首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using sequence analysis of Shiga toxin 1 (Stx 1) genes from human and ovine Stx-producing Escherichia coli (STEC) strains, we identified an Stx1 variant in STEC of human origin that was identical to the Stx1 variant from ovine STEC, but demonstrated only 97.1 and 96.6% amino acid sequence identity in its A and B subunits, respectively, to the Stx1 encoded by bacteriophage 933J. We designated this variant "Stx1c" and developed stxB(1) restriction fragment length polymorphism and stx(1c)-specific PCR strategies to determine the frequency and distribution of stx(1c) among 212 STEC strains isolated from humans. stx(1c) was identified in 36 (17.0%) of 212 STEC strains, 19 of which originated from asymptomatic subjects and 16 of which were from patients with uncomplicated diarrhea. stx(1c) was most frequently (in 23 STEC strains [63.9%]) associated with stx(2d), but 12 (33.3%) of the 36 STEC strains possessed stx(1c) only. A single STEC strain possessed stx(1c) together with stx(2) and was isolated from a patient with hemolytic-uremic syndrome. All 36 stx(1c)-positive STEC strains were eae negative and belonged to 10 different serogroups, none of which was O157, O26, O103, O111, or O145. Stx1c was produced by all stx(1c)-containing STEC strains, but reacted weakly with a commercial immunoassay. We conclude that STEC strains harboring the stx(1c) variant account for a significant proportion of human STEC isolates. The procedures developed in this study now allow the determination of the frequency of STEC strains harboring stx(1c) among clinical STEC isolates and their association with human disease in prospective studies.  相似文献   

2.
Unlike Shiga toxin 2 (stx(2)) genes, most nucleotide sequences of Shiga toxin 1 (stx(1)) genes from Shiga toxin-producing Escherichia coli (STEC), Shigella dysenteriae, and several bacteriophages (H19B, 933J, and H30) are highly conserved. Consequently, there has been little incentive to investigate variants of stx(1) among STEC isolates derived from human or animal sources. However stx(1OX3), originally identified in an OX3:H8 isolate from a healthy sheep in Germany, differs from other stx(1) subtypes by 43 nucleotides, resulting in changes to 12 amino acid residues, and has been renamed stx(1c). In this study we describe the development of a PCR-restriction fragment length polymorphism (RFLP) assay that distinguishes stx(1c) from other stx(1) subtypes. The PCR-RFLP assay was used to study 378 stx(1)-containing STEC isolates. Of these, 207 were isolated from sheep, 104 from cattle, 45 from humans, 11 from meat, 5 from swine, 5 from unknown sources, and 1 from a cattle water trough. Three hundred fifty-five of the 378 isolates (93.9%) also possessed at least one other associated virulence gene (ehxA, eaeA, and/or stx(2)); the combination stx(1), stx(2), and ehxA was the most common (175 of 355 [49.3%]), and 90 of 355 (25.4%) isolates possessed eaeA. One hundred thirty-six of 207 (65.7%) ovine isolates possessed stx(1c) alone and belonged to 41 serotypes. Seventy-one of 136 (52.2%) comprised the common ovine serotypes O5:H(-), O128:H2, and O123:H(-). Fifty-two of 207 isolates (25.1%) possessed an stx(1) subtype; 27 (51.9%) of these belonged to serotype O91:H(-). Nineteen of 207 isolates (9.2%) contained both stx(1c) and stx(1) subtypes, and 14 belonged to serotype O75:H8. In marked contrast, 97 of 104 (93.3%) bovine isolates comprising 44 serotypes possessed an stx(1) subtype, 6 isolates possessed stx(1c), and the remaining isolate possessed both stx(1c) and stx(1) subtypes. Ten of 11 (91%) isolates cultured from meat in New Zealand possessed stx(1c) (serotypes O5:H(-), O75:H8/H40, O81:H26, O88:H25, O104:H(-)/H7, O123:H(-)/H10, and O128:H2); most of these serotypes are commonly recovered from the feces of healthy sheep. Serotypes containing stx(1) recovered from cattle rarely were the same as those isolated from sheep. Although an stx(1c) subtype was never associated with the typical enterohemorrhagic E. coli serogroups O26, O103, O111, O113, and O157, 13 human isolates possessed stx(1c). Of these, six isolates with serotype O128:H2 (from patients with diarrhea), four O5:H(-) isolates (from patients with hemolytic-uremic syndrome), and three isolates with serotypes O123:H(-) (diarrhea), OX3:H8 (hemolytic-uremic syndrome), and O81:H6 (unknown health status) represent serotypes that are commonly isolated from sheep.  相似文献   

3.
Stx2d is a recently described Shiga toxin whose cytotoxicity is activated 10- to 1000-fold by the elastase present in mouse or human intestinal mucus. We examined Shiga toxigenic Escherichia coli (STEC) strains isolated from food and livestock sources for the presence of activatable stx(2d). The stx(2) operons of STEC were first analyzed by PCR-restriction fragment length polymorphism (RFLP) analysis and categorized as stx(2), stx(2c vha), stx(2c vhb), or stx(2d EH250). Subsequently, the stx(2c vha) and stx(2c vhb) operons were screened for the absence of a PstI site in the stx(2A) subunit gene, a restriction site polymorphism which is a predictive indicator for the stx(2d) (activatable) genotype. Twelve STEC isolates carrying putative stx(2d) operons were identified, and nucleotide sequencing was used to confirm the identification of these operons as stx(2d). The complete nucleotide sequences of seven representative stx(2d) operons were determined. Shiga toxin expression in stx(2d) isolates was confirmed by immunoblotting. stx(2d) isolates were induced for the production of bacteriophages carrying stx. Two isolates were able to produce bacteriophages phi1662a and phi1720a carrying the stx(2d) operons. RFLP analysis of bacteriophage genomic DNA revealed that phi1662a and phi1720a were highly related to each other; however, the DNA sequences of these two stx(2d) operons were distinct. The STEC strains carrying these operons were isolated from retail ground beef. Surveillance for STEC strains expressing activatable Stx2d Shiga toxin among clinical cases may indicate the significance of this toxin subtype to human health.  相似文献   

4.
We have investigated 677 Shiga toxin-producing Escherichia coli (STEC) strains from humans to determine their serotypes, virulence genes, and clinical signs in patients. Six different Shiga toxin types (1, 1c, 2, 2c, 2d, and 2e) were distributed in the STEC strains. Intimin (eae) genes were present in 62.6% of the strains and subtyped into intimins alpha1, beta1, gamma1, epsilon, theta, and eta. Shiga toxin types 1c and 2d were present only in eae-negative STEC strains, and type 2 was significantly (P < 0.001) more frequent in eae-positive STEC strains. Enterohemorrhagic E. coli hemolysin was associated with 96.2% of the eae-positive strains and with 65.2% of the eae-negative strains. Clinical signs in the patients were abdominal pain (8.7%), nonbloody diarrhea (59.2%), bloody diarrhea (14.3%), and hemolytic-uremic syndrome (HUS) (3.5%), and 14.3% of the patients had no signs of gastrointestinal disease or HUS. Infections with eae-positive STEC were significantly (P < 0.001) more frequent in children under 6 years of age than in other age groups, whereas eae-negative STEC infections dominated in adults. The STEC strains were grouped into 74 O:H types by serotyping and by PCR typing of the flagellar (fliC) genes in 221 nonmotile STEC strains. Eleven serotypes (O157:[H7], O26:[H11], O103:H2, O91:[H14], O111:[H8], O145:[H28], O128:H2, O113:[H4], O146:H21, O118:H16, and O76:[H19]) accounted for 69% of all STEC strains. We identified 41 STEC strains belonging to 31 serotypes which had not previously been described as human STEC. Twenty-six of these were positive for intimins alpha1 (one serotype), beta1 (eight serotypes), epsilon (two serotypes), and eta (three serotypes). Our study indicates that different types of STEC strains predominate in infant and adult patients and that new types of STEC strains are present among human isolates.  相似文献   

5.
Tellurite-containing media are widely used for the screening and isolation of Shiga toxin-producing Escherichia coli (STEC) O157:H7, but tellurite resistance among non-O157 STEC is poorly characterized. Therefore, we investigated 202 STEC strains representing 61 different serotypes from humans, animals or food for the presence of ter genes by PCR and their correlation with tellurite resistance, by assessing growth on cefixime-tellurite sorbitol MacConkey agar. All strains were screened for terC, terE and terF as markers for the ter gene cluster. Of the 202 strains, 127 contained terC and terE and were tellurite-resistant, but only 121 of these also contained terF. All 72 non-sorbitol-fermenting O157:H7 and O157:NM (non-motile) strains contained terC, terE and terF and expressed tellurite resistance. In contrast, all eight sorbitol-fermenting STEC O157:NM were terC-, terE- and terF-negative and tellurite-sensitive. Among non-O157 STEC, terC, terE and terF were found in all seven O145:NM, four O111:H8/NM, 17 of 18 O26:H11/NM and in 21 strains of 14 other serotypes. The strong correlation between the presence of ter genes and the ability to grow on tellurite-containing media suggest that the ter genes encode tellurite resistance in the vast majority of these strains. The presence of the ter gene cluster was significantly (P<0.00001) associated with the presence of eae genes. We conclude that the use of tellurite-containing media in screening for STEC will allow the detection of STEC O26, O111, O145 and non-sorbitol-fermenting O157, but most strains (in this study 74.3%) from other serotypes will be missed.  相似文献   

6.
The isolation and characterization of Escherichia coli O157:H7 and non-O157 Shiga toxin-producing E. coli (STEC) strains from sheep are described. One flock was investigated for E. coli O157:H7 over a 16-month period that spanned two summer and two autumn seasons. Variation in the occurrence of E. coli O157:H7-positive sheep was observed, with animals being culture positive only in the summer months but not in the spring, autumn, or winter. E. coli O157:H7 isolates were distinguished by pulsed-field gel electrophoresis (PFGE) of chromosomal DNA and toxin gene restriction fragment length polymorphism (RFLP) analysis. Ten PFGE patterns and five RFLP patterns, identified among the isolates, showed that multiple E. coli O157:H7 strains were isolated from one flock, that a single animal simultaneously shed multiple E. coli O157:H7 strains, and that the strains shed by individuals changed over time. E. coli O157:H7 was isolated only by selective enrichment culture off 10 g of ovine feces. In contrast, strains of eight STEC serotypes other than O157:H7 were cultured from feces of sheep from a separate flock without enrichment. The predominant non-O157 STEC serotype found was O91:NM (NM indicates nonmotile), and others included O128:NM, O88:NM, O6:H49, and O5:NM. Irrespective of serotype, 98% of the ovine STEC isolates possessed various combinations of the virulence-associated genes for Shiga toxin(s) and the attaching-and-effacing lesion (stx1, stx2, and eae), suggesting their potential for human pathogenicity. The most common toxin-eae genotype was positive for stx1, stx2, and eae. A Vero cell cytotoxicity assay demonstrated that 90% of the representative STEC isolates tested expressed the toxin gene. The report demonstrates that sheep transiently shed a variety of STEC strains, including E. coli O157:H7, that have potential as human pathogens.  相似文献   

7.
Out of 174 bovine Shiga toxin-producing Escherichia coli (STEC) strains isolated from diarrheic calves in Germany and Belgium, 122 strains (70.1%) were selected because of their reactivity with the eae (E. coli attaching and effacing gene) probe ECW1-ECW2. One hundred seven of these eae-positive strains (87.7%) harbored stx1 genes, 13 strains (10.7%) had stx2 genes, and 2 strains (1.6%) had both stx genes. The strains displayed 17 different O types, the majority (97 strains) [79.5%]) belonging to O5 (5 strains), O26 (21 strains), O111 (13 strains) O118 (36 strains), O145 (9 strains), and O157 (13 strains). In the HEp-2 cell adhesion assay, 99 strains (81.1%) showed a localized adhesion, and 80 strains (65.6%) stimulated actin accumulation, as determined in the fluorescence actin staining test. None of the strains harbored genes coding for bundle-forming pili (bfpA), clearly differentiating them from enteropathogenic. E. cole. espB gene sequences were only detectable in 23 (18.9%) of the eae-positive bovine STEC strains. Three different PCRs were established, differentiating between eae sequences of enteropathogenic E. coli strain E2348/69 (O127:H6) and STEC strain EDL933 (O157: H7). Primers matching in the more heterologous downstream eae sequences gave amplicons in only 8 of the 17 O types (O84:H-, O103:H2, O111:H-, O111:H2, O119:H25, O128:H-, O145:H28, and O157:H-). Only 15 STEC strains, belonging to serotypes O111H:-, O111H:2, O145:H28, and O157:H-, gave amplicons in all three eae-specific PCRs. These data demonstrate that bovine STEC strains are a heterogeneous group of pathogenic bacteria, a lot of which share virulence markers with STEC strains causing infections in humans. However, in contrast to human STEC strains, bovine eae-positive STEC strains are mainly restricted to the stx1 genotype. The observation that espB sequences are not highly conserved might have consequences for the serological recognition of the ESPB protein in patients. Like in human STEC strains, eae-related sequences are closely associated with certain E. coli O groups; however, they are not serotype specific.  相似文献   

8.
9.
Strains producing Shiga toxins, encoded by stx1 and stx2 genes, can cause diarrhoea, haemorrhagic colitis and haemolytic uremic syndrome. PCR screening of 80 clinical Aeromonas strains showed that 19 were stx1-positive and only one was positive for both stx1 and stx2. PCR bands were very faint for some strains and negative results were obtained after subculturing. The obtained sequences of Aeromonas stx1 and stx2 genes were highly similar to those of the most virulent stx gene variants of Shiga toxin-producing Escherichia coli. These results may lead to a better understanding of the potential pathogenicity and virulence mechanisms of Aeromonas.  相似文献   

10.
A bacteriophage encoding the Shiga toxin 2c variant (Stx2c) was isolated from the human Escherichia coli O157 strain CB2851 and shown to form lysogens on the E. coli K-12 laboratory strains C600 and MG1655. Production of Stx2c was found in the wild-type E. coli O157 strain and the K-12 lysogens and was inducible by growing bacteria in the presence of ciprofloxacin. Phage 2851 is the first reported viable bacteriophage which carries an stx(2c) gene. Electron micrographs of phage 2851 showed particles with elongated hexagonal heads and long flexible tails resembling phage lambda. Sequence analysis of an 8.4-kb region flanking the stx(2c) gene and other genetic elements revealed a mosaic gene structure, as found in other Stx phages. Phage 2851 showed lysis of E. coli K-12 strains lysogenic for Stx phages encoding Stx1 (H19), Stx2 (933W), Stx (7888), and Stx1c (6220) but showed superinfection immunity with phage lambda, presumably originating from the similarity of the cI repressor proteins of both phages. Apparently, phage 2851 integrates at a different chromosomal locus than Stx2 phage 933W and Stx1 phage H19 in E. coli, explaining why Stx2c is often found in combination with Stx1 or Stx2 in E. coli O157 strains. Diagnostic PCR was performed to determine gene sequences specific for phage 2851 in wild-type E. coli O157 strains producing Stx2c. The phage 2851 q and o genes were frequently detected in Stx2c-producing E. coli O157 strains, indicating that phages related to 2851 are associated with Stx2c production in strains of E. coli O157 that were isolated in different locations and time periods.  相似文献   

11.
Escherichia coli O157:H7 is an important zoonotic pathogen, causing hemolytic uremic syndrome (HUS). The colonization of cattle and human hosts is mediated through the action of effectors secreted via a type III secretion system (T3SS). The structural genes for the T3SS and many of the secreted effectors are located on a pathogenicity island called the locus of enterocyte effacement (LEE). We cloned and expressed the genes coding for 66 effectors and purified each to measure the cross-reactivity of type III secreted proteins from Shiga toxin-producing Escherichia coli (STEC) serotypes. These included 37 LEE-encoded proteins and 29 non-LEE effectors. The serological response against each protein was measured by Western blot analysis and enzyme-linked immunosorbent assay (ELISA) using sera from rabbits immunized with type III secreted proteins (T3SPs) from four STEC serotypes, experimentally infected cattle, and human sera from six HUS patients. Twenty proteins were recognized by at least one of the STEC T3SP-vaccinated rabbits by Western blotting. Several structural proteins (EspA, EspB, and EspD) and a number of effectors (Tir, NleA, and TccP) were recognized by O26-, O103-, O111-, and O157-specific sera. Sera from experimentally infected cattle and HUS patients were tested using an ELISA against each of the proteins. Tir, EspB, EspD, EspA, and NleA were recognized by the majority of the samples tested. A number of other proteins also were recognized by individual serum samples. Overall, proteins such as Tir, EspB, EspD, NleA, and EspA were highly immunogenic in vaccinated and naturally infected subjects and could be candidates for a cross-protective STEC vaccine.  相似文献   

12.
Antibiotic resistance, virulence gene, and molecular profiles of Shiga toxin-producing Escherichia coli (STEC) non-O157 strains isolated from human stool samples, cow stool samples, and beef samples over a period of 2 years in Calcutta, India, were determined. Resistance to one or more antibiotics was observed in 49.2% of the STEC strains, with some of the strains exhibiting multidrug resistance. The dominant combinations of virulence genes present in the strains studied were stx(1) and stx(2) (44.5% of strains) and stx(1), stx(2), and hlyA (enterohemorrhagic E. coli hemolysin gene) (19% of strains). Only 6.4% of the STEC strains harbored eae. The diversity of STEC strains from various sources was assessed by random amplification of polymorphic DNA (RAPD). STEC strains that gave identical or nearly similar DNA fingerprints in RAPD-PCR and had similar virulence genotypes were further characterized by pulsed-field gel electrophoresis (PFGE). Identical RAPD and PFGE profiles were observed in four sets of strains, with each set comprising two strains. There was no match in the RAPD and PFGE profiles between strains of STEC isolated from cows and those isolated from humans. It appears that the clones present in bovine sources are not transmitted to humans in the Calcutta setting although these strains showed evolutionary relatedness. Maybe for this reason, STEC has still not become a major problem in India.  相似文献   

13.
Shiga toxigenic Escherichia coli (STEC) comprises a diverse group of organisms capable of causing severe gastrointestinal disease in humans. Within the STEC family, certain strains appear to be of greater virulence for humans, for example, those belonging to serogroups O111 and O157 and those with particular combinations of other putative virulence traits. We have developed two multiplex PCR assays for the detection and genetic characterization of STEC in cultures of feces or foodstuffs. Assay 1 utilizes four PCR primer pairs and detects the presence of stx1, stx2 (including variants of stx2), eaeA, and enterohemorrhagic E. coli hlyA, generating amplification products of 180, 255, 384, and 534 bp, respectively. Assay 2 uses two primer pairs specific for portions of the rfb (O-antigen-encoding) regions of E. coli serotypes O157 and O111, generating PCR products of 259 and 406 bp, respectively. The two assays were validated by testing 52 previously characterized STEC strains and observing 100% agreement with previous results. Moreover, assay 2 did not give a false-positive O157 reaction with enteropathogenic E. coli strains belonging to clonally related serogroup O55. Assays 1 and 2 detected STEC of the appropriate genotype in primary fecal cultures from five patients with hemolytic-uremic syndrome and three with bloody diarrhea. Thirty-one other primary fecal cultures from patients without evidence of STEC infection were negative.  相似文献   

14.
15.
A total of 722 Shiga toxin-producing Escherichia coli (STEC) isolates recovered from humans, cattle, ovines and food during the period from 1992 to 1999 in Spain were examined to determine antimicrobial resistance profiles and their association with serotypes, phage types and virulence genes. Fifty-eight (41%) out of 141 STEC O157:H7 strains and 240 (41%) out of 581 non-O157 STEC strains showed resistance to at least one of the 26 antimicrobial agents tested. STEC O157:H7 showed a higher percentage of resistant strains recovered from bovine (53%) and beef meat (57%) than from human (23%) and ovine (20%) sources, whereas the highest prevalence of antimicrobial resistance in non-O157 STEC was found among isolates recovered from beef meat (55%) and human patients (47%). Sulfisoxazole (36%) had the most common antimicrobial resistance, followed by tetracycline (32%), streptomycin (29%), ampicillin (10%), trimethoprim (8%), cotrimoxazole (8%), chloramphenicol (7%), kanamycin (7%), piperacillin (6%), and neomycin (5%). The multiple resistance pattern most often observed was that of streptomycin, sulfisoxazole, and tetracycline. Ten (7%) STEC O157:H7 and 71 (12%) non-O157 strains were resistant to five or more antimicrobial agents. Most strains showing resistance to five or more antimicrobial agents belonged to serotypes O4:H4 (4 strains), O8:H21 (3 strains), O20:H19 (6 strains), O26:H11 (8 strains eae-beta1), O111:H- (3 strains eae-gamma2), O118:H- (2 strains eae-beta1), O118:H16 (5 strains eae-beta1), O128:H- (2 strains), O145:H8 or O145:H- (2 strains eae-gamma1), O157:H7 (10 strains eae-gamma1), O171:H25 (3 strains), O177:H11 (5 strains eae-beta1), ONT:H- (3 strains/1 eae-beta1) and ONT:H21 (2 strains). Interestingly, most of these serotypes, i.e., those indicated in bold) were found among human STEC strains isolated from patients with hemolytic uremic-syndrome (HUS) reported in previous studies. We also detected, among non-O157 strains, an association between a higher level of multiple resistance to antibiotics and the presence of the virulence genes eae and stx(1). Moreover, STEC O157:H7, showed an association between certain phage types, PT21/28 (90%), PT23 (75%), PT34 (75%), and PT2 (54%), with a higher number of resistant strains. We conclude that the high prevalence of antimicrobial resistance detected in our study is a source of concern, and cautious use of antibiotics in animals is highly recommended.  相似文献   

16.
The pulsed-field gel electrophoresis (PFGE) patterns of 46 Shiga toxin-producing Escherichia coli (STEC) strains isolated in S?o Paulo, Brazil, during the period from 1976 to 2003 were compared with those found among 30 non-STEC strains that carried eae and that belonged to the same serogroups as the STEC strains. All except two of the STEC and non-STEC strains of human origin were from sporadic and unrelated cases of infection; two O111 strains originated from the same patient. Multiple PFGE patterns were found among STEC strains of distinct serotypes. Moreover, the PFGE restriction patterns of STEC strains differed substantially from those observed among non-STEC strains of the same serogroup except serotype O26 strains. Based on the indistinguishable PFGE pattern for two O157:H7 STEC strains isolated in the same geographic area at an interval of approximately 15 days and toxin profile data, the first occurrence of an O157:H7 outbreak in Brazil during that period can be suggested. In general, a close relationship between types of intimin, serotypes, and diarrheagenic groups of E. coli was observed. This is the first time that a large collection of STEC strains from Brazil has been analyzed, and a great genetic diversity was shown among O157:H7 and non-O157:H7 STEC strains isolated in S?o Paulo, Brazil.  相似文献   

17.
Shiga toxin-producing Escherichia coli (STEC) strains are a diverse group of organisms which are known to cause diarrhea and hemorrhagic colitis in humans. We have recently described a large food-borne outbreak of STEC disease caused by contaminated semidry fermented sausage (A. W. Paton, R. Ratcliff, R. M. Doyle, J. Seymour-Murray, D. Davos, J. A. Lanser, and J. C. Paton, J. Clin. Microbiol. 34:1622-1627, 1996). STEC strains belonging to several O serotypes were isolated from the contaminated food source, but of these, only a subset were isolated from patients with diarrhea or hemolytic-uremic syndrome (HUS). In the present study, we characterized these STEC isolates with respect to the presence of putative virulence-associated genes and the capacity to adhere to a human intestinal epithelial cell line (Henle 407). The O111:H- STEC strain 95NR1 (isolated from one of the outbreak HUS patients) was shown to adhere to Henle 407 cells in a dose-dependent, mannose-resistant fashion. Microscopic examination revealed a diffuse pattern of adherence for this as well as several other STEC strains. Interestingly, the adherence of STEC strains from HUS cases (both outbreak related and sporadic) was significantly greater than that of STEC strains found in the contaminated food source but not found in any patients. These studies support the hypothesis that an enhanced capacity to adhere to intestinal cells is one of the factors which distinguishes human-virulent STEC strains from those of lesser clinical significance.  相似文献   

18.
Long polar fimbriae (LPF) are related to type I fimbriae in genetic organization and were first identified in Salmonella enterica serovar Typhimurium. Four lpfA genetic variants designated lpfA(O157/OI-141), lpfA(O157/OI-154), lpfA(O26) and lpfA(O113) have been identified in Shiga toxin-producing Escherichia coli (STEC). In this study, PCR was employed to determine the distribution of STEC-lpfAs in enteropathogenic, enteroaggregative, enterotoxigenic and enteroinvasive E. coli (EPEC, EAEC, ETEC and EIEC) and in the standard E. coli collection of reference (ECOR). Among the 97 diarrheagenic strains from our collection, only 2 EPEC strains of serotypes O55:H7 and O119:NM were positive for both lpfA(O157/OI-141) and lpfA(O157/OI-154). lpfA(O157/OI-141) was also positive in 1 of 25 ETEC strains. lpfA(O113) was present in 51 of 97 strains and lpfA(O26) in 13 of 97 strains of diverse diarrheagenic categories. STEC-lpfAs were also present in non-pathogenic ECOR strains of all phylogenetic groups. This study showed that the lpfA genes identified in the genome of STEC strains are not specific to this category. Our results suggest that there is a relationship between the lpfA variant and the phylogenetic group.  相似文献   

19.
B J Knoll 《Virology》1979,92(2):518-531
Mutations of phage λ are described which permit lysogenization of singly infected cells under conditions where λ+ lysogenizes only by multiple infection. Deletion mapping places them between the end points of bio252 and bio10, most probably within the cIII gene. In addition to their effects on lysogenization, these mutations (cIIIs1 and cIIIs2) cause a lengthening of the latent period in one-step growth experiments with lytic infections. This growth defect is relieved by a mutation in the cII gene, but not by a mutation in the Y region. A one-step growth experiment in which cells were mixedly infected by cIIIs cI? and cIII+ cI? showed a latent period intermediate between that of infections by each strain alone. A similar result was obtained in a mixed infection with cIIIs cI? and cIII?cI?. I conclude that the intermediate latent period obtained in mixed infections depends upon the ratio of cIIIs cI? to cIII+cI? or cIII?cI? chromosomes. cIIIs mutants accumulate more repressor than cIII+ by 30 min after infection, as assayed by the DNA filter binding technique. These properties are consistent with the idea of a “super cIII” protein, which may be more stable or more active than the wild-type protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号