogenate and subcellular fractions in pre-reproductive (Pre-R), reproductive (R) and post-reproductive (Post-R) periods, using [3H]B. Plasma B and T were determined by RIA. Testicular 11beta-HSD is a microsomal NAD+-dependent enzyme with a K(m) in the nM order, its activity being strongly reduced by glycyrrhetinic acid. These results indicate that toad testes express an 11beta-HSD similar to mammalian type 2. Although 11beta-HSD activity is higher in the Post-R than in the R and Pre-R seasons (V(max): Pre-R: 0.26+/-0.10, R: 0.14+/-0.01, Post-R: 1.37+/-0.45, pmol/minmg protein), K(m) value remains constant throughout the year. A seasonal rhythm in baseline GC concentrations inversely correlated with plasma T was also described. T concentration is lower in the R season than in the other periods (Pre-R: 90+/-6; R: 12+/-1; Post-R: 56+/-3, nM) while total B concentration is higher in the breeding than in the other seasons (Pre-R: 62+/-10; R: 145+/-18; Post-R: 96+/-10, nM). Furthermore, free B (Pre-R: 51+/-8; R: 94+/-12; Post-R: 70+/-7, nM) was always below K(m) values. In conclusion, this work shows that the activity of 11beta-HSD in toad testes could modulate GC action by transforming active hormones in the corresponding inactive steroid.  相似文献   

18.
Estrogen plays an important role in male reproduction. Most of the actions are mediated by estrogen receptor (ER). To investigate the profile of estrogen affecting male fertility, we firstly cloned four ERs from the male Spinibarbus denticulatus, a local economically important cyprinid fish in China. Phylogenetic tree analysis ranked the four sdERs as two distinct groups of ERalpha and beta, which could be further divided into duplicated isoforms 1 and 2, respectively. High score identities were shared between each of the duplicated isoforms. All of the four sdERs distributed in central nervous system of male fish with a quite broad spectrum. However, distribution diversity became evident between sdERalpha and sdERbeta subtypes in the peripheral tissues. Both of the two isoforms of ERbeta were detected in all seven tissues examined, while expression of sdERalpha1 was mainly limited to liver, kidney, testis and intestine and sdERalpha2 was confined to liver, heart, kidney, testis and gill. During the testis recrudescing stages, serum concentration of luteinizing hormone (LH), testosterone (T) and estradiol-17beta (E(2)) were increasing. T and LH levels in the circulation were high until the later fully recrudesced phase, while serum E(2) level was low all the time. Quantitative real-time RT-PCR analysis determined the most abundance of sdERs in pituitary where the two sdERalpha isoforms positively expressed with testis development, while sdERbeta isoforms expressed with a reverse pattern. sdERalpha1 and sdERbeta1 were the primary forms in testis. sdERalpha1 gradually increased during the recrudescence process while sdERbeta1 firstly decreased during the recrudescing stage and then positively expressed in fully recrudesced stage. Little or no signal was detected in brain. The present work provided evidence of four sdERs in male reproductive system and suggested an important role of sdERalpha1 during testis recrudescence. Pituitary contained duplicates forms of sdERalpha which may play a role in the feedback effects of estrogen on LH secretion.  相似文献   

19.
目的 探讨细辛、杜仲及其合剂对D-半乳糖所致衰老小鼠的抗衰老作用。方法 应用光镜电镜技术测定小鼠睾丸的重量、生精小管直径、生精上皮细胞数、间质细胞数的随龄变化,同时观察了细辛、杜仲及其合剂对上述指标的影响。结果 随增龄,睾丸重量减轻,生精小管直径缩小。衰老时生精细胞缺如,仅剩支持细胞或见散在分布,间质细胞随龄递减。细辛、杜仲及其合剂可以使小鼠的生精小管增粗,生精过程活跃,生精细胞增多,间质细胞增多。结论 细辛,杜仲及其合剂具有一定的抗衰老作用,合剂的抗衰老作用优于细辛组和杜仲组。  相似文献   

20.
The roles of epidermal growth factor (EGF) family in the ovary have received increasing attention recently. Despite this, the production sites of EGF family members in the ovarian follicle still remain controversial. Using zebrafish as the model, the present study investigated spatial distribution of several EGF family ligands and receptors in the follicle as well as their temporal expression profiles during folliculogenesis. RT-PCR analysis on the somatic follicle layer and oocyte revealed that all EGF family ligands examined (egf, tgfa, btc and hbegf) were mostly or exclusively expressed in the oocyte. In contrast, their common receptor (egfr) was expressed exclusively in the follicle layer. By comparison, members of activin family showed an opposite pattern of distribution. Activin subunits (inhbaa and inhbb) were both expressed exclusively in the follicle layer whereas activin receptors and follistatin were abundantly present in the oocyte. During folliculogenesis, egf, tgfa and hbegf increased their expression together with egfr in the fast secondary growth phase. The developmental profiles of EGF family during embryogenesis appeared to argue for an important role for EGF family in folliculogenesis rather than embryogenesis as maternal molecules. The present study provided clear evidence for the existence of two paracrine pathways in the follicle, the oocyte-derived EGF family ligands and follicle cell-derived activins, which may mediate oocyte-to-follicle cell and follicle cell-to-oocyte communications, respectively. The functional relationship between these two signaling systems in the follicle is suggested by the observation that all four EGFR ligands examined significantly stimulated activin subunit expression in cultured follicle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号