首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this investigation was to test the hypothesis that peripheral vasoconstriction and orthostatic tolerance are associated with increased circulating plasma concentrations of noradrenaline, vasopressin and renin–angiotensin. Sixteen men were categorized as having high (HT, n=9) or low (LT, n=7) tolerance to lower body negative pressure (LBNP) based on whether the endpoint of their pre‐syncopal‐limited LBNP (peak LBNP) exposure exceeded ?60 mmHg. The two groups were matched for age, height, weight, leg volume, blood volume and maximal oxygen uptake, as well as baseline blood volume and plasma concentrations of vasoactive hormones. Peak LBNP induced similar reductions in mean arterial pressure in both groups. The reduction in legarterial pulse volume (measured by impedance rheography), an index of peripheral vascular constriction, from baseline to peak LBNP was greater (P<0·05) in the HT group (?0·041 ± 0·005 ml 100 ml?1) compared to the reduction in the LT group (?0·025 ± 0·003 ml 100 ml?1). Greater peak LBNP in the HT group was associated with higher (P<0·05) average elevations in plasma concentrations of vasopressin (pVP, Δ=+7·2 ± 2·0 pg ml?1) and plasma renin–angiotensin (PRA, Δ=+2·9 ± 1·3 ng Ang II ml?1 h?1) compared to average elevations of pVP (+2·2 ± 1·0 pg ml?1) and PRA (+0·1 ± 0·1 ng Ang II ml?1 h?1) in the LT group. Plasma noradrenaline concentrations were increased (P<0·05) from baseline to peak LBNP in both HT and LT groups, with no statistically distinguishable difference between groups. These data suggest that the renin–angiotensin and vasopressin systems may contribute to sustaining arterial pressure and orthostatic tolerance by their vasoconstrictive actions.  相似文献   

2.
The aim of this study was to compare the acute hormonal responses following two different eccentric exercise velocities. Seventeen healthy, untrained, young women were randomly placed into two groups to perform five sets of six maximal isokinetic eccentric actions at slow (30° s?1) and fast (210° s?1) velocities with 60‐s rest between sets. Growth hormone, cortisol, free and total testosterone were assessed by blood samples collected at baseline, immediately postexercise, 5, 15 and 30 min following eccentric exercise. Changes in hormonal responses over time were compared between groups, using a mixed model followed by a Tukey's post hoc test. The main findings of the present study were that the slow group showed higher growth hormone values immediately (5·08 ± 2·85 ng ml?1, = 0·011), 5 (5·54 ± 3·01 ng ml?1, P = 0·004) and 15 min (4·30 ± 2·87 ng ml?1, = 0·021) posteccentric exercise compared with the fast group (1·39 ± 2·41 ng ml?1, 1·34 ± 1·97 ng ml?1 and 1·24 ± 1·87 ng ml?1, respectively), and other hormonal responses were not different between groups (P>0·05). In conclusion, slow eccentric exercise velocity enhances more the growth hormone(GH) response than fast eccentric exercise velocity without cortisol and testosterone increases.  相似文献   

3.
The aim of this study was to assess the appearance of cardiac troponins (cTnI and/or cTnT) after a short bout (30 s) of ‘all‐out’ intense exercise and to determine the stability of any exercise‐related cTnI release in response to repeated bouts of high intensity exercise separated by 7 days recovery. Eighteen apparently healthy, physically active, male university students completed two all‐out 30 s cycle sprint, separated by 7 days. cTnI, blood lactate and catecholamine concentrations were measured before, immediately after and 24 h after each bout. Cycle performance, heart rate and blood pressure responses to exercise were also recorded. Cycle performance was modestly elevated in the second trial [6·5% increase in peak power output (PPO)]; there was no difference in the cardiovascular, lactate or catecholamine response to the two cycle trials. cTnI was not significantly elevated from baseline through recovery (Trial 1: 0·06 ± 0·04 ng ml?1, 0·05 ± 0·04 ng ml?1, 0·03 ± 0·02 ng ml?1; Trial 2: 0·02 ± 0·04 ng ml?1, 0·04 ± 0·03 ng ml?1, 0·05 ± 0·06 ng ml?1) in either trial. Very small within subject changes were not significantly correlated between the two trials (r = 0·06; P>0·05). Subsequently, short duration, high intensity exercise does not elicit a clinically relevant response in cTnI and any small alterations likely reflect the underlying biological variability of cTnI measurement within the participants.  相似文献   

4.
We sought to determine if (i) peak vascular conductance of the calf was reduced following prolonged exposure to simulated microgravity, and (ii) if maximal cycle ergometry performed at the end of microgravity exposure stimulated a restoration of peak calf vascular conductance. To do this, peak vascular conductance of the calf was recorded following ischaemic plantar flexion exercise to fatigue in seven men after 16 days of head-down tilt (HDT) under two conditions: (i) after one bout of maximal supine cycle ergometry completed 24 h prior to performance of ischaemic plantar flexion exercise, and (ii) in a control (no cycle ergometry) condition. Following HDT, peak vascular conductance was reduced in the control condition (0·38 ± 0·02 to 0·24 ± 0·02 ml 100 ml?1 min?1 mmHg?1; P = 0·04), but was restored when subjects performed cycle ergometry (0·33 ± 0·05 to 0·28 ± 0·04 ml 100 ml?1 min?1 mmHg?1; P = 0·46). After HDT, time to fatigue during ischaemic plantar flexion exercise was not different from pre-HDT 24 h after performance of exhaustive cycle ergometry (120 ± 24 vs. 122 ± 19 s), but was decreased in the control condition (116 ± 11 vs. 95 ± 8 s; P = 0·07). These data suggest that a single bout of maximal exercise can provide a stimulus to restore peak vascular conductance and maintain time to fatigue during performance of ischaemic plantar flexion exercise.  相似文献   

5.
Background: It is well known from animal research that non‐hypotensive haemorrhage produces sympathoexcitatory responses assessable by both the rise in plasma catecholamine levels and the shift of autonomic influences on the heart to more sympathetic and less parasympathetic control. Data in humans are restricted. Methods: Heart rate variability (HRV), systolic blood pressure (FINAPRES) variability (BPV), and catecholamine plasma levels were measured before and after haemorrhage in 30 healthy blood donors and compared with those from 10 control subjects without blood loss. Spectral power of HRV and BPV in very low (0·02–0·06 Hz), low (0·07–0·14 Hz), and high (0·15–0·40 Hz) frequency bands were calculated by Fourier analysis. Catecholamine plasma levels were assayed by dual column reverse‐phased high‐performance liquid chromatography (HPLC). Results: Haemorrhage of 5·6 ± 1·2 ml kg?1 body weight increased plasma norepinephrine levels (215 ± 92 pg ml?1 versus 254 ± 95 pg ml?1; P = 0·002), increased BPV in the low frequency band (Mayer waves; 1·8 ± 1·0 ln [mmHg2] versus 2·0 ± 0·9 ln [mmHg2]; P = 0·021), and decreased the vagally transmitted high frequency HRV (6·9 ± 1·1 ln [MI2] versus 6·5±1·2 ln [MI2]; P<0·0001), but did not induce significant changes in heart rate (66 ± 11 bpm versus 67 ± 11 bpm; P = 0·79) and arterial blood pressure (mean values: 84 ± 13 mmHg versus 87 ± 13 mmHg; P = 0·12). Conclusions: As suggested by plasma norepinephrine levels, systolic BPV and HRV, non‐hypotensive haemorrhage produces sympathoexcitatory responses as well as vagal withdrawal of heart rate control in humans.  相似文献   

6.
Abstract. Arginine vasopressin (AVP) exerts a potentiating effect on the responses of cortisol and ACTH to ovine CRF (oCRF). A stimulation test using AVP plus oCRF to assess ACTH reserve has been proposed. In central diabetes insipidus, long-term substitution therapy is commonly undertaken with desmopressin (DDAVP), an analogue of the natural hormone which has a greater antidiuretic action but whose effects on the ACTH-cortisol axis are still controversial. The aim of our study was to evaluate the variations in the responses of ACTH and cortisol to oCRF in various phases of the treatment of central diabetes insipidus: no treatment, endonasal treatment with DDAVP solution and oral treatment with DDAVP in tablet form. Seven patients suffering from central diabetes insipidus underwent testing with oCRF during the various phases of treatment. In the absence of DDAVP treatment, normal responses were registered for cortisol (basal 164·1 ± 29·4 ng ml?1, peak 396·1 ± 37·9 ng ml?1; P < 0·05) and ACTH (basal 20·4 ± 3·9 pg ml?1, peak 86·3 ± 20·9 pg ml?1; P < 0·05) in all patients. During oral treatment with DDAVP, no variation in cortisol response to oCRF was seen. By contrast, when DDAVP was administered endonasally, a significant reduction in cortisol responsiveness to oCRF (secretory area: 2429 ± 548 ng ml?1 120 min) was noted in comparison with that found during the other two tests (no treatment: 3070 ± 704 ng ml?1 120 min; oral DDAVP: 3419 ± 650 ng ml?1 120 min; P < 0·05) performed. There is no clear explanation for this phenomenon, but an interesting hypothesis is that DDAVP acts as a weak agonist which exerts only a slight stimulatory effect on the corticotropic hypophyseal cells but which is able to compete with the natural hormone for receptor binding.  相似文献   

7.
The purpose of this crosssectional study was to determine the physiological reaction to the different intensity Nordic Walking exercise in young females with different aerobic capacity values. Twenty‐eight 19–24‐year‐old female university students participated in the study. Their peak O2 consumption (VO2 peak kg?1) and individual ventilatory threshold (IVT) were measured using a continuous incremental protocol until volitional exhaustion on treadmill. The subjects were analysed as a whole group (n = 28) and were also divided into three groups based on the measured VO2 peak kg?1 (Difference between groups is 1 SD) as follows: 1. >46 ml min?1 kg?1 (n = 8), 2. 41–46 ml min?1 kg?1 (n = 12) and 3. <41 ml min?1 kg?1 (n = 8). The second test consisted of four times 1 km Nordic Walking with increasing speed on the 200 m indoor track, performed as a continuous study (Step 1 – slow walking, Step 2 – usual speed walking, Step 3 – faster speed walking and Step 4 – maximal speed walking). During the walking test expired gas was sampled breath‐by‐breath and heart rate (HR) was recorded continuously. Ratings of perceived exertion (RPE) were asked using the Borg RPE scale separately for every 1 km of the walking test. No significant differences emerged between groups in HR of IVT (172·4 ± 10·3–176·4 ± 4·9 beats min?1) or maximal HR (190·1 ± 7·3–191·6 ± 7·8 beats min?1) during the treadmill test. During maximal speed walking the speed (7·4 ± 0·4–7·5 ± 0·6 km h?1) and O2 consumption (30·4 ± 3·9–34·0 ± 4·5 ml min?1 kg?1) were relatively similar between groups (P > 0·05). However, during maximal speed walking, the O2 consumption in the second and third groups was similar with the IVT (94·9 ± 17·5% and 99·4 ± 15·5%, respectively) but in the first group it was only 75·5 ± 8·0% from IVT. Mean HR during the maximal speed walking was in the first group 151·6 ± 12·5 beats min?1, in the second (169·7 ± 10·3 beats min?1) and the third (173·1 ± 15·8 beats min?1) groups it was comparable with the calculated IVT level. The Borg RPE was very low in every group (11·9 ± 2·0–14·4 ± 2·3) and the relationship with VO2and HR was not significant during maximal speed Nordic Walking. In summary, the present study indicated that walking is an acceptable exercise for young females independent of their initial VO2 peak level. However, females with low initial VO2 peak can be recommended to exercise with the subjective ‘faster speed walking’. In contrast, females with high initial VO2 peak should exercise with maximal speed.  相似文献   

8.
Summary. Atrial natriuretic peptide (ANP) was measured in arterial and venous umbilical cord plasma at the time of delivery by cesarean section in pre-eclamptic (n= 7) and normal women (n= 6). In addition venous samples were obtained from pre-eclamptic (n= 7) and normal pregnant women (n= 7) near term. ANP plasma levels were higher in pregnant women with pre-eclampsia than in normal pregnant women (27·9±4·4 [mean±SEM] and 14·1 ±2·5 pmol 1-1, respectively, P<0·05). Immediately after delivery plasma ANP in pre-eclamptic mothers was 66·7 ± 12·8 pmol 1-1 compared to 13·9 ±2·2 pmol 1-1 in normal mothers (P<0·01). However, in the pre-eclamptic group the levels of ANP in arterial and venous umbilical cord plasma (19·5 ±4·2 and 16·7±4·3 pmol 1-1 respectively) were significantly (P<0·01) lower than ANP levels in arterial and venous cord plasma (39·6 ± 1·0 and 31·1±4·2 pmol 1-1, respectively) from normal mothers. It is concluded that the increased ANP plasma level in pre-eclamptic women originates from a maternal source. In addition, since the ANP level is lower in cord plasma than in maternal plasma in pre-eclampsia, fetoplacental volume homeostasis may also be changed in pre-eclampsia.  相似文献   

9.
Exercise‐induced increases in cardiac output (CO) and oxygen uptake (VO2) are tightly coupled, as also in absence of central motor activity and neural feedback from skeletal muscle. Neuromodulators of vascular tone and cardiac function – such as calcitonin gene related peptide (CGRP) – may be of importance. Spinal cord injured individuals (six tetraplegic and four paraplegic) performed electrically induced cycling (FES) with their paralyzed lower limbs for 29 ± 2 min to fatigue. Voluntary cycling performed both at VO2 similar to FES and at maximal exercise in six healthy subjects served as control. In healthy subjects, CGRP in plasma increased only during maximal exercise (33·8 ± 3·1 pmol l?1 (rest) to 39·5 ± 4·3 (14%, P<0·05)) with a mean extraction over the working leg of 10% (P<0·05). Spinal cord injured individuals had more pronounced increase in plasma CGRP (33·2 ± 3·8 to 46·9 ± 3·6 pmol l?1, P<0·05), and paraplegic and tetraplegic individuals increased in average by 23% and 52%, respectively, with a 10% leg extraction in both groups (P<0·05). The exercise induced increase in leg blood flow was 10–12 fold in both spinal cord injured and controls at similar VO2 (P<0·05), whereas CO increased more in the controls than in spinal man. Heart rate (HR) increased more in paraplegic subjects (67 ± 7 to 132 ± 15 bpm) compared with controls and tetraplegics (P<0·05). Mean arterial pressure (MAP) was unchanged during submaximal exercise and increased during maximal exercise in healthy subjects, but decreased during the last 15 min of exercise in the tetraplegics. It is concluded that plasma CGRP increases during exercise, and that it is taken up by contracting skeletal muscle. The study did not allow for a demonstration of the origin of the CGRP, but its release does not require activation of motor centres. Finally, the more marked increase in plasma CGRP and the decrease in blood pressure during exercise in tetraplegic humans may indicate a role of CGRP in regulation of vascular tone during exercise.  相似文献   

10.
Venous compliance declines with age and improves with chronic endurance exercise. KAATSU, an exercise combined with blood flow restriction (BFR), is a unique training method for promoting muscle hypertrophy and strength gains by using low‐intensity resistance exercises or walking. This method also induces pooling of venous blood in the legs. Therefore, we hypothesized that slow walking with BFR may affect limb venous compliance and examined the influence of 6 weeks of walking with BFR on venous compliance in older women. Sixteen women aged 59–78 years were partially randomized into either a slow walking with BFR group (n = 9, BFR walk group) or a non‐exercising control group (n = 7, control group). The BFR walk group performed 20‐min treadmill slow walking (67 m min?1), 5 days per week for 6 weeks. Before (pre) and after (post) those 6 weeks, venous properties were assessed using strain gauge venous occlusion plethysmography. After 6 weeks, leg venous compliance increased significantly in the BFR walk group (pre: 0·0518 ± 0·0084, post: 0·0619 ± 0·0150 ml 100 ml?1 mmHg?1, P<0·05), and maximal venous outflow (MVO) at 80 mmHg also increased significantly after the BFR walk group trained for 6 weeks (pre: 55·3 ± 15·6, post: 67·1 ± 18·9 ml 100 ml?1 min?1, P<0·01), but no significant differences were observed in venous compliance and MVO in the control group. In addition, there was no significant change in arm compliance in the BFR walk group. In conclusion, this study provides the first evidence that 6 weeks of walking exercise with BFR may improve limb venous compliance in untrained elder female subjects.  相似文献   

11.
Summary. The concentration of endothelin-1 in forearm venous plasma was measured in 10 healthy men at rest and during ergometer bicycling at 65% of maximal aerobic capacity until exhaustion (96± 10 min, mean ± SE). A control group of 10 comparable subjects rested for 2 h. Mean plasma endothelin-1 concentration at rest was 2–0 ± 0–2 pg ml-1, n= 20. The concentration decreased significantly by 21% during the first 30 min of exercise, whereupon it increased so that the concentration after 60 min of exercise was no different from resting values. The change in endothelin concentration could not be explained by changes in plasma volume. Unspecific effects of catheterization or time could also not explain the change in endothelin-1, since in the 10 control subjects who did not exercise, plasma endothelin-1 did not change significantly over 120 min. It is concluded that the concentration of endothelin-1 in forearm venous plasma changes in a biphasic manner during prolonged exhaustive bicycle exercise in man. An initial decrease in concentration is followed by an increase restoring the concentration to resting values after 60 min exercise.  相似文献   

12.
Summary. To investigate further the hormonal and metabolic adaptations occurring when carbohydrates are ingested after prolonged exercise, we have compared the fate of a 100-g oral glucose load (using ‘naturally labelled’13C-glucose) in healthy volunteers after an overnight fast at rest either without previous exercise or after a 3-h exercise performed on a treadmill at about 50% of the individual V?o2 max. In comparison to the control conditions, the oral glucose tolerance test (OGTT) performed in the post-exercise recovery period was characterized by a greater rise in peripheral blood glucose levels and delayed insulin response. Plasma glucagon values were significantly elevated at the time glucose was given (+48 ±13 pg ml-1) and at the end of the OGTT. Plasma-free fatty acid (FFA) levels were 1675 ± 103 μEq 1-1 when glucose was given, and subsequently reduced to values similar to those observed in the control conditions. Indirect calorimetry indicated that OGTT in post-exercise recovery was associated with decreased carbohydrate and increased lipid oxidation when compared to control conditions. Exogenous glucose oxidation was also significantly reduced: 25·1 ± 2·6 vs. 35·9 ± 1·9 g per 7 h. We suggest that the higher plasma glucagon levels and the delayed insulin response played a role in the decreased hepatic glucose retention previously described by others in post-exercise recovery. Our data also suggest that the higher lipid oxidation rate observed at the time glucose was given in the post-exercise period could explain, according to the Randle ‘glucose-fatty acid cycle’, the decreased carbohydrate oxidation and the preferential muscle glycogen repletion already well documented. The reason why the lipid oxidation rate remains increased 3–7 h after glucose ingestion in spite of the fact that FFA levels at that time are similar to those observed in control conditions is still unknown; further kinetic studies are needed to clarify this point.  相似文献   

13.
To determine whether intense exercise training affects exercise-induced vasodilatation, six subjects underwent 4 weeks of handgrip training at 70% of maximal voluntary contraction. Exercise forearm vascular conductance (FVC) responses to an endothelium-dependent vasodilator (acetylcholine, ACH; 15, 30, 60 μg min?1) and an endothelium-independent vasodilator (sodium nitroprusside, SNP; 1·6, 3·2, 6·4 μg min?1) and FVC after 10 min of forearm ischaemia were determined before and after training. Training elicited significant (P<0·001) increases in grip strength (43·4 ± 2·3 vs. 64·1 ± 3·5 kg, before vs. after, mean ± SEM), forearm circumference (26·7 ± 0·4 vs. 27·9 ± 0·4 cm) and maximal FVC (0·4630 ± 0·0387 vs. 0.6258 ± 0·0389 units, P<0·05). Resting FVC did not change significantly with training (0·0723 ± 0·0162 vs. 0.0985 ± 0·0171 units, P>0·4), but exercise FVC increased (0·1330 ± 0·0190 vs. 0.2534 ± 0·0387 units, P<0·05). Before and after the training, ACH increased exercise FVC above the control (no drug) exercise FVC, whereas SNP did not. Training increased (P<0·05) the exercise FVC responses to ACH (0·3344 ± 0·1208 vs. 0.4303 ± 0·0858 units, before vs. after training, 60 μg min?1) and SNP (0·2066 ± 0·0849 vs. 0.3172 ± 0·0628 units, 6·4 μg min?1). However, these increases were due to the increase in control (no drug) exercise FVC, as the drug-associated increase in exercise FVC above control did not differ between trials (P>0·6). These results suggest that exercise FVC is increased by both exercise training and stimulating the release of endothelium-dependent vasodilators. However, training does not affect the vascular response to these vasodilators.  相似文献   

14.
Summary. Circulatory variables and hormone concentrations in arterial plasma were measured in six normal subjects during angiotensin II (ANG II) step-up infusion of 0·25 and 1·00 ng kg-1× min. During the 1·00 ng kg-1× min infusion ANG II plasma concentrations increased from 11 ± 2 to 48 ± 6 pg ml-1; i.e., similar to those obtained during acute hypotensive hypovolemia in man. Mean arterial pressure increased (P<0·05) from a resting value of 89±3 to 97±5 mmHg. Heart rate and catecholamine concentrations did not change. Plasma aldosterone increased (P<0·05) from 36 ± 4 to 77 ± 10 pg ml-1 during the infusion. Plasma concentrations of vasopressin, adrenalin and pancreatic polypeptide did not change during the investigation. During the 0·25 and 1·00 ng kg-1× min infusion subcutaneous blood flow decreased (P= 0·06) to 67 ±20 and 66 ±26%, respectively, of control. It is concluded that: (1) ANG II in physiological doses in man may augment the sympathetic activity on the circulatory system since compensatory decreases in heart rate or in plasma catecholamines were not observed during the increased arterial pressure; (2) ANG II does not induce a general decrease in vagal tone as plasma pancreatic polypeptide concentrations were unchanged; (3) the obtained plasma concentrations of ANG II do not stimulate the release of vasopressin to plasma; and (4) the threshold for reducing the subcutaneous blood flow is reached within relatively small increments in plasma ANG II.  相似文献   

15.
Background Obese children exhibit vascular disorders at rest depending on their pubertal status, degree of obesity, and level of insulin resistance. However, data regarding their vascular function during exercise remain scarce. The aims of the present study were to evaluate vascular morphology and function at rest, and lower limb blood flow during exercise, in prepubertal boys with mild‐to‐moderate obesity and in lean controls. Materials and methods Twelve moderately obese prepubertal boys [Body Mass Index (BMI: 23·9 ± 2·6 kg m?2)] and thirteen controls (BMI:17·4 ± 1·8 kg m?2), matched for age (mean age: 11·6 ± 0·6 years) were recruited. We measured carotid intima‐media thickness (IMT) and wall compliance and incremental elastic modulus, resting brachial flow‐mediated dilation (FMD) and nitrate‐dependent dilation (NDD), lower limb blood flow during local knee‐extensor incremental and maximal exercise, body fat content (DEXA), blood pressure, blood lipids, insulin and glucose. Results Compared to lean controls, obese boys had greater IMT (0·47 ± 0·06 vs. 0·42 ± 0·03 mm, P < 0·05) but lower FMD (4·6 ± 2·8 vs. 8·8 ± 3·2%, P < 0·01) in spite of similar maximal shear rate, without NDD differences. Lower limb blood flow (mL min?1·100 g?1) increased significantly from rest to maximal exercise in both groups, although obese children reached lower values than lean counterparts whatever the exercise intensity. Conclusions Mild‐to‐moderate obesity in prepubertal boys without insulin resistance is associated with impaired endothelial function and blunted muscle perfusion response to local dynamic exercise without alteration of vascular smooth muscle reactivity.  相似文献   

16.
Abstract. Serum angiotensin-converting enzyme (ACE) was measured in 150 insulin-dependent diabetes mellitus (IDDM) patients and 72 healthy subjects by radioassay, using [3H]-hippuryl-glycyl-glycine as a substrate. Mean (SD) serum ACE activity in diabetic patients was 120 ± 33 nmol ml?1 min?1 (range 46–215) and was significantly increased by 56% compared to control values (77 ± 23 nmol ml?1 min?1, range 46–125, P < 0·001). ACE activity > 125 nmol ml?1 min?1 was observed in 60 of 150 IDDM patients. 96 IDDM patients were normoalbuminuric (< 22 mg 24 h?1) and 49 patients were micro- or macroalbuminuric (range 22–6010 mg 24 h?1). Micro- and macroalbuminuric IDDM patients were found to have significantly greater ACE activity values than normoalbuminuric patients (128 ± 36 vs. 115 ± 30 nmol ml?1 min?1, P = 0·025). Metabolically well-controlled IDDM patients (glycosylated haemoglobin ≤ 8%) had lower ACE activity values than the patients with glycosylated haemoglobin greater than 8% (109 ± 20 vs. 127 ± 32 nmol ml?1 min?1, P < 0·02). A significant correlation between degree of metabolic control and ACE activity was found (r = 0.435, P < 0·001) so that an increase in one glycosylated quartile unit is accompanied by an increase in ACE activity of 10·5 nmol ml?1 min?1. Thus ACE activity in the serum of IDDM patients was increased by 56% in 40% of the patients. It was increased in IDDM patients without complications and in patients with retinopathy or nephropathy. In diabetic patients with nephropathy, ACE activity was greater than in diabetic patients without nephropathy. ACE activity was positively correlated with metabolic control. The role of increased ACE activity in the development of diabetic nephropathy remains to be established.  相似文献   

17.
The ability of the human organism to recover its autonomic balance soon after physical exercise cessation has an important impact on the individual's health status. Although the dynamics of heart rate recovery after maximal exercise has been studied, little is known about heart rate variability after this type of exercise. The aim of this study is to analyse the dynamics of heart rate and heart rate variability recovery after maximal exercise in healthy young men. Fifteen healthy male subjects (21·7 ± 3·4 years; 24·0 ± 2·1 kg m?2) participated in the study. The experimental protocol consisted of an incremental maximal exercise test on a cycle ergometer, until maximal voluntary exhaustion. After the test, recovery R‐R intervals were recorded for 5 min. From the absolute differences between peak heart rate values and the heart rate values at 1 and 5 min of the recovery, the heart rate recovery was calculated. Postexercise heart rate variability was analysed from calculations of the SDNN and RMSSD indexes, in 30‐s windows (SDNN30s and RMSSD30s) throughout recovery. One and 5 min after maximal exercise cessation, the heart rate recovered 34·7 (±6·6) and 75·5 (±6·1) bpm, respectively. With regard to HRV recovery, while the SDNN30s index had a slight increase, RMSSD30s index remained totally suppressed throughout the recovery, suggesting an absence of vagal modulation reactivation and, possibly, a discrete sympathetic withdrawal. Therefore, it is possible that the main mechanism associated with the fall of HR after maximal exercise is sympathetic withdrawal or a vagal tone restoration without vagal modulation recovery.  相似文献   

18.
The association between muscle oxygen uptake (VO2) and perfusion or perfusion heterogeneity (relative dispersion, RD) was studied in eight healthy male subjects during intermittent isometric (1 s on, 2 s off) one‐legged knee‐extension exercise at variable intensities using positron emission tomography and a‐v blood sampling. Resistance during the first 6 min of exercise was 50% of maximal isometric voluntary contraction force (MVC) (HI‐1), followed by 6 min at 10% MVC (LOW) and finishing with 6 min at 50% MVC (HI‐2). Muscle perfusion and O2 delivery during HI‐1 (26 ± 5 and 5·4 ± 1·0 ml 100 g?1 min?1) and HI‐2 (28 ± 4 and 5·8 ± 0·7 ml 100 g?1 min?1) were similar, but both were higher (P<0·01) than during LOW (15 ± 3 and 3·0 ± 0·6 ml 100 g?1 min?1). Muscle VO2 was also higher during both HI workloads (HI‐1 3·3 ± 0·4 and HI‐2 4·1 ± 0·6 ml 100 g?1 min?1) than LOW (1·4 ± 0·4 ml 100 g?1 min?1; P<0·01) and 25% higher during HI‐2 than HI‐1 (P<0·05). O2 extraction was higher during HI workloads (HI‐1 62 ± 7 and HI‐2 70 ± 7%) than LOW (45 ± 8%; P<0·01). O2 extraction tended to be higher (P = 0·08) during HI‐2 when compared to HI‐1. Perfusion was less heterogeneous (P<0·05) during HI workloads when compared to LOW with no difference between HI workloads. Thus, during one‐legged knee‐extension exercise at variable intensities, skeletal muscle perfusion and O2 delivery are unchanged between high‐intensity workloads, whereas muscle VO2 is increased during the second high‐intensity workload. Perfusion heterogeneity cannot explain this discrepancy between O2 delivery and uptake. We propose that the excess muscle VO2 during the second high‐intensity workload is derived from working muscle cells.  相似文献   

19.
We studied the agreement between plasma clearance of mannitol and the reference method, plasma clearance of 51Cr‐EDTA in outpatients with normal to moderately impaired renal function. Forty‐one patients with a serum creatinine <200 μmol l?1 entered the study. 51Cr‐EDTA clearance was measured with the standard bolus injection technique and glomerular filtration rate (GFR) was calculated by the single‐sample method described by Jacobsson. Mannitol, 0·25 g kg?1 body weight (150 mg ml?1), was infused for 4–14 min and blood samples taken at 1‐, 2‐, 3‐ and 4‐h (n = 24) or 2‐, 3‐, 3·5‐ and 4‐h after infusion (n = 17). Mannitol in serum was measured by an enzymatic method. Plasma clearance for mannitol and its apparent volume of distribution (Vd) were calculated according to Brøchner‐Mortensen. Mean plasma clearance (±SD) for 51Cr‐EDTA was 59·7 ± 18·8 ml min?1. The mean plasma clearance for mannitol ranged between 57·0 ± 20·1 and 61·1 ± 16·7 ml min?1 and Vd was 21·3 ± 6·2% per kg b.w. The between‐method bias ranged between ?0·23 and 2·73 ml min?1, the percentage error between 26·7 and 39·5% and the limits of agreement between ?14·3/17·2 and ?25·3/19·9 ml min?1. The best agreement was seen when three‐ or four‐sample measurements of plasma mannitol were obtained and when sampling started 60 min after injection. Furthermore, accuracy of plasma clearance determinations was 88–96% (P30) and 41–63% (P10) and was highest when three‐ or four‐sample measurements of plasma mannitol were obtained, including the first hour after the bolus dose. We conclude that there is a good agreement between plasma clearances of mannitol and 51Cr‐EDTA for the assessment of GFR.  相似文献   

20.
Background: Plasma B‐type natriuretic peptide (BNP) levels are closely related to symptoms in left ventricle (LV) systolic heart failure, although marked regarding heterogeneity levels among subjects are reported. Aims: To assess the influence of right ventricle on plasma BNP in the patients with different grades of its overload secondary to severe mitral valve stenosis (MVS). Methods: Plasma BNP was evaluated in MVS patients (n = 27) before valve replacement and during follow‐up (FUV) 401 ± 42 days after operation. Results: Initial examination showed severe MVS (0.9 ± 0.2 cm2), left atrial enlargement (LAI 30 ± 4.5 mm m?2), right ventricle diastolic dilatation (RVDI 16 ± 3.6 mm m?2), normal LV size/function and elevated BNP levels (166 ± 137 pg ml?1). FUV examination revealed a significant reduction in LAI (27 ± 2.2 mm m?2), RVDI (14 ± 1.6 mm m?2) and BNP levels (80 ± 35 pg ml?1). The regression analysis of the initial parameters found RVDI to be the strongest predictor (R2 = 0.61; P<0.0001) for BNP level, whereas RVDI reduction was the strongest factor for BNP decrease (R2 = 0.65; P<0.0001) during FUV. Conclusions: Right ventricle should be taken into account as a potential important source of plasma BNP owing to the fact that LV size and function are well preserved in MVS patients. RVDI determines BNP plasma levels whereas after MVS removal, the RVDI reduction predicts BNP level decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号