首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Late renal graft loss is associated with interstitial fibrosis. Hypoxia‐inducible factor‐1α (HIF‐1α) is thought to facilitate fibrosis through interaction with TGF‐β1, while hepatocyte growth factor (HGF) may act antifibrotic in the kidney allograft. The aim of this study was to investigate the expression of HIF‐1α and HGF in protocol biopsies as possible prognostic biomarkers for renal fibrosis. Thirty‐nine renal transplant recipients were included in the study. Protocol biopsies performed 1 and 2 years after transplantation were used for immunohistochemistry analysis. The correlation between HIF‐1α/HGF and the Banff score was analysed. In addition, progression in renal fibrosis and graft survival among recipients with high or low expression of HIF‐1α/HGF after transplantation was compared. There was no significant correlation between fibrosis and the HIF‐1α expression 1 and 2 years after transplantation, but an inverse significant correlation between the HGF expression and the fibrosis score 1 year after transplantation was shown. Even when adjusting for human leucocyte antigen mismatches, there was a significant relationship between fibrosis and HGF expression. Graft survival was not significantly correlated to HIF‐1α or HGF at 1 year, although the trend was towards better graft survival with high HGF. HGF may have antifibrotic effects in human renal transplants. (Central.Denmark.Region.Committee number: 1‐10‐72‐318‐13)  相似文献   

2.
This study was aimed to investigate the effects of experimental left varicocele (ELV) repair on hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) expressions and angiogenesis in rat testis. ELVs were surgically created in 26 adult male Sprague‐Dawley rats. Thirty days after surgery, ELV repair was performed in 13 of the rats. All rats subsequently underwent orchiectomy 30 days after the last laparotomy. Histology of ELV‐repaired testicles was compared to that of the unrepaired (ELV) group. The frequency of positive HIF‐1α findings was significantly lower in the ELV‐repaired than in the ELV group. The frequency of positive VEGF findings was also lower in the ELV‐repaired than in the ELV group, although the difference was not statistically significant (P = 0.238). The mean microvessel density in ELV‐repair group was significantly lower than that in the ELV group (P = 0.002). Our study demonstrated that ELV repair may protect tissues from hypoxia and hypoxia‐related pathophysiologic events, such as angiogenesis, in rat testis.  相似文献   

3.
4.
Implant wear and corrosion have been associated with adverse tissue reactions that can lead to implant failure. Wear and corrosion products are therefore of great clinical concern. For example, Co2+ and Cr3+ originating from CoCrMo‐based implants have been shown to induce a proinflammatory response in macrophages in vitro. Previous studies have also shown that the polarization of macrophages by some proinflammatory stimuli is associated with a hypoxia‐inducible factor‐1α (HIF‐1α)‐dependent metabolic shift from oxidative phosphorylation (OXPHOS) towards glycolysis. However, the potential of Co2+ and Cr3+ to induce this metabolic shift, which plays a determining role in the proinflammatory response of macrophages, remains largely unexplored. We recently demonstrated that Co2+, but not Cr3+, increased oxidative stress and decreased OXPHOS in RAW 264.7 murine macrophages. In the present study, we analyzed the effects of Co2+ and Cr3+ on glycolytic flux and HIF‐1α stabilization in the same experimental model. Cells were exposed to 6 to 24 ppm Co2+ or 50 to 250 ppm Cr3+. Glycolytic flux was determined by analyzing extracellular flux and lactate production, while HIF‐1α stabilization was analyzed by immunoblotting. Results showed that Co2+, and to a lesser extent Cr3+, increased glycolytic flux; however, only Co2+ acted through HIF‐1α stabilization. Overall, these results, together with our previous results showing that Co2+ increases oxidative stress and decreases OXPHOS, suggest that Co2+ (but not Cr3+) can induce a HIF‐1α‐dependent metabolic shift from OXPHOS towards glycolysis in macrophages. This metabolic shift may play an early and pivotal role in the inflammatory response induced by Co2+ in the periprosthetic environment.  相似文献   

5.
Chemokines produced by synoviocytes of the subacromial bursa are up‐regulated in subacromial bursitis and rotator cuff disease. We hypothesized that SDF‐1α production in bursal synoviocytes may be induced by local cytokines such as interleukin IL‐1β and IL‐6. Subacromial bursa specimens were obtained from patients undergoing shoulder surgery. Bursal specimens were stained with anti‐human antibodies to IL‐1, IL‐6, and SDF‐1α by immunohistochemistry and compared to normal and rheumatoid controls. Bursal cells were also isolated from specimens and cultured. Early passaged cells were then treated with cytokines (IL‐1β and IL‐6) and SDF‐1α expression was measured by ELISA and RT‐PCR. SDF‐1α, IL‐1β, and IL‐6 were expressed at high levels in bursitis specimens from human subacromial bursa compared to normal controls. In cultured bursal synoviocytes, there was a dose‐dependent increase in SDF‐1α production in the supernatants of cells treated with IL‐1β. SDF‐1α mRNA expression was also increased in bursal cells treated with IL‐1β. IL‐6 caused a minimal but not statistically significant increase in SDF‐1α expression. SDF‐1α, IL‐1β, and IL‐6 are expressed in the inflamed human subacromial bursal tissues in patients with subacromial bursitis. In cultured bursal synoviocytes, SDF‐1α gene expression and protein production are stimulated by IL‐1β. IL‐1β produced by bursal syvoviocytes and inflammatory cells in the human subacromial bursa is an important signal in the inflammatory response that occurs in subacromial bursitis and rotator cuff disease. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29:1695–1699, 2011  相似文献   

6.
Transforming growth factor‐β inducible early gene (TIEG) is induced by transforming growth factor‐β (TGF‐β) and acts as the primary response gene in the TGF‐β/Smad pathway. TGF‐β is a multifunctional growth factor that affects dermal wound healing; however, the mechanism of how TGF‐β affects wound healing is still not well understood because of the complexity of its function and signaling pathways. We hypothesize that TIEG may play a role in dermal wound healing, with involvement in wound closure, contraction, and reepithelialization. In this study, we have shown that TIEG1 knockout (TIEG1–/–) mice have a delay in wound closure related to an impairment in wound contraction, granulation tissue formation, collagen synthesis, and reepithelialization. We also found that Smad7 was increased in the wounds and appeared to play a role in this wound healing model in TIEG1–/– mice.  相似文献   

7.
Exposed to inflammatory factors or cytokines, fibroblasts appear to play additional roles beyond the deposition of extracellular matrix. It has been reported that tumor necrosis factor‐α (TNF‐α) induces the production of matrix metalloproteinase‐2 (MMP‐2) and transforming growth factor‐β1 (TGF‐β1) in fibroblasts. In this study, we demonstrated that the active MMP‐2 secreted by lung fibroblasts reached the peak level at 12 hours after TNF‐α treatment, whereas, by adding anti‐TGF‐β1 antibody in the culture medium, the MMP‐2 production in response to TNF‐α was maintained at high levels after 24 hours of treatment. We also confirmed that TNF‐α induced up‐regulation of active TGF‐β1 and exogenous TGF‐β1 induced down‐regulation of MMP‐2 synthesis in lung fibroblasts. Moreover, an increased MMP‐2 level was observed in a rat model with pulmonary inflammation and fibrosis induced by bleomycin‐A5. This revealed that MMP‐2 in the lung reached the peak level when TNF‐α reached the peak level at the 7th day, and then MMP‐2 decreased along with an increase in the TGF‐β1 level. Taken together, our results demonstrate that TNF‐α induced an increase of MMP‐2 and TGF‐β1 in lung fibroblasts, and the TGF‐β1 attenuated the up‐regulation of MMP‐2. This suggests that MMP‐2 secreted from fibroblasts modulated by TNF‐α/TGF‐β1 might play an important role in pulmonary inflammation and fibrosis.  相似文献   

8.
Simvastatin, a 3‐hydroxy‐3‐methylglutaryl coenzyme‐A reductase inhibitor, is used to reduce cholesterol levels. Accumulating evidence has revealed the immunomodulatory and anti‐inflammatory effects of simvastatin that prevent cardiovascular diseases. In addition, the beneficial effects of statins on fibrosis of various organs have been reported. However, the functional effect of statins on dermal fibrosis of keloids has not yet been explored. The objective of this study was to determine whether simvastatin could affect dermal fibrosis associated with keloids. We examined the effect of simvastatin on transforming growth factor (TGF)‐β1‐induced production of type I collagen, connective tissue growth factor (CTGF or CCN2), and α‐smooth muscle actin (α‐SMA). Keloid fibroblasts were cultured and exposed to different concentrations of simvastatin in the presence of TGF‐β1, and the effects of simvastatin on TGF‐β1‐induced collagen and CTGF production in keloid fibroblasts were determined. The type I collagen, CTGF, and α‐SMA expression levels and the Smad2 and Smad3 phosphorylation levels were assessed by Western blotting. The effect of simvastatin on cell viability was evaluated by assessing the colorimetric conversion of 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyltetrazolium bromide. Simvastatin suppressed TGF‐β1‐induced type I collagen, CTGF, and α‐SMA production in a concentration‐dependent manner. The TGF‐β1‐induced Smad2 and Smad3 phosphorylation levels were abrogated by simvastatin pretreatment. The inhibition of type I collagen, CTGF, and α‐SMA expression by simvastatin was reversed by geranylgeranyl pyrophosphate, suggesting that the simvastatin‐induced cellular responses were due to inhibition of small GTPase Rho involvement. A RhoA activation assay showed that preincubation with simvastatin significantly blocked TGF‐β1‐induced RhoA activation. The Rho‐associated coiled kinase inhibitor Y27632 abrogated TGF‐β1‐induced production of type I collagen, CTGF, and α‐SMA. However, Y27632 had no significant effect on TGF‐β1‐induced phosphorylation of Smad2 and Smad3. In conclusion, the present study suggests that simvastatin is an effective inhibitor of TGF‐β1‐induced type I collagen, CTGF, and α‐SMA production in keloid fibroblasts.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Connective tissue growth factor (CCN2/CTGF) and transforming growth factor β1 (TGF‐β1) are important regulators of skin wound healing, but controversy remains regarding their expression in epithelial cell lineages. Here, we investigate the expression of CCN2 in keratinocytes during reepithelialisation and its regulation by TGF‐β1. CCN2 was detected in the epidermis of healing full‐thickness porcine wounds. Human keratinocytes were incubated with or without 10 ng/ml TGF‐β1, and signalling pathways were blocked with 10‐μM SIS3 or 20‐μM PD98059. Semi‐quantitative real‐time PCR was used to study CCN2 mRNA expression, and western blot was used to measure CCN2, phosphorylated‐ERK1/2, ERK1/2, phosphorylated‐Smad3 and Smad2/3 proteins. CCN2 was transiently expressed in neoepidermis at the leading edge of the wound in vivo. In vitro, CCN2 expression was induced by TGF‐β1 at 2 hours (7·5 ± 1·9‐fold mRNA increase and 3·0 ± 0·6‐fold protein increase) and 12 hours (5·4 ± 1·9‐fold mRNA increase and 3·3 ± 0·6‐fold protein increase). Compared with inhibiting the SMAD pathway, inhibiting the mitogen‐activated protein kinase (MAPK) pathway was more effective in reducing TGF‐β1‐induced CCN2 mRNA and protein expression. Inhibition of the MAPK pathway had minimal impact on the activity of the SMAD pathway. CCN2 is expressed in keratinocytes in response to tissue injury or TGF‐β1. In addition, TGF‐β1 induces CCN2 expression in keratinocytes through the ras/MEK/ERK pathway. A complete understanding of CCN2 expression in keratinocytes is critical to developing novel therapies for wound healing and cutaneous malignancy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号