首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whereas hepatic lipase (HL) has been implicated in lipoprotein metabolism and atherosclerosis, its role in controlling biliary lipid physiology has not been reported. This work characterizes plasma lipoprotein cholesterol, hepatic cholesterol content, bile acid metabolism, biliary cholesterol secretion, and gallstone formation in HL-deficient mice and C57BL/6 controls fed standard chow, a cholesterol-supplemented diet, or a lithogenic diet. Compared with C57BL/6 controls, HL knockout mice exhibited increased basal plasma high-density lipoprotein (HDL) cholesterol as well as reduced cholesterol levels transported in large lipoproteins in response to cholesterol-enriched diets. Hepatic cholesterol content and biliary cholesterol secretion of chow-fed HL knockout and wild-type mice were not different and increased similarly in both strains after feeding dietary cholesterol or a lithogenic diet. There were no differences in biliary bile acid secretion, bile acid pool size and composition, or fecal bile acid excretion between HL-deficient and control mice. HL knockout mice had a similar prevalence of gallstone formation as compared with control mice when both strains were fed with a lithogenic diet. In conclusion, the deficiency of HL has no major impact on the availability of lipoprotein-derived hepatic cholesterol for biliary secretion; HL expression is not essential for diet-induced gallstone formation in mice.  相似文献   

2.
Background/aims: Receptor‐mediated endocytosis is a critical cellular mechanism for the uptake of lipoprotein cholesterol in the liver. Because Niemann‐Pick C1 (NPC1) protein is a key component for the intracellular distribution of cholesterol originating from lipoprotein endocytosis, it may play an important role in controlling biliary cholesterol secretion and gallstone formation induced by a lithogenic diet. Methods: We studied biliary cholesterol secretion, gallbladder lipid composition and gallstone formation in NPC1‐deficient mice fed a low‐fat lithogenic diet (1.5% cholesterol and 0.5% cholic acid) compared with control animals under the same diet. Results: The lipid secretion response to the lithogenic diet was impaired in NPC1 (?/?) mice, leading to a decreased cholesterol output and an increased hepatic cholesterol concentration compared with the lithogenic diet‐fed wild‐type mice. A decreased cholesterol saturation index was found in the gallbladder bile of NPC1 (+/?) and (?/?) mice after lithogenic diet feeding. Consequently, mice with a partial or a total deficiency of NPC1 had a drastically lower frequency of gallbladder cholesterol crystals and a reduced prevalence of gallstones. Conclusion: Hepatic NPC1 expression is an important factor for regulating the biliary secretion of diet‐derived cholesterol as well as for diet‐induced cholesterol gallstone formation in mice.  相似文献   

3.
BACKGROUND & AIMS: Because apolipoprotein E (apoE) is a key cholesterol transport molecule involved in the hepatic uptake of chylomicron cholesterol, it may play a critical role in controlling bile cholesterol elimination and cholesterol gallstone formation induced by dietary cholesterol. To test this hypothesis, we studied biliary lipid secretion and gallstone formation in apoE-deficient mice fed cholesterol-rich diets. METHODS: Bile lipid outputs and gallstone sequence events were analyzed in apoE-deficient mice fed a high-cholesterol diet or a lithogenic diet compared with control animals. RESULTS: A high-cholesterol diet increased biliary cholesterol secretion and gallbladder bile cholesterol concentration in wild-type mice; the increase in bile cholesterol secretion was significantly attenuated in apoE-deficient mice. ApoE knockout mice fed a high-cholesterol lithogenic diet had a markedly lower frequency of gallbladder bile cholesterol crystal and gallstone formation than wild-type mice, which was most likely a result of the decreased cholesterol saturation index found in gallbladder bile of apoE-deficient mice. CONCLUSIONS: These results show that apoE expression is an important factor for regulating both biliary secretion of diet-derived cholesterol as well as diet-induced cholesterol gallstone formation in mice.  相似文献   

4.
Hamsters fed a lithogenic diet become hyperlipemic with elevated very-low-density lipoprotein (VLDL) and high-density lipoprotein 2 (HDL2) cholesterol pools and develop lithogenic bile in which chenodeoxycholate (cheno) typically predominates. The relationship between these distorted lipoprotein and bile lipid profiles and gallstone induction was investigated in male Syrian hamsters fed for 5 weeks a gallstone-inducing purified diet (5% butter, 0.4% cholesterol) or the same diet supplemented with 5% psyllium or 1% cholestyramine, agents known to alter bile acid metabolism. The gallstone diet essentially doubled plasma cholesterol level, whereas psyllium decreased it to near normal, and cholestyramine to a subnormal level, while correcting the distorted distribution of cholesterol among lipoproteins. Both the gallstone diet and psyllium produced cholesterol-laden livers, in contrast to subnormal values produced by cholestyramine. Fecal bile acid excretion was increased eightfold with cholestyramine and fourfold with psyllium relative to the value produced by the gallstone diet and a literature control value. Supersaturated bile developed with the gallstone diet (lithogenic index [LI], 2.3 ± 0.6), whereas the LI was decreased by psyllium (1.2 ± 0.4) and cholestyramine (0.7 ± 0.3). The gallstone diet decreased the concentration of bile acids in gallbladder bile, but greatly increased the percentage of taurochenodeoxycholic acid, whereas psyllium preferentially decreased all taurine-conjugated bile acid levels and expanded glycocholate output. Cholestyramine greatly decreased the secretion of biliary cholesterol and cheno independent of its conjugation. Accordingly, psyllium increased the glycine to taurine ratio of gallbladder bile fivefold, whereas cholestyramine did not affect this ratio, but increased the cholate to cheno ratio dramatically (25-fold) as compared with a threefold increase with psyllium. This combination of biliary lipid and bile acid alterations induced coordinated responses in the LI and the hydrophobicity index (HI) such that cholesterol gallstones developed in 11 of 12 hamsters fed the gallstone diet, whereas only one of 11 of the psyllium-fed and none of 12 cholestyramine-fed hamsters had cholesterol stones. Thus, psyllium and cholestyramine differentially increased bile acid excretion, which improved the lipoprotein profile and inhibited cholesterol gallstone formation. Both agents operated by different means to decrease biliary cholesterol secretion and the percentage of cheno, which decreased the LI and HI, respectively.  相似文献   

5.
6.
Background. Obesity is often associated with increased biliary cholesterol secretion resulting in cholesterol gallstone formation. We have previously demonstrated that leptin-deficient C57Bl/6J Lep ob obese mice have abnormal biliary motility and are prone to cholesterol crystal formation. In addition, others have demonstrated that leptin-deficient mice when fed a lithogenic diet for eight weeks are not prone to gallstone formation. However, the biliary lipid and in vivo cholesterol crystal response of homozygous and heterozygous leptin-deficient mice to four weeks on a lithogenic diet has not been studied. Therefore, we tested the hypothesis that lithogenic diets influence gallbladder bile composition, serum lipids and cholesterol crystal formation in homozygous and heterozygous leptin-deficient mice compared to normal lean controls. Methods. 319 female lean control mice, 280 heterozygous lep ob obese mice and 117 homozygous lep ob obese mice were studied. Mice were fed either a lithogenic or control non-lithogenic chow diet for four weeks. Gallbladder volumes were measured, and bile was pooled to calculate cholesterol saturation indices. Serum cholesterol, glucose, and leptin levels were determined. Hepatic fat vacuoles were counted, and bile was observed microscopically for cholesterol crystal formation. Results. The lithogenic diet and mouse strain influenced body and liver weights, gallbladder volume, cholesterol crystal formation, serum cholesterol, glucose and leptin levels and hepatic fat vacuole numbers. However, only diet, not strain, altered biliary cholesterol saturation. Conclusion. The association among obesity, leptin, and gallstone formation may be primarily related to altered gallbladder motility and cholesterol crystal formation and only secondarily to biliary cholesterol saturation.  相似文献   

7.
Enhanced hepatocellular trafficking of cholesterol to the bile canaliculus and cholesterol hypersecretion appears critical for gallstone formation. Therefore, we studied in more detail the hepatic cholesterol transport pathways in a mouse model of cholesterol gallstone disease. Biliary lipid secretion rates, plasma lipoprotein levels, hepatic expression of lipoprotein receptors, lipid regulatory enzymes, and putative cholesterol transporting proteins were analyzed in gallstone-susceptible C57L/J and gallstone-resistant AKR/J mice, which were fed a lithogenic diet. Biliary cholesterol hypersecretion in C57L mice was associated with decreased plasma high-density lipoprotein (HDL) cholesterol levels and significant hepatic induction of the HDL receptor (SRBI) and cholesteryl ester hydrolase. In response to the lithogenic diet, fatty-acid binding protein of liver (FABPL) was markedly induced in both mouse strains. Caveolin 1 was elevated only in plasma membranes of gallstone-susceptible C57L mice, which also failed to down-regulate cholesterol synthesis. These data suggest a role of the reverse cholesterol transport pathway for genetically determined gallstone susceptibility in the mouse.  相似文献   

8.
Background and Aim: We investigated the dietary and gender influences on the expression and functionality of cholangiocyte bile salt transporters and development of biliary hyperplasia in cholesterol gallstone‐susceptible C57L/J and resistant AKR/J mice. Methods: C57L and AKR mice were fed chow, a lithogenic diet, or a cholic acid‐containing diet for 14 days. Expression of cholangiocyte bile salt transporter proteins ASBT (SLC10A2), ILBP (FABP6), and MRP3 (ABCC3) were studied by Western blot analysis. Taurocholate uptake studies were performed using microperfusion of isolated bile duct units. The pre‐ and post‐perfusion taurocholate concentrations were analyzed by high performance liquid chromatography. Biliary proliferation in liver sections was scored. Results: The lithogenic diet induced ductular proliferation in C57L mice. On chow, SLC10A2 and ABCC3 were overexpressed in male and female C57L compared to AKR mice. A lithogenic diet reduced the expressions of FABP6 in both male and female C57L mice, SLC10A2 in female C57L mice, and ABCC3 in male C57L mice. These alterations in transporter expressions were not associated with changes in taurocholate uptake. The lithogenic diet induced biliary hyperplasia and reduced bile salt transporter expressions in C57L mice. Conclusions: Although bile salt uptake was not increased in the bile duct unit, we speculate that the biliary hyperplasia on the lithogenic diet may lead to an increase in intrahepatic bile salt recycling during cholesterol cholelithogenesis.  相似文献   

9.
BACKGROUND/AIMS: A link between insulin and cholesterol gallstone disease has often been suspected but never demonstrated. The aim was to evaluate the direct implication of insulin in the gallbladder cholesterol gallstone formation process. METHODS: Hamsters fed with a soft-inducing lithogenic diet, enriched with sucrose, were injected daily, for 1 week, either with long-acting insulin or saline (controls). RESULTS: Insulin injections doubled the cholesterol gallstone incidence. The cholesterol saturation index (CSI) of bile significantly increased (+19%) and biliary apolipoprotein A-I (apo A-I) decreased, both in concentration (-71%) and the proportion relative to the total biliary proteins (-25%). No modifications in the biliary bile acid composition were noticed. Hepatic HMGCoA reductase activity was higher (+341%), CYP7A1 activity was lower (-52%), whereas CYP27A1 and CYP7B1 were not affected. The hepatic low-density liprotein (LDL)-receptor and SR-BI masses did not vary. The hepatic total cholesterol content increased (+42%). Fasting plasma phospholipid and triglyceride concentrations significantly decreased (-15 and -60%, respectively), but the cholesterol concentration remained constant. CONCLUSIONS: These results suggest that insulin injections enhance cholesterol gallstone incidence by increasing the CSI of bile and decreasing the concentration and proportion of a biliary anti-nucleating protein, apo A-I. Insulin modulates the major enzymes of cholesterol and bile acid metabolisms in vivo.  相似文献   

10.
Background: Sphingolipids play a very important role in cell membrane formation, signal transduction and plasma lipoprotein metabolism. The first rate‐limiting step in the sphingolipid biosynthetic pathway is catalyzed by serine palmitoyltransferase (SPT), and myriocin is a potent and specific inhibitor of SPT. We investigated the impact of SPT inhibition on cholesterol gallstone formation in C57BL/6J mice. Methods: Three groups of eight‐week‐old C57BL/6J mice were utilized. Each group consisted of 20 mice; group A, B, and C were fed normal chow, lithogenic diet with phosphate buffered saline, and lithogenic diet with myriocin (0.3 mg/kg), respectively, for 6 weeks. The ceramide levels in both serum and bile were assessed by high performance liquid chromatography analysis. Protein expression of ERK, JNK and p38 in the extracted gallbladder were determined by Western‐blot analysis. Results: Myriocin treatment caused a significant decrease in the rate of cholesterol gallstone formation. The lithogenic diet mice (group B) showed the highest ceramide activities in both the serum and bile among all the tested groups and there was significant suppression of the ceramide levels in both the serum and bile of the myriocin‐treated mice (group C, p < 0.05). Phosphorylation of p38 in the gallbladder was increased in the lithogenic‐diet mice and the expression of phosphorylated p38 was significantly suppressed in the myriocin treated mice. Conclusions: SPT inhibition by myriocin suppressed gallstone formation and the levels of ceramide in both the serum and bile. p38 in the cellular signaling pathways might be associated with cholesterol gallstone formation.  相似文献   

11.
It has been found that polymorphisms in the apolipoprotein (APO)-B gene are associated with cholesterol gallstones in humans. We hypothesized that APO-B plays a major regulatory role in the response of biliary cholesterol secretion to high dietary cholesterol and contributes to cholesterol gallstone formation. In the present study, we investigated whether lack of expression of intestinal Apob48 or Apob100 reduces susceptibility to cholesterol gallstones by decreasing intestinal absorption and biliary secretion of cholesterol in male mice homozygous for an "APO-B48 only" allele (Apob(48/48)), an "APO-B100 only" allele (Apob(100/100)), or a wild-type APO-B allele (Apob+/+) before and during an 8-week lithogenic diet. We found that cholesterol absorption was significantly decreased as a result of the APO-B48 deficiency in Apob(100/100) mice compared with wild-type and Apob(48/48) mice, regardless of whether chow or the lithogenic diet was administered. Consequently, hepatic cholesterol synthesis was significantly increased in Apob(100/100) mice compared with wild-type and Apob(48/48) mice. On chow, the APO-B100 deficiency in Apob(48/48) mice with reduced plasma levels of LDL/VLDL--but not HDL cholesterol--induced relative hyposecretion of biliary bile salts and phospholipids accompanying normal biliary cholesterol secretion. Compared with Apob(48/48) and wild-type mice, lithogenic diet-fed Apob(100/100) mice displayed significantly lower secretion rates of biliary cholesterol, but not phospholipid or bile salts, which results in significant decreases in prevalence rates, numbers, and sizes of gallstones. In conclusion, absence of expression of intestinal Apob48, but not Apob100, reduces biliary cholesterol secretion and cholelithogenesis, possibly by decreasing intestinal absorption and hepatic bioavailability.  相似文献   

12.
Because hyperhomocysteinemia can occur in cholesterol gallstone disease, we hypothesized that this may result from trimethylation of phosphatidylethanolamine (PE), which partakes in biliary phosphatidylcholine (PC) hypersecretion during cholesterol cholelithogenesis. We fed murine strains C57L/J, C57BL/6J, SWR/J, AKR/J, PE N-methyltransferase (PEMT) knockout (KO), PEMT heterozygous (HET), and wildtype (WT) mice a cholesterol/cholic acid lithogenic diet (LD) for up to 56 days and documented biliary lipid phase transitions and secretion rates. We quantified plasma total homocysteine (tHcy), folate, and vitamin B12 in plasma and liver, as well as biliary tHcy and cysteine secretion rates. Rate-limiting enzyme activities of PC synthesis, PEMT and cytidine triphosphate: phosphocholine cytidylyltransferase (PCT), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured in liver homogenates. Other potential sources of plasma tHcy, glycine N-methyltransferase (GNMT) and guanidinoacetate N-methyltransferase (GAMT), were assayed by gene expression. Plasma tHcy and PEMT activities became elevated during cholelithogenesis in gallstone-susceptible C57L, C57BL/6, and SWR mice but not in the gallstone-resistant AKR mice. Persisting in C57L mice, which exhibit the greatest Lith gene burden, these increases were accompanied by elevated hepatic SAM/SAH ratios and augmented biliary tHcy secretion rates. Counter-regulation included remethylation of Hcy to methionine concurrent with decreased folate and vitamin B12 levels and Hcy transsulfuration to cysteine. Concomitantly, methylenetetrahydrofolate reductase (Mthfr), betaine-homocysteine methyltransferase (Bhmt), and cystathionine-β-synthase (Cbs) were up-regulated, but Gnmt and Gamt genes were down-regulated. PEMT KO and HET mice displayed biliary lipid secretion rates and high gallstone prevalence rates similar to WT mice without any elevation in plasma tHcy levels. CONCLUSION: This work implicates up-regulation of PC synthesis by the PEMT pathway as a source of elevated plasma and bile tHcy during cholesterol cholelithogenesis.  相似文献   

13.
BACKGROUND & AIMS: Microsomal triglyceride transfer protein (MTTP) is critical for the production of very-low-density lipoproteins (VLDL). The current studies were undertaken to examine the in vivo role of MTTP in hepatic cholesterol and fatty acid metabolism, as well as in biliary lipid secretion. We also tested whether MTTP plays a role in diet-induced cholelithiasis in mice. METHODS: We used mice in which Mttp had been inactivated in the liver (Mttp(Delta/Delta) mice). We measured several parameters of cholesterol metabolism, fatty acid synthesis, and biliary lipid levels in mice fed a normal or a lithogenic diet. We also assessed the incidence of diet-associated gallstones. RESULTS: Hepatic Mttp inactivation markedly decreased plasma triglyceride and cholesterol levels and increased biliary cholesterol and bile acid output. Hepatic cholesterogenesis and fatty acid synthesis were significantly decreased in Mttp(Delta/Delta) mice compared with control mice. The incidence of gallstones decreased from 90% in control mice to 33% in Mttp(Delta/Delta) mice after 8 weeks of a lithogenic diet (P < .0001). The mechanism of the protective effect appears to be increased biliary phospholipid output in Mttp(Delta/Delta) mice, leading to significant unsaturation of gallbladder bile. CONCLUSIONS: These results indicate that modulation of Mttp expression in the liver affects hepatic lipid synthesis and storage as well as biliary lipid secretion. Our findings further indicate that inhibition of hepatic MTTP activity decreases the risk of experimental cholelithiasis by favoring phospholipid output into the bile.  相似文献   

14.
BACKGROUND: While elevated plasma high-density lipoprotein (HDL) levels has been associated to a reduction in cardiovascular risk, dietary fish oils rich in omega-3 polyunsaturated fatty acids (PUFAs) may protect against this disease. The protective effect of HDL is associated to its participation in the reverse cholesterol transport pathway. On the other hand, omega-3 PUFAs decrease plasma HDL levels compared to other fatty acids, which may suggest an effect on reverse cholesterol transport. AIM: In this work, the effect of dietary fish oil on the fatty acid composition of hepatic membranes, plasma lipoprotein cholesterol profile, biliary lipids, and the expression of proteins involved in reverse cholesterol transport, was compared to other dietary oils having a different degree of fatty acid unsaturation. METHODS: Male rats were fed a semi synthetic diet containing fish oil (omega-3), sunflower oil (omega-6), olive oil (omega-9) or coconut oil (saturated). Hepatic membrane fatty acid composition, plasma cholesterol levels, lipoprotein cholesterol profile, biliary lipids, hepatic mRNA levels for lecithin cholesterol acyltransferase, hepatic lipase, apo E, and apo A-I, and hepatic protein levels of the scavenger receptor class B type I, caveolin-1, and the ATP binding cassette transporter A1 were analyzed. Plasma apo A-I and apo E protein levels were also evaluated. RESULTS: Compared to the other diets, omega-3 PUFAs significantly changed omega-3/omega-6 fatty acid ratio of hepatic membranes, caused a reduction of plasma total and HDL cholesterol, and selectively increased biliary cholesterol secretion. No modification in the expression levels of lecithin cholesterol acyltransferase, hepatic lipase, apo A-I and apo E mRNA was observed. Hepatic scavenger receptor class B type I, caveolin-1, and the ATP binding cassette transporter A1 protein levels were also not affected. Plasma apo A-I, but not apo E, was reduced. CONCLUSIONS: These results show that dietary omega-3 PUFAs reduce plasma HDL cholesterol and increase biliary cholesterol without concomitant modifications in the expression of key genes and proteins involved in reverse cholesterol transport. These findings suggest that functional changes in the activity of these proteins as consequence of the incorporation of omega-3 PUFAs into hepatic membranes and plasma lipoproteins may underlie the effect of fish oil feeding on plasma and hepatic cholesterol metabolism in the rat.  相似文献   

15.
16.
Biliary lipid outputs in young women with cholesterol gallstones   总被引:5,自引:0,他引:5  
Hepatic secretions of biliary lipids were determined in eight young women with cholesterol gallstones and 14 white women without gallstones. All of the gallstone patients were non-Indian; seven were white and one was black. Hourly outputs of biliary cholesterol were significantly greater in gallstone patients than in white controls. This increased cholesterol output was a major factor in the production of lithogenic bile. The greater cholesterol output in gallstone patients was apparently related to obesity. Despite an increased hepatic secretion of cholesterol, secretion rates of bile acids were relatively low in gallstone patients. However, there was considerable overlap between secretion rates of bile acids in subjects with and without stones, and it was not demonstrated that an absolute deficiency of bile acids existed in gallstone patients. Nevertheless, the contribution of an increased output of biliary cholesterol to the formation of lithogenic bile was clearly evident in our patients.  相似文献   

17.
High density lipoprotein (HDL) cholesterol is believed to be preferentially utilized for bile acid synthesis and biliary secretion. In mice, the deletion of apolipoprotein AI (apo AI), the major apolipoprotein in HDL, results in very low plasma HDL-cholesterol levels. This article describes bile acid metabolism in apo AI-deficient (Apo AI(-/-)) mice and their C57BL/6 (Apo AI(+/+)) controls fed either a basal rodent diet alone or containing cholesterol or cholestyramine. Basal plasma HDL-cholesterol levels in the (-/-) mice (<10 mg/dL) were less than 20% of those in their (+/+) controls, but there were no phenotypic differences in either the relative cholesterol content of gallbladder bile, bile acid pool size and composition, fecal bile acid excretion or the activity of, or mRNA level for, cholesterol 7alpha-hydroxylase. However, compared with their (+/+) controls, the (-/-) mice absorbed more cholesterol (33 vs. 24%) and manifested lower rates of hepatic sterol synthesis (534 vs. 1,019 nmol/h per g). Cholesterol feeding increased hepatic cholesterol levels in the (+/+) animals from 2.7 to 4.4 mg/g and in the (-/-) mice from 2.6 to 8.1 mg/g. Bile acid synthesis increased 70% in both genotypes. Cholestyramine feeding stimulated bile acid synthesis 3.7 fold in both (-/-) and (+/+) mice. We conclude that the virtual loss of HDL-cholesterol from the circulation in apo AI deficiency has no impact on the ability of the hepatocyte to adapt its rate of bile acid synthesis in concert with the amount of cholesterol and bile acid returning to the liver from the small intestine.  相似文献   

18.
Beta-sitosterol has been shown to prevent gallstone formation in mice fed 1.2% cholesterol and 0.5% cholic acid (lithogenic diet). The incidence of gallstone formation in the mouse by the addition of 2.5% sitosterol in the lithogenic diet is about 35.5% in male and 25% in female. The condition of the liver, whether fatty or normal, did not correlate with the presence or absence of cholelithiasis. The serum and liver cholesterol levels of mice fed either sitosterol and cholesterol or sitosterol and cholic acid is lower than those of mice fed cholesterol or cholic acid alone. Elevation, of liver phospholipid concentration was noticed in mice fed sitosterol or a combination of sitosterol with cholesterol or cholic acid or both cholesterol and cholic acid.  相似文献   

19.
The effects of a standard rodent chow were compared with those of a semisynthetic diet of known composition (with and without added cholesterol) in the prairie dog model of cholesterol cholelithiasis. Gallstone incidence was 40% higher in animals fed a semisynthetic diet plus cholesterol compared to chow plus cholesterol. The semisynthetic diet plus cholesterol caused significant increases in tissue cholesterol levels (serum, liver and bile) and lithogenic index, but significant decreases in the activity of hepatic 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and cholesterol 7 alpha-hydroxylase compared to chow plus cholesterol. Histologic study of liver sections revealed that the semisynthetic diet plus cholesterol resulted in moderate to marked portal tract changes characterized by bile duct proliferation, inflammatory infiltration and fibrosis, whereas the cholesterol-supplemented chow diet caused only slight bile duct proliferation with minimal inflammation and fibrosis in the portal areas. Dietary hyodeoxycholic acid prevented cholesterol gallstones and biliary cholesterol crystals when added to either chow plus cholesterol or semisynthetic plus cholesterol diets. The hyodeoxycholic acid supplements also prevented the development of severe histopathologic alterations along the portal tracts. Biliary cholesterol levels were elevated in prairie dogs fed cholesterol plus hyodeoxycholic acid; these animals had liquid crystals in the bile, and hyodeoxycholic acid and its 6 beta-isomer became the major biliary bile acids. A semisynthetic diet plus cholesterol is superior to a high cholesterol chow diet for gallstone formation and prevention studies, but in prolonged feeding experiments, the potential hepatotoxicity of this diet in the prairie dog must be appreciated.  相似文献   

20.
Effect of gemfibrozil on biliary lipid metabolism in normolipemic subjects   总被引:3,自引:0,他引:3  
The mechanisms of the lipid-lowering agent gemfibrozil on biliary lipid metabolism were studied in eight normolipemic male volunteers. These measurements were performed before and after 3 months of administration. During administration of gemfibrozil, plasma cholesterol decreased by 19% (P less than 0.01) and triglycerides by 46% (P less than 0.01), and HDL cholesterol increased by 10% (P less than 0.01). The lithogenic index in gallbladder bile increased from 0.73 to 1.37 (P less than 0.05) and in hepatic bile from 0.86 to 1.42 (P less than 0.01). The increase in lithogenicity of gallbladder bile and hepatic bile was due to an increased biliary output of cholesterol from 47 to 70 mg/h (P less than 0.01) and a decreased output of bile acids from 943 to 694 mg/hr (P less than 0.01), whereas phospholipid output was not altered. The reduction in bile acid output was a result of a significant decrease in chenodeoxycholic acid secretion (r = 0.852; P less than 0.01). Cholic acid output was not affected by gemfibrozil. These results suggest that administration of gemfibrozil enhances the possible risk of gallstone formation like clofibrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号