首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pseudomonas aeruginosa and other gram-negative isolates from patients with cystic fibrosis (CF) may be difficult to identify because of their marked phenotypic diversity. We examined 200 gram-negative clinical isolates from CF respiratory tract specimens and compared identification by biochemical testing and real-time PCR with multiple different target sequences using a standardized combination of biochemical testing and molecular identification, including 16S rRNA partial sequencing and gyrB PCR and sequencing as a "gold standard." Of 50 isolates easily identified phenotypically as P. aeruginosa, all were positive with PCR primers for gyrB or oprI, 98% were positive with exotoxin A primers, and 90% were positive with algD primers. Of 50 P. aeruginosa isolates that could be identified by basic biochemical testing, 100% were positive by real-time PCR with gyrB or oprI primers, 96% were positive with exotoxin A primers, and 92% were positive with algD primers. For isolates requiring more-extensive biochemical evaluation, 13 isolates were identified as P. aeruginosa; all 13 were positive with gyrB primers, 12 of 13 were positive with oprI primers, 11 of 13 were positive with exotoxin A primers, and 10 of 13 were positive with algD primers. A single false-positive P. aeruginosa result was seen with oprI primers. The best-performing commercial biochemical testing was in exact agreement with molecular identification only 60% of the time for this most difficult group. Real-time PCR had costs similar to those of commercial biochemical testing but a much shorter turnaround time. Given the diversity of these CF isolates, real-time PCR with a combination of two target sequences appears to be the optimum choice for identification of atypical P. aeruginosa and for non-P. aeruginosa gram-negative isolates.  相似文献   

2.
Cystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situation is not in the least due to the poorly defined taxonomic status of these bacteria, and further validation of the available diagnostic assays is required. A total of 114 geographically diverse bacterial isolates, previously identified in reference laboratories as Burkholderia cepacia (n = 51), B. gladioli (n = 14), Ralstonia pickettii (n = 6), B. multivorans (n = 2), Stenotrophomonas maltophilia (n = 3), and Pseudomonas aeruginosa (n = 11), were collected from environmental, clinical, and reference sources. In addition, 27 clinical isolates putatively identified as Burkholderia spp. were recovered from the sputum of Dutch CF patients. All isolates were used to evaluate the accuracy of two selective growth media, four systems for biochemical identification (API 20NE, Vitek GNI, Vitek NFC, and MicroScan), and three different PCR-based assays. The PCR assays amplify different parts of the ribosomal DNA operon, either alone or in combination with cleavage by various restriction enzymes (PCR-restriction fragment length polymorphism [RFLP] analysis). The best system for the biochemical identification of B. cepacia appeared to be the API 20NE test. None of the biochemical assays successfully grouped the B. gladioli strains. The PCR-RFLP method appeared to be the optimal method for accurate nucleic acid-mediated identification of the different Burkholderia spp. With this method, B. gladioli was also reliably classified in a separate group. For the laboratory diagnosis of B. cepacia, we recommend parallel cultures on blood agar medium and selective agar plates. Further identification of colonies with a Burkholderia phenotype should be performed with the API 20NE test. For final confirmation of species identities, PCR amplification of the small-subunit rRNA gene followed by RFLP analysis with various enzymes is recommended.  相似文献   

3.
Over a period of 26 months, we have evaluated in a prospective fashion the use of 16S rRNA gene sequencing as a means of identifying clinically relevant isolates of nonfermenting gram-negative bacilli (non-Pseudomonas aeruginosa) in the microbiology laboratory. The study was designed to compare phenotypic with molecular identification. Results of molecular analyses were compared with two commercially available identification systems (API 20 NE, VITEK 2 fluorescent card; bioMérieux, Marcy l'Etoile, France). By 16S rRNA gene sequence analyses, 92% of the isolates were assigned to species level and 8% to genus level. Using API 20 NE, 54% of the isolates were assigned to species and 7% to genus level, and 39% of the isolates could not be discriminated at any taxonomic level. The respective numbers for VITEK 2 were 53%, 1%, and 46%, respectively. Fifteen percent and 43% of the isolates corresponded to species not included in the API 20 NE and VITEK 2 databases, respectively. We conclude that 16S rRNA gene sequencing is an effective means for the identification of clinically relevant nonfermenting gram-negative bacilli. Based on our experience, we propose an algorithm for proper identification of nonfermenting gram-negative bacilli in the diagnostic laboratory.  相似文献   

4.
In an evaluation of the API 20NE for the identification of Burkholderia spp., 792/800 (99%) Burkholderia pseudomallei and 17/19 (89%) B. cepacia isolates were correctly identified but 10 B. mallei and 98 B. thailandensis isolates were not correctly identified. A latex agglutination test was positive for 796/800 (99.5%) B. pseudomallei isolates and negative for 120 other oxidase-positive gram-negative bacilli.  相似文献   

5.
In the past decade, potential pathogens, including Alcaligenes species, have been increasingly recovered from cystic fibrosis (CF) patients. Accurate identification of multiply antibiotic-resistant gram-negative bacilli is critical to understanding the epidemiology and clinical implications of emerging pathogens in CF. We examined the frequency of correct identification of Alcaligenes spp. by microbiology laboratories affiliated with American CF patient care centers. Selective media, an exotoxin A probe for Pseudomonas aeruginosa, and a commercial identification assay, API 20 NE, were used for identification. The activity of antimicrobial agents against these clinical isolates was determined. A total of 106 strains from 78 patients from 49 CF centers in 22 states were studied. Most (89%) were correctly identified by the referring laboratories as Alcaligenes xylosoxidans. However, 12 (11%) strains were misidentified; these were found to be P. aeruginosa (n = 10), Stenotrophomonas maltophilia (n = 1), and Burkholderia cepacia (n = 1). Minocycline, imipenem, meropenem, piperacillin, and piperacillin-tazobactam were the most active since 51, 59, 51, 50, and 55% of strains, respectively, were inhibited. High concentrations of colistin (100 and 200 microg/ml) inhibited 92% of strains. Chloramphenicol paired with minocycline and ciprofloxacin paired with either imipenem or meropenem were the most active combinations and inhibited 40 and 32%, respectively, of strains. Selective media and biochemical identification proved to be useful strategies for distinguishing A. xylosoxidans from other CF pathogens. Standards for processing CF specimens should be developed, and the optimal method for antimicrobial susceptibility testing of A. xylosoxidans should be determined.  相似文献   

6.
Ninety strains of a collection of well-identified clinical isolates of gram-negative nonfermentative rods collected over a period of 5 years were evaluated using the new colorimetric VITEK 2 card. The VITEK 2 colorimetric system identified 53 (59%) of the isolates to the species level and 9 (10%) to the genus level; 28 (31%) isolates were misidentified. An algorithm combining the colorimetric VITEK 2 card and 16S rRNA gene sequencing for adequate identification of gram-negative nonfermentative rods was developed. According to this algorithm, any identification by the colorimetric VITEK 2 card other than Achromobacter xylosoxidans, Acinetobacter sp., Burkholderia cepacia complex, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia should be subjected to 16S rRNA gene sequencing when accurate identification of nonfermentative rods is of concern.  相似文献   

7.
To establish a simple identification procedure for Pseudomonas aeruginosa, we developed a disk consisting of phenanthroline and 9-chloro-9-[4-(diethylamino)phenyl]-9,10-dihydro-10- phenylacridine hydrochloride (PC disk). Nine of 248 P. aeruginosa isolates and all other oxidase-positive gram-negative isolates (143 isolates) had clear inhibition zones around the PC disk. Of these nine P. aeruginosa isolates, seven produced a blue, blue-green, or green pigment on Mueller-Hinton agar after 24 h of incubation. The sensitivity and specificity of the PC disk susceptibility test in combination with pyocyanin production were 99 and 100%, respectively. Ten P. aeruginosa isolates showed no agglutination reactions with monoclonal antibodies against P. aeruginosa (96% sensitivity and 100% specificity).  相似文献   

8.
An immunofluorescent-antibody test was developed for rapid detection of Pseudomonas aeruginosa in blood cultures. The test uses a murine monoclonal antibody specific for all strains of P. aeruginosa. In initial tests, bright uniform immunofluorescence signals were seen when each of the 17 international serotypes, as well as 14 additional isolates of P. aeruginosa, were examined. No immunofluorescent staining was observed when 37 other gram-negative and 15 gram-positive species were studied. In a clinical study, the assay was applied to broth smears of 86 gram-negative bacilli isolated from 74 bacteremic patients and 28 additional clinical isolates of Pseudomonas sp. and other oxidase-positive gram-negative bacilli recovered from various body sites. Smears were made directly from blood cultures which were positive for gram-negative bacilli by Gram staining. Eleven (15%) of 74 patients with gram-negative bacteremia had a positive test for P. aeruginosa. Including the results of these 11 isolates recovered in a prospective study and an additional 10 isolates from a retrospective study, we obtained a sensitivity and specificity of 100% (21 positive specimens and 103 negative specimens, respectively). These preliminary results suggest that this is a useful reagent for rapid presumptive identification of P. aeruginosa in blood cultures. With the immunofluorescent-antibody test, P. aeruginosa could be identified within 1 h of Gram stain evidence of gram-negative bacteremia.  相似文献   

9.
We used capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) analysis of PCR-amplified 16S rRNA gene fragments for rapid identification of Pseudomonas aeruginosa and other gram-negative nonfermenting bacilli isolated from patients with cystic fibrosis (CF). Target sequences were amplified by using forward and reverse primers labeled with various fluorescent dyes. The labeled PCR products were denatured by heating and separated by capillary gel electrophoresis with an automated DNA sequencer. Data were analyzed with GeneScan 672 software. This program made it possible to control lane-to-lane variability by standardizing the peak positions relative to internal DNA size markers. Thirty-four reference strains belonging to the genera Pseudomonas, Brevundimonas, Burkholderia, Comamonas, Ralstonia, Stenotrophomonas, and Alcaligenes were tested with primer sets spanning 16S rRNA gene regions with various degrees of polymorphism. The best results were obtained with the primer set P11P-P13P, which spans a moderately polymorphic region (Escherichia coli 16S rRNA positions 1173 to 1389 [M. N. Widjojoatmodjo, A. C. Fluit, and J. Verhoef, J. Clin. Microbiol. 32:3002-3007, 1994]). This primer set differentiated the main CF pathogens from closely related species but did not distinguish P. aeruginosa from Pseudomonas alcaligenes-Pseudomonas pseudoalcaligenes and Alcaligenes xylosoxidans from Alcaligenes denitrificans. Two hundred seven CF clinical isolates (153 of P. aeruginosa, 26 of Stenotrophomonas maltophilia, 15 of Burkholderia spp., and 13 of A. xylosoxidans) were tested with P11P-P13P. The CE-SSCP patterns obtained were identical to those for the corresponding reference strains. Fluorescence-based CE-SSCP analysis is simple to use, gives highly reproducible results, and makes it possible to analyze a large number of strains. This approach is suited for the rapid identification of the main gram-negative nonfermenting bacilli encountered in CF.  相似文献   

10.
We used partial 16S rRNA gene (16S DNA) sequencing for the prospective identification of nonfermenting Gram-negative bacilli recovered from patients attending our cystic fibrosis center (h?pital Necker-Enfants malades), which gave problematic results with conventional phenotypic tests. During 1999, we recovered 1093 isolates of nonfermenting Gram-negative bacilli from 702 sputum sampled from 148 patients. Forty-six of these isolates (27 patients) were not identified satisfactorily in routine laboratory tests. These isolates were identified by 16S DNA sequencing as Pseudomonas aeruginosa (19 isolates, 12 patients), Achromobacter xylosoxidans (10 isolates, 8 patients), Stenotrophomonas maltophilia (9 isolates, 9 patients), Burkholderia cepacia genomovar I/III (3 isolates, 3 patients), Burkholderia vietnamiensis (1 isolate), Burkholderia gladioli (1 isolate) and Ralstonia mannitolilytica (3 isolates, 2 patients). Fifteen isolates (33%) were resistant to all antibiotics in routine testing. Sixteen isolates (39%) resistant to colistin were recovered on B. cepacia-selective medium: 2 P. aeruginosa, 3 A. xylosoxidans, 3 S. maltophilia and the 8 Burkholderia--Ralstonia isolates. The API 20NE system gave no identification for 35 isolates and misidentified 11 isolates (2 P. aeruginosa, 2 A. xylosoxidans and 1 S. maltophilia classified as B. cepacia ). Control measures and/or treatment were clearly improved as a result of 16S DNA sequencing in three of these cases. This study confirms the weakness of phenotypic methods for identification of atypical nonfermenting Gram-negative bacilli recovered from cystic fibrosis patients. The genotypic methods, such as 16S DNA sequencing which allows identification of strains in routine practice, appears to have a small, but significant impact on the clinical management of CF patients.  相似文献   

11.
The N/F FLOW and API 20 NE identification systems were compared for their ability to identify 182 strains of either non-fermentative or fermentative oxidase-positive gram-negative bacilli. Agreement with the identification given by conventional methods was achieved for 91,7 per cent of strains by the API System but for only 81,9 per cent of strains by the N/F System. Complementary tests were needed to identify 35,4 per cent of strains using the API System but 65,2 per cent using the N/F System.  相似文献   

12.
The accurate and rapid identification of bacteria isolated from the respiratory tract of patients with cystic fibrosis (CF) is critical in epidemiological studies, during intrahospital outbreaks, for patient treatment, and for determination of therapeutic options. While the most common organisms isolated from sputum samples are Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae, in recent decades an increasing fraction of CF patients has been colonized by other nonfermenting (NF) gram-negative rods, such as Burkholderia cepacia complex (BCC) bacteria, Stenotrophomonas maltophilia, Ralstonia pickettii, Acinetobacter spp., and Achromobacter spp. In the present study, we developed a novel strategy for the rapid identification of NF rods based on Fourier transform infrared spectroscopy (FTIR) in combination with artificial neural networks (ANNs). A total of 15 reference strains and 169 clinical isolates of NF gram-negative bacteria recovered from sputum samples from 150 CF patients were used in this study. The clinical isolates were identified according to the guidelines for clinical microbiology practices for respiratory tract specimens from CF patients; and particularly, BCC bacteria were further identified by recA-based PCR followed by restriction fragment length polymorphism analysis with HaeIII, and their identities were confirmed by recA species-specific PCR. In addition, some strains belonging to genera different from BCC were identified by 16S rRNA gene sequencing. A standardized experimental protocol was established, and an FTIR spectral database containing more than 2,000 infrared spectra was created. The ANN identification system consisted of two hierarchical levels. The top-level network allowed the identification of P. aeruginosa, S. maltophilia, Achromobacter xylosoxidans, Acinetobacter spp., R. pickettii, and BCC bacteria with an identification success rate of 98.1%. The second-level network was developed to differentiate the four most clinically relevant species of BCC, B. cepacia, B. multivorans, B. cenocepacia, and B. stabilis (genomovars I to IV, respectively), with a correct identification rate of 93.8%. Our results demonstrate the high degree of reliability and strong potential of ANN-based FTIR spectrum analysis for the rapid identification of NF rods suitable for use in routine clinical microbiology laboratories.  相似文献   

13.
Accurate identification and antimicrobial susceptibility testing (AST) of nonfermenters from cystic fibrosis patients are essential for appropriate antimicrobial treatment. This study examined the ability of the newly designed Vitek 2 nonfermenting gram-negative card (NGNC) (new gram-negative identification card; bioMérieux, Marcy-l''Ètoile, France) to identify nonfermenting gram-negative rods from cystic fibrosis patients in comparison to reference methods and the accuracy of the new Vitek 2 version 4.02 software for AST compared to the broth microdilution method. Two hundred twenty-four strains for identification and 138 strains for AST were investigated. The Vitek 2 NGNC identified 211 (94.1%) of the nonfermenters correctly. Among morphologically atypical microorganisms, five strains were misidentified and eight strains were determined with low discrimination, requiring additional tests which raised the correct identification rate to 97.8%. Regarding AST, the overall essential agreement of Vitek 2 was 97.6%, and the overall categorical agreement was 92.9%. Minor errors were found in 5.1% of strains, and major and very major errors were found in 1.6% and 0.3% of strains, respectively. In conclusion, the Vitek NGNC appears to be a reliable method for identification of morphologically typical nonfermenters and is an improvement over the API NE system and the Vitek 2 GNC database version 4.01. However, classification in morphologically atypical nonfermenters must be interpreted with care to avoid misidentification. Moreover, the new Vitek 2 version 4.02 software showed good results for AST and is suitable for routine clinical use. More work is needed for the reliable testing of strains whose MICs are close to the breakpoints.Pseudomonas aeruginosa is the most important cause of lung infections in patients with cystic fibrosis (CF) (14). In our hospital, 50% of sputum-producing CF patients are colonized in their lower airways with P. aeruginosa or other nonfermenting bacteria. Accurate identification and antimicrobial susceptibility testing (AST) are essential for appropriate antimicrobial therapy.A variety of automated commercial systems for identification and susceptibility testing of nonfermenting bacteria are available (2, 3, 12, 19, 20). They are widely used because of the increasing volumes of clinical specimens processed by clinical laboratories and perceived cost effectiveness. The automated systems decrease the in-laboratory turnaround time and enable a faster targeted antimicrobial therapy. Unfortunately, errors in classification and AST by any test system can have serious implications for the clinical outcome of patients. The most frequently reported errors have involved the inaccurate identification of nonfermenters due to their phenotypic variations and slower growth rates and the inconsistencies between the tested broad-spectrum β-lactam antibiotics. Because of the perceived inaccuracies of AST from CF isolates, a consensus conference on CF microbiology recommended the use of the disk diffusion method for testing P. aeruginosa and other nonfermenters (13, 22).To improve the identification rate of nonfermenting gram-negative bacilli, a new colorimetric Vitek 2 card (nonfermenting gram-negative card [NGNC]) with an enlarged database was recently introduced. To advance the accuracy of the AST results, a new software (version 4.02) was developed.The aim of the present study was to evaluate the performance of the new NGNC for identification and the new software version 4.02 for AST of nonfermenters isolated from CF patients.  相似文献   

14.
Accurate identification of gram-negative bacilli from cystic fibrosis (CF) patients is essential. Only 57% (108 of 189) of nonmucoid strains and 40% (24 of 60) of mucoid strains were definitively identified as Pseudomonas aeruginosa with MicroScan Autoscan. Most common misidentifications were Pseudomonas fluorescens-Pseudomonas putida (i.e., the strain was either P. fluorescens or P. putida, but the system did not make the distinction and yielded the result P. fluorescens/putida) and Alcaligenes spp. Extending the incubation to 48 h improved identification, but 15% of isolates remained misidentified. The MicroScan Autoscan system cannot be recommended for the identification of P. aeruginosa isolates from CF patients.  相似文献   

15.
Brain heart infusion broth and Mueller-Hinton agar containing the compound 9-chloro-9-[4-(diethylamino)phenyl]- 9,10-dihydro-10-phenylacridine hydrochloride (C-390) were evaluated as selective media for identifying Pseudomonas aeruginosa. Of the 192 Pseudomonas spp. and 68 additional oxidase-positive or glucose-nonfermenting gram-negative organisms tested, only P. aeruginosa (120 of 121 isolates) and certain strains of Pseudomonas cepacia, Aeromonas hydrophila, and Achromobacter xylosoxidans were able to grow in brain heart infusion broth containing 15 micrograms of C-390 per ml. When production of green or yellow-green pigment after overnight growth on Mueller-Hinton agar containing 30 micrograms of C-390 per ml was used as the criterion for identification, only P. aeruginosa produced a positive test (96% sensitivity and 100% specificity). The agar medium, therefore, can provide a single differential medium for the overnight identification of P. aeruginosa.  相似文献   

16.
The recently described genus Pandoraea contains five named species (Pandoraea apista, Pandoraea pulmonicola, Pandoraea pnomenusa, Pandoraea sputorum, and Pandoraea norimbergensis) and four unnamed genomospecies. Pandoraea spp. have mainly been recovered from the respiratory tracts of cystic fibrosis (CF) patients. Accurate genus- and species-level identification by routine clinical microbiology methods is difficult, and differentiation from Burkholderia cepacia complex organisms may be especially problematic. This can have important consequences for the management of CF patients. On the basis of 16S ribosomal DNA sequences, PCR assays for the identification of Pandoraea spp. were developed. A first PCR assay was developed for the identification of Pandoraea isolates to the genus level. PCR assays for the identification of P. apista and P. pulmonicola as a group, P. pnomenusa, P. sputorum, and P. norimbergensis were also developed. All five assays were evaluated with a panel of 123 bacterial isolates that included 69 Pandoraea sp. strains, 24 B. cepacia complex strains, 6 Burkholderia gladioli strains, 9 Ralstonia sp. strains, 5 Alcaligenes xylosoxidans strains, 5 Stenotrophomonas maltophilia strains, and 5 Pseudomonas aeruginosa strains. The use of these PCR assays facilitates the identification of Pandoraea spp. and avoids the misidentification of a Pandoraea sp. as a B. cepacia complex isolate.  相似文献   

17.
Pseudomonas aeruginosa is the only gram-negative bacillus capable of producing the very distinctive water-soluble pigment pyocyanin. We evaluated the reliability of this characteristic as a unique test for the identification of this organism by using Tech agar (BBL Microbiology Systems, Cockeysville, Md.) medium. A retrospective and prospective analysis was performed with a total of 835 strains of P. aeruginosa; 818 (98%) produced pigment within 48 h of incubation, and 96% of those which produced pigment were positive after overnight incubation. Seventeen strains (2.0%) failed to produce pigment; 15 were mucoid strains from patients with cystic fibrosis. Tech agar is an effective, simple, and inexpensive medium for P. aeruginosa identification and may be used as a unique test for all potential P. aeruginosa isolates (beta hemolytic on blood agar; lactose-negative, oxidase-positive colonies). Nonpigmented mucoid strains, as well as other nonpigmented organisms, will require additional testing to ensure proper identification.  相似文献   

18.
Pseudomonas aeruginosa is the major opportunistic bacterial pathogen in persons with cystic fibrosis (CF); pulmonary infection occurs in approximately 80% of adult CF patients. Much of CF patient management depends on accurate identification of P. aeruginosa from sputum culture. However, identification of this species may be problematic due to the marked phenotypic variability demonstrated by CF sputum isolates and the presence of other closely related species. To facilitate species identification, we used 16S ribosomal DNA (rDNA) sequence data to design PCR assays intended to provide genus- or species-level identification. Both assays yielded DNA fragments of the predicted size. We tested 42 culture collection strains (including 14 P. aeruginosa strains and 28 strains representing 16 other closely related Pseudomonas species) and 43 strains that had been previously identified as belonging to 28 nonpseudomonal species also recovered from CF patient sputum. Based on these 85 strains, the specificity and sensitivity of both assays were 100%. To further assess the utility of the PCR assays, we tested 66 recent CF sputum isolates. The results indicated that preliminary phenotypic testing had misidentified several isolates. The 16S rDNA sequence was determined for 38 isolates, and in all cases it confirmed the results of the PCR assays. Thus, we have designed two PCR assays: one is specific for the genus Pseudomonas, while the other is specific for P. aeruginosa. Both assays show 100% sensitivity and specificity.  相似文献   

19.
A comparison between 11 Minitek biochemical tests and corresponding conventional tubed media was undertaken with 1,089 isolates of enteric gram-negative rods. Overall correlation between Minitek and conventional biochemicals was 97.4%. Minitek proved to be a time- and space-saving miniaturized biochemical system that can be used effectively for the identification of enteric gram-negative rods.  相似文献   

20.
A direct fluorescent monoclonal antibody test (DFA; Genetic Systems Corp., Seattle, Wash.) was evaluated for the detection of Pseudomonas aeruginosa in 178 blood culture broths obtained from 128 patients. The DFA identified 44 (98%) of 45 blood cultures positive for P. aeruginosa and was negative in 131 (98%) of 133 blood cultures which grew gram-negative rods other than P. aeruginosa. Upon further investigation, saline suspensions of the organism from the false-negative blood culture were strongly (4+) DFA positive. The false-positive reactions were not due to cross-reactivity, as shown by lack of DFA staining of the non-P. aeruginosa isolates following subculture to agar media. The specificity of the reagent was further demonstrated by directly staining culture isolates including 10 serotypes of P. aeruginosa (all positive) and 57 selected gram-negative bacilli including eight species of Pseudomonas that were not P. aeruginosa (all negative). DFA staining of blood culture broths was easy to perform and read with minimal background fluorescence. The DFA method can be performed in 50 min and appears promising as a rapid method for the identification of P. aeruginosa bacteremia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号