首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large proportion of patients with obsessive–compulsive disorder (OCD) respond unsatisfactorily to pharmacological and psychological treatments. An alternative novel treatment for these patients is repetitive transcranial magnetic stimulation (rTMS). This study aimed to investigate the underlying neural mechanism of rTMS treatment in OCD patients. A total of 37 patients with OCD were randomized to receive real or sham 1‐Hz rTMS (14 days, 30 min/day) over the right pre‐supplementary motor area (preSMA). Resting‐state functional magnetic resonance imaging data were collected before and after rTMS treatment. The individualized target was defined by a personalized functional connectivity map of the subthalamic nucleus. After treatment, patients in the real group showed a better improvement in the Yale–Brown Obsessive Compulsive Scale than the sham group (F 1,35 = 6.0, p = .019). To show the neural mechanism involved, we identified an “ideal target connectivity” before treatment. Leave‐one‐out cross‐validation indicated that this connectivity pattern can significantly predict patients'' symptom improvements (r = .60, p = .009). After real treatment, the average connectivity strength of the target network significantly decreased in the real but not in the sham group. This network‐level change was cross‐validated in three independent datasets. Altogether, these findings suggest that personalized magnetic stimulation on preSMA may alleviate obsessive–compulsive symptoms by decreasing the connectivity strength of the target network.  相似文献   

2.
Repetitive transcranial magnetic stimulation (rTMS) is an alternative treatment for depression, but the neural correlates of the treatment are currently inconclusive, which might be a limit of conventional analytical methods. The present study aimed to investigate the neurophysiological evidence and potential biomarkers for rTMS and intermittent theta burst stimulation (iTBS) treatment. A total of 61 treatment‐resistant depression patients were randomly assigned to receive prolonged iTBS (piTBS; N = 19), 10 Hz rTMS (N = 20), or sham stimulation (N = 22). Each participant went through a treatment phase with resting state electroencephalography (EEG) recordings before and after the treatment phase. The aftereffects of stimulation showed that theta‐alpha amplitude modulation frequency (f am) was associated with piTBS_Responder, which involves repetitive bursts delivered in the theta frequency range, whereas alpha carrier frequency (f c) was related to 10 Hz rTMS, which uses alpha rhythmic stimulation. In addition, theta‐alpha amplitude modulation frequency was positively correlated with piTBS antidepressant efficacy, whereas the alpha frequency was not associated with the 10 Hz rTMS clinical outcome. The present study showed that TMS stimulation effects might be lasting, with changes of brain oscillations associated with the delivered frequency. Additionally, theta‐alpha amplitude modulation frequency may be as a function of the degree of recovery in TRD with piTBS treatment and also a potential EEG‐based predictor of antidepressant efficacy of piTBS in the early treatment stage, that is, first 2 weeks.  相似文献   

3.
The effects of upright postures on the cerebral circulation early post-ischemic stroke are not fully understood. We conducted a systematic review and meta-analysis to investigate the effects of head positioning on cerebral haemodynamics assessed by imaging methods post-ischemic stroke. Of the 21 studies included (n = 529), 15 used transcranial Doppler. Others used near-infrared, diffuse correlation spectroscopy and nuclear medicine modalities. Most tested head positions between 0° and 45°. Seventeen studies reported changes in CBF parameters (increase at lying-flat or decrease at more upright) in the ischaemic hemisphere with position change. However, great variability was found and risk of bias was high in many studies. Pooled data of two studies ≤24 h (n = 28) showed a mean increase in cerebral blood flow (CBF) velocity of 8.5 cm/s in the ischaemic middle cerebral artery (95%CI,−2.2–19.3) from 30° to 0°. The increase found ≤48 h (n = 50) was of 2.3 cm/s (95%CI,−4.6–9.2), while ≤7 days (n = 38) was of 8.4 cm/s (95%CI, 1.8–15). Few very early studies (≤2 days) tested head positions greater than 30° and were unable to provide information about the response of acute stroke patients to upright postures (sitting, standing). These postures are part of current clinical practice and knowledge on their effects on cerebral haemodynamics is required.  相似文献   

4.
Although multiple sclerosis (MS) is frequently accompanied by visuo‐cognitive impairment, especially functional brain mechanisms underlying this impairment are still not well understood. Consequently, we used a functional MRI (fMRI) backward masking task to study visual information processing stratifying unconscious and conscious in MS. Specifically, 30 persons with MS (pwMS) and 34 healthy controls (HC) were shown target stimuli followed by a mask presented 8–150 ms later and had to compare the target to a reference stimulus. Retinal integrity (via optical coherence tomography), optic tract integrity (visual evoked potential; VEP) and whole brain structural connectivity (probabilistic tractography) were assessed as complementary structural brain integrity markers. On a psychophysical level, pwMS reached conscious access later than HC (50 vs. 16 ms, p < .001). The delay increased with disease duration (p < .001, β = .37) and disability (p < .001, β = .24), but did not correlate with conscious information processing speed (Symbol digit modality test, β = .07, p = .817). No association was found for VEP and retinal integrity markers. Moreover, pwMS were characterized by decreased brain activation during unconscious processing compared with HC. No group differences were found during conscious processing. Finally, a complementary structural brain integrity analysis showed that a reduced fractional anisotropy in corpus callosum and an impaired connection between right insula and primary visual areas was related to delayed conscious access in pwMS. Our study revealed slowed conscious access to visual stimulus material in MS and a complex pattern of functional and structural alterations coupled to unconscious processing of/delayed conscious access to visual stimulus material in MS.  相似文献   

5.
Machine learning has been applied to neuroimaging data for estimating brain age and capturing early cognitive impairment in neurodegenerative diseases. Blood parameters like neurofilament light chain are associated with aging. In order to improve brain age predictive accuracy, we constructed a model based on both brain structural magnetic resonance imaging (sMRI) and blood parameters. Healthy subjects (n = 93; 37 males; aged 50–85 years) were recruited. A deep learning network was firstly pretrained on a large set of MRI scans (n = 1,481; 659 males; aged 50–85 years) downloaded from multiple open‐source datasets, to provide weights on our recruited dataset. Evaluating the network on the recruited dataset resulted in mean absolute error (MAE) of 4.91 years and a high correlation (r = .67, p <.001) against chronological age. The sMRI data were then combined with five blood biochemical indicators including GLU, TG, TC, ApoA1 and ApoB, and 9 dementia‐associated biomarkers including ApoE genotype, HCY, NFL, TREM2, Aβ40, Aβ42, T‐tau, TIMP1, and VLDLR to construct a bilinear fusion model, which achieved a more accurate prediction of brain age (MAE, 3.96 years; r = .76, p <.001). Notably, the fusion model achieved better improvement in the group of older subjects (70–85 years). Extracted attention maps of the network showed that amygdala, pallidum, and olfactory were effective for age estimation. Mediation analysis further showed that brain structural features and blood parameters provided independent and significant impact. The constructed age prediction model may have promising potential in evaluation of brain health based on MRI and blood parameters.  相似文献   

6.
Early‐onset psychosis disorders are serious mental disorders arising before the age of 18 years. Here, we investigate the largest neuroimaging dataset, to date, of patients with early‐onset psychosis and healthy controls for differences in intracranial and subcortical brain volumes. The sample included 263 patients with early‐onset psychosis (mean age: 16.4 ± 1.4 years, mean illness duration: 1.5 ± 1.4 years, 39.2% female) and 359 healthy controls (mean age: 15.9 ± 1.7 years, 45.4% female) with magnetic resonance imaging data, pooled from 11 clinical cohorts. Patients were diagnosed with early‐onset schizophrenia (n = 183), affective psychosis (n = 39), or other psychotic disorders (n = 41). We used linear mixed‐effects models to investigate differences in intracranial and subcortical volumes across the patient sample, diagnostic subgroup and antipsychotic medication, relative to controls. We observed significantly lower intracranial (Cohen''s d = −0.39) and hippocampal (d = −0.25) volumes, and higher caudate (d = 0.25) and pallidum (d = 0.24) volumes in patients relative to controls. Intracranial volume was lower in both early‐onset schizophrenia (d = −0.34) and affective psychosis (d = −0.42), and early‐onset schizophrenia showed lower hippocampal (d = −0.24) and higher pallidum (d = 0.29) volumes. Patients who were currently treated with antipsychotic medication (n = 193) had significantly lower intracranial volume (d = −0.42). The findings demonstrate a similar pattern of brain alterations in early‐onset psychosis as previously reported in adult psychosis, but with notably low intracranial volume. The low intracranial volume suggests disrupted neurodevelopment in adolescent early‐onset psychosis.  相似文献   

7.
Severe mental illnesses (SMI) including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia spectrum disorder (SSD) elevate accelerated brain aging risks. Cardio‐metabolic disorders (CMD) are common comorbidities in SMI and negatively impact brain health. We validated a linear quantile regression index (QRI) approach against the machine learning “BrainAge” index in an independent SSD cohort (N = 206). We tested the direct and additive effects of SMI and CMD effects on accelerated brain aging in the N = 1,618 (604 M/1,014 F, average age = 63.53 ± 7.38) subjects with SMI and N = 11,849 (5,719 M/6,130 F; 64.42 ± 7.38) controls from the UK Biobank. Subjects were subdivided based on diagnostic status: SMI+/CMD+ (N = 665), SMI+/CMD− (N = 964), SMI−/CMD+ (N = 3,765), SMI−/CMD− (N = 8,083). SMI (F = 40.47, p = 2.06 × 10−10) and CMD (F = 24.69, p = 6.82 × 10−7) significantly, independently impacted whole‐brain QRI in SMI+. SSD had the largest effect (Cohen’s d = 1.42) then BD (d = 0.55), and MDD (d = 0.15). Hypertension had a significant effect on SMI+ (d = 0.19) and SMI− (d = 0.14). SMI effects were direct, independent of MD, and remained significant after correcting for effects of antipsychotic medications. Whole‐brain QRI was significantly (p < 10−16) associated with the volume of white matter hyperintensities (WMH). However, WMH did not show significant association with SMI and was driven by CMD, chiefly hypertension (p < 10−16). We used a simple and robust index, QRI, the demonstrate additive effect of SMI and CMD on accelerated brain aging. We showed a greater effect of psychiatric illnesses on QRI compared to cardio‐metabolic illness. Our findings suggest that subjects with SMI should be among the targets for interventions to protect against age‐related cognitive decline.  相似文献   

8.
Considering that there is no effective treatment for human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis, this study aimed to assess the impact of triple combination therapy—interferon-α, valproic acid, and prednisolone—on clinical outcomes, main HTLV-1 viral factors, and host anti-HTLV-1 antibody response. HTLV-1 proviral load (PVL), and HBZ and Tax mRNA expression levels were measured in peripheral blood mononuclear cells of 13 patients with HTLV-1-associated myelopathy/tropical spastic paraparesis before and after treatment with 180 μg pegylated interferon once a week, 10–20 mg/kg/day sodium valproate, and 5 mg/day prednisolone for 25 weeks using a TaqMan real-time polymerase chain reaction assay. Furthermore, anti-HTLV-1 titer, Osame Motor Disability Score, Ashworth spasticity scale, and urinary symptoms (through standard questionnaire and clinical monitoring) were assessed in patients before and after the treatment. HTLV-1 PVL and HBZ expression significantly decreased after the treatment [PVL from 1443 ± 282 to 660 ± 137 copies/104 peripheral blood mononuclear cells (p = 0.01); and HBZ from 8.0 ± 1.5 to 3.0 ± 0.66 (p < 0.01)]. Tax mRNA expression decreased after the treatment from 2.26 ± 0.45 to 1.44 ± 0.64, but this reduction was not statistically significant (p = 0.10). Furthermore, anti-HTLV-1 titer reduced dramatically after the treatment, from 3123 ± 395 to 815 ± 239 (p < 0.01). Clinical signs and symptoms, according to Osame Motor Disability Score and Ashworth score, improved significantly (both p < 0.01). Urinary symptoms and sensory disturbances with lower back pain were reduced, though not to a statistically significant degree. Although signs and symptoms of spasticity were improved, frequent urination and urinary incontinence were not significantly affected by the triple therapy. The results provide new insight into the complicated conditions underlying HTLV-1-associated diseases.

Electronic supplementary material

The online version of this article (doi:10.1007/s13311-015-0369-3) contains supplementary material, which is available to authorized users.Key Words: HTLV-1 proviral load, HAM/TSP, Tax, HBZ, combination therapy, clinical symptoms  相似文献   

9.

Background

Gaze processing deficits are a seminal, early, and enduring behavioral deficit in autism spectrum disorder (ASD); however, a comprehensive characterization of the neural processes mediating abnormal gaze processing in ASD has yet to be conducted.

Methods

This study investigated whole-brain patterns of neural synchrony during passive viewing of direct and averted eye gaze in ASD adolescents and young adults (M Age  = 16.6) compared to neurotypicals (NT) (M Age  = 17.5) while undergoing magnetoencephalography. Coherence between each pair of 54 brain regions within each of three frequency bands (low frequency (0 to 15 Hz), beta (15 to 30 Hz), and low gamma (30 to 45 Hz)) was calculated.

Results

Significantly higher coherence and synchronization in posterior brain regions (temporo-parietal-occipital) across all frequencies was evident in ASD, particularly within the low 0 to 15 Hz frequency range. Higher coherence in fronto-temporo-parietal regions was noted in NT. A significantly higher number of low frequency cross-hemispheric synchronous connections and a near absence of right intra-hemispheric coherence in the beta frequency band were noted in ASD. Significantly higher low frequency coherent activity in bilateral temporo-parieto-occipital cortical regions and higher gamma band coherence in right temporo-parieto-occipital brain regions during averted gaze was related to more severe symptomology as reported on the Autism Diagnostic Interview-Revised (ADI-R).

Conclusions

The preliminary results suggest a pattern of aberrant connectivity that includes higher low frequency synchronization in posterior cortical regions, lack of long-range right hemispheric beta and gamma coherence, and decreased coherence in fronto-temporo-parietal regions necessary for orienting to shifts in eye gaze in ASD; a critical behavior essential for social communication.  相似文献   

10.
Sex impacts the development of the brain and cognition differently across individuals. However, the literature on brain sex dimorphism in humans is mixed. We aim to investigate the biological underpinnings of the individual variability of sexual dimorphism in the brain and its impact on cognitive performance. To this end, we tested whether the individual difference in brain sex would be linked to that in cognitive performance that is influenced by genetic factors in prepubertal children (N = 9,658, ages 9–10 years old; the Adolescent Brain Cognitive Development study). To capture the interindividual variability of the brain, we estimated the probability of being male or female based on the brain morphometry and connectivity features using machine learning (herein called a brain sex score). The models accurately classified the biological sex with a test ROC–AUC of 93.32%. As a result, a greater brain sex score correlated significantly with greater intelligence (p fdr < .001, ηp2 = .011–.034; adjusted for covariates) and higher cognitive genome‐wide polygenic scores (GPSs) (p fdr < .001, ηp2 < .005). Structural equation models revealed that the GPS‐intelligence association was significantly modulated by the brain sex score, such that a brain with a higher maleness score (or a lower femaleness score) mediated a positive GPS effect on intelligence (indirect effects = .006–.009; p = .002–.022; sex‐stratified analysis). The finding of the sex modulatory effect on the gene–brain–cognition relationship presents a likely biological pathway to the individual and sex differences in the brain and cognitive performance in preadolescence.  相似文献   

11.
Financial decision‐making (FDM) and awareness of the integrity of one''s FDM abilities (or financial awareness) are both critical for preventing financial mistakes. We examined the white matter correlates of these constructs and hypothesized that the tracts connecting the temporal–frontal regions would be most strongly correlated with both FDM and financial awareness. Overall, 49 healthy older adults were included in the FDM analysis and 44 in the financial awareness analyses. The Objective Financial Competency Assessment Inventory was used to measure FDM. Financial awareness was measured by integrating metacognitive ratings into this inventory and was calculated as the degree of overconfidence or underconfidence. Diffusion tensor imaging data were processed with Tracts Constrained by Underlying Anatomy distributed as part of the FreeSurfer analytic suite, which produced average measures of fractional anisotropy and mean diffusivity in 18 white matter tracts along with the overall tract average. As expected, FDM showed the strongest negative associations with average mean diffusivity measure of the superior longitudinal fasciculus ‐temporal (SLFT; r = −.360, p = .011) and ‐parietal (r = −.351, p = .014) tracts. After adjusting for FDM, only the association between financial awareness and average mean diffusivity measure of the right SLFT (r = .310, p = .046) was significant. Overlapping white matter tracts were involved in both FDM and financial awareness. More importantly, these preliminary findings reinforce emerging literature on a unique role of right hemisphere temporal connections in supporting financial awareness.  相似文献   

12.
Obstructive sleep apnea (OSA) is associated with extensive neurologic comorbidities. It is hypothesized that the repeated nocturnal apneas experienced in patients with OSA may inhibit the normal apneic response, resulting in hypoxic brain injury and subsequent neurologic dysfunction. In this study, we applied the recently developed OxFlow MRI method for rapid quantification of cerebral metabolic rate of oxygen (CMRO2) during a volitional apnea paradigm. MRI data were analyzed in 11 OSA subjects and 10 controls (mean ± SD apnea-hypopnea index (AHI): 43.9 ± 18.1 vs. 2.9 ± 1.6 events/hour, P < 0.0001; age: 53.8 ± 8.2 vs. 45.3 ± 8.5 years, P = 0.027; BMI: 36.6 ± 4.4 vs. 31.9 ± 2.2 kg/m2, P = 0.0064). Although total cerebral blood flow and arteriovenous oxygen difference were not significantly different between apneics and controls (P > 0.05), apneics displayed reduced baseline CMRO2 (117.4 ± 37.5 vs. 151.6 ± 29.4 µmol/100 g/min, P = 0.013). In response to apnea, CMRO2 decreased more in apneics than controls (−10.9 ± 8.8 % vs. −4.0 ± 6.7 %, P = 0.036). In contrast, group differences in flow-based cerebrovascular reactivity were not significant. Results should be interpreted with caution given the small sample size, and future studies with larger independent samples should examine the observed associations, including potential independent effects of age or BMI. Overall, these data suggest that dysregulation of the apneic response may be a mechanism for OSA-associated neuropathology.  相似文献   

13.
Research on segmentation of the hippocampus in magnetic resonance images through deep learning convolutional neural networks (CNNs) shows promising results, suggesting that these methods can identify small structural abnormalities of the hippocampus, which are among the earliest and most frequent brain changes associated with Alzheimer disease (AD). However, CNNs typically achieve the highest accuracy on datasets acquired from the same domain as the training dataset. Transfer learning allows domain adaptation through further training on a limited dataset. In this study, we applied transfer learning on a network called spatial warping network segmentation (SWANS), developed and trained in a previous study. We used MR images of patients with clinical diagnoses of mild cognitive impairment (MCI) and AD, segmented by two different raters. By using transfer learning techniques, we developed four new models, using different training methods. Testing was performed using 26% of the original dataset, which was excluded from training as a hold‐out test set. In addition, 10% of the overall training dataset was used as a hold‐out validation set. Results showed that all the new models achieved better hippocampal segmentation quality than the baseline SWANS model (p s < .001), with high similarity to the manual segmentations (mean dice [best model] = 0.878 ± 0.003). The best model was chosen based on visual assessment and volume percentage error (VPE). The increased precision in estimating hippocampal volumes allows the detection of small hippocampal abnormalities already present in the MCI phase (SD = [3.9 ± 0.6]%), which may be crucial for early diagnosis.  相似文献   

14.
Polynitroxylated-pegylated hemoglobin (PNPH), a bovine hemoglobin decorated with nitroxide and polyethylene glycol moieties, showed neuroprotection vs. lactated Ringer''s (LR) in experimental traumatic brain injury plus hemorrhagic shock (TBI+HS). Hypothesis: Resuscitation with PNPH will reduce intracranial pressure (ICP) and brain edema and improve cerebral perfusion pressure (CPP) vs. LR in experimental TBI+HS. C57/BL6 mice (n=20) underwent controlled cortical impact followed by severe HS to mean arterial pressure (MAP) of 25 to 27 mm Hg for 35 minutes. Mice (n=10/group) were then resuscitated with a 20 mL/kg bolus of 4% PNPH or LR followed by 10 mL/kg boluses targeting MAP>70 mm Hg for 90 minutes. Shed blood was then reinfused. Intracranial pressure was monitored. Mice were killed and %brain water (%BW) was measured (wet/dry weight). Mice resuscitated with PNPH vs. LR required less fluid (26.0±0.0 vs. 167.0±10.7 mL/kg, P<0.001) and had a higher MAP (79.4±0.40 vs. 59.7±0.83 mm Hg, P<0.001). The PNPH-treated mice required only 20 mL/kg while LR-resuscitated mice required multiple boluses. The PNPH-treated mice had a lower peak ICP (14.5±0.97 vs. 19.7±1.12 mm Hg, P=0.002), higher CPP during resuscitation (69.2±0.46 vs. 45.5±0.68 mm Hg, P<0.001), and lower %BW vs. LR (80.3±0.12 vs. 80.9±0.12%, P=0.003). After TBI+HS, resuscitation with PNPH lowers fluid requirements, improves ICP and CPP, and reduces brain edema vs. LR, supporting its development.  相似文献   

15.
Salvinorin A (SA) exerts neuroprotection and improves neurological outcomes in ischemic stroke models in rodents. In this study, we investigated whether intranasal SA administration could improve neurological outcomes in a monkey ischemic stroke model. The stroke model was induced in adult male rhesus monkeys by occluding the middle cerebral artery M2 segment with an autologous blood clot. Eight adult rhesus monkeys were randomly administered SA or 10% dimethyl sulfoxide as control 20 min after ischemia. Magnetic resonance imaging was used to confirm the ischemia and extent of injury. Neurological function was evaluated using the Non-Human Primate Stroke Scale (NHPSS) over a 28-day observation period. SA significantly reduced infarct volume (3.9 ± 0.7 cm3 vs. 7.2 ± 1.0 cm3; P =0.002), occupying effect (0.3 ± 0.2% vs. 1.4 ± 0.3%; P =0.002), and diffusion limitation in the lesion (−28.2 ± 11.0% vs. −51.5 ± 7.1%; P =0.012) when compared to the control group. SA significantly reduced the NHPSS scores to almost normal in a 28-day observation period as compared to the control group (P =0.005). Intranasal SA reduces infarct volume and improves neurological outcomes in a rhesus monkey ischemic stroke model using autologous blood clot.  相似文献   

16.
The glutamate and γ‐aminobutyric acid neuroreceptor subtypes mGluR5 and GABAA are hypothesized to be involved in the development of a variety of psychiatric diseases. However, detailed information relating to their in vivo distribution is generally unavailable. Maps of such distributions could potentially aid clinical studies by providing a reference for the normal distribution of neuroreceptors and may also be useful as covariates in advanced functional magnetic resonance imaging (MR) studies. In this study, we propose a comprehensive processing pipeline for the construction of standard space, in vivo distributions of non‐displaceable binding potential (BP ND), and total distribution volume (V T) based on simultaneously acquired bolus‐infusion positron emission tomography (PET) and MR data. The pipeline was applied to [11C]ABP688‐PET/MR (13 healthy male non‐smokers, 26.6 ± 7.0 years) and [11C]Flumazenil‐PET/MR (10 healthy males, 25.8 ± 3.0 years) data. Activity concentration templates, as well as V T and BP ND atlases of mGluR5 and GABAA, were generated from these data. The maps were validated by assessing the percent error δ from warped space to native space in a selection of brain regions. We verified that the average δABP = 3.0 ± 1.0% and δFMZ = 3.8 ± 1.4% were lower than the expected variabilities σ of the tracers (σABP = 4.0%–16.0%, σFMZ = 3.9%–9.5%). An evaluation of PET‐to‐PET registrations based on the new maps showed higher registration accuracy compared to registrations based on the commonly used [15O]H2O‐template distributed with SPM12. Thus, we conclude that the resulting maps can be used for further research and the proposed pipeline is a viable tool for the construction of standardized PET data distributions.  相似文献   

17.
Cerebral white matter hyperintensities (WMH) are a consequence of cerebral small vessel disease. Statins have been shown to reduce recurrent stroke among patients with various stroke subtypes, including lacunar stroke, which also arises from small vessel disease. In this study, we investigated the hypothesis that prestroke statin use would reduce the progression of WMH and/or cognitive decline among stroke patients with confluent WMH. Patients (n = 100) were participants of the VITAmins To Prevent Stroke magnetic resonance imaging substudy. All patients had confluent WMH on magnetic resonance imaging at baseline. Eighty-one patients completed the 2-year follow-up. We assessed general cognition and executive function using the mini-mental state examination and Mattis dementia rating scale–initiation/perseveration subscale, respectively. We compared the change in volume of WMH and cognition between prestroke statin use and prestroke nonstatin use groups. We also evaluated the effects of prestroke statin use on incident lacunes and microbleeds. The prestroke statin use group (n = 51) had less WMH volume progression (1.54 ± 4.52 cm3vs 5.01 ± 6.00 cm3, p = 0.02) compared with the prestroke nonstatin use group (n = 30). Multivariate linear regression modeling identified prestroke statin use as an independent predictor of WMH progression (β = –0.31, p = 0.008). Prestroke statin use was also associated with less decline (Mattis dementia rating scale–initiation/perseveration subscale; β = 0.47, p = 0.001). No association was observed with changes in mini-mental state examination scores. There were no between group differences on incident lacunes or incident microbleeds. Prestroke statin use may reduce WMH progression and decline in executive function in stroke patients with confluent WMH.

Electronic supplementary material

The online version of this article (doi:10.1007/s13311-014-0270-5) contains supplementary material, which is available to authorized users.  相似文献   

18.
The current study aims to compare injectable and oral first-line disease-modifying therapies (DMTs) for time to first relapse, time to confirmed disability progression (CDP), and time to discontinuation using a cohort of relapsing remitting multiple sclerosis (RRMS) patients, with data extracted from the Italian MS Register. This multicenter, observational, retrospectively acquired, and propensity-adjusted cohort study utilized RRMS-naïve patients from the Italian MS Register who started either injectable or oral first-line DMTs between January 1, 2010, and December 31, 2017, to evaluate the impact on disability outcomes in patients. Enrolled patients were divided into two groups, namely the injectable group (IG) and the oral group (OG). Of a cohort of 11,416 patients, 4602 were enrolled (3919 in the IG and 683 in the OG). The IG had a higher rate of women (67.3% vs 63.4%, p < 0.05) and a lower mean age (36.1 ± 10.9 vs 38.9 ± 11.8, p < 0.001). The event time to first relapse demonstrated a lower risk in the OG (HR = 0.58; CI 95% 0.48–0.72, p < 0.001). However, no differences were found between the two groups with respect to the risk of CDP (HR = 0.94; CI 95% 0.76–1.29, p = 0.941), while a lower risk of DMT was found in the OG (HR = 0.72; CI 95% 0.58–0.88, p = 0.002) for the event time to discontinuation. Real-world data from the Italian MS Register suggests that first-line oral DMTs are associated with a lower risk of experiencing a new relapse and of therapy discontinuation compared to injectable DMTs.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-020-01001-6.Key Words: Multiple sclerosis, injectable DMTs, oral DMTs, real-world setting, EDSS score  相似文献   

19.
Alterations in the overall cerebral hemodynamics have been reported in multiple sclerosis (MS); however, their cause and significance is unknown. While potential venous causes have been examined, arterial causes have not. In this study, a multiple delay time arterial spin labeling magnetic resonance imaging sequence at 3T was used to quantify the arterial hemodynamic parameter bolus arrival time (BAT) and cerebral blood flow (CBF) in normal-appearing white matter (NAWM) and deep gray matter in 33 controls and 35 patients with relapsing–remitting MS. Bolus arrival time was prolonged in MS in NAWM (1.0±0.2 versus 0.9±0.2 seconds, P=0.031) and deep gray matter (0.90±0.18 versus 0.80±0.14 seconds, P=0.001) and CBF was increased in NAWM (14±4 versus 10±2 mL/100 g/min, P=0.001). Prolonged BAT in NAWM (P=0.042) and deep gray matter (P=0.01) were associated with higher expanded disability status score. This study demonstrates alteration in cerebral arterial hemodynamics in MS. One possible cause may be widespread inflammation. Bolus arrival time was longer in patients with greater disability independent of atrophy and T2 lesion load, suggesting alterations in cerebral arterial hemodynamics may be a marker of clinically relevant pathology.  相似文献   

20.
ObjectiveTo evaluate the clinical features of Canadian adolescents admitted to the intensive care unit (ICU) for medically serious self-harm.Methods2700 Canadian paediatricians were surveyed monthly over two years (January 2017 to December 2018) through the Canadian Paediatric Surveillance Program to ascertain data from eligible cases.ResultsNinety-three cases (73 female; age 15.2 ± 1.5) met the case definition. Four provinces reported the majority of cases: Quebec (n = 27), Ontario (n = 26), Alberta (n = 21), and British Columbia (n = 8). There were 10 deaths, 9 by hanging. Overdose and hanging were the most frequently reported methods of self-harm (74.2% and 19.4%, respectively). Overdose was more common in females (80.8% females vs. 50% males; χ2 = 7.8 (1), p = .005), whereas hanging was more common in males (35% males vs. 15.1% females, χ2 = 3.9 (1), p = .04). More females than males had a past psychiatric diagnosis (79% vs. 58%; χ2 = 4.1 (1), p = .06), a previous suicide attempt (55.9% vs. 29.4%, χ2 = 3.8 (1), p = .05), and prior use of mental health service (69.7% vs. 27.8%, χ2 = 10.4 (1), p = .001). Family conflict was the most commonly identified precipitating factor (43%) of self-harm.ConclusionsAmong Canadian adolescents admitted to the ICU with medically serious self-harm, females demonstrate a higher rate of suicide attempts and prior mental health care engagement, whereas males are more likely to die by suicide. These findings are consistent with data from other adolescent samples, as well as data from working-age and older adults. Therefore, a sex-specific approach to suicide prevention is warranted as part of a national suicide prevention strategy; family conflict may be a specific target for suicide prevention interventions among adolescents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号