首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emerging data have shown a close association between compositional changes in gut microbiota and the development of nonalcoholic fatty liver disease (NAFLD). The change in gut microbiota may alter nutritional absorption and storage. In addition, gut microbiota are a source of Toll-like receptor (TLR) ligands, and their compositional change can also increase the amount of TLR ligands delivered to the liver. TLR ligands can stimulate liver cells to produce proinflammatory cytokines. Therefore, the gut-liver axis has attracted much interest, particularly regarding the pathogenesis of NAFLD. The abundance of the major gut microbiota, including Firmicutes and Bacteroidetes, has been considered a potential underlying mechanism of obesity and NAFLD, but the role of these microbiota in NAFLD remains unknown. Several reports have demonstrated that certain gut microbiota are associated with the development of obesity and NAFLD. For instance, a decrease in Akkermansia muciniphila causes a thinner intestinal mucus layer and promotes gut permeability, which allows the leakage of bacterial components. Interventions to increase Akkermansia muciniphila improve the metabolic parameters in obesity and NAFLD. In children, the levels of Escherichia were significantly increased in nonalcoholic steatohepatitis (NASH) compared with those in obese control. Escherichia can produce ethanol, which promotes gut permeability. Thus, normalization of gut microbiota using probiotics or prebiotics is a promising treatment option for NAFLD. In addition, TLR signaling in the liver is activated, and its downstream molecules, such as proinflammatory cytokines, are increased in NAFLD. To data, TLR2, TLR4, TLR5, and TLR9 have been shown to be associated with the pathogenesis of NAFLD. Therefore, gut microbiota and TLRs are targets for NAFLD treatment.  相似文献   

2.
Establishment of the intestinal microflora in neonates   总被引:1,自引:0,他引:1  
The intestinal microbiota is a complex ecosystem harbouring about 10(14) micro-organisms composed of nearly 400 hundred species. It plays various important functions in the gut, including metabolic, flora, barrier and stimulation of the intestinal immune system. Most studies have been based on culture, but more recent molecular biology techniques have provided complementary information. The formation of this ecosystem begins rapidly in the newborn; it is sterile at birth and is based on contact with the maternal flora and the surrounding environment. Although little is known about the factors leading to the development of bacteria, numerous external factors will affect the microbial succession: mode of delivery, environmental conditions, type of feeding, gestational age, and antibiotics. Recent data report a delay in intestinal colonization especially of enteric maternal bacteria. Which may be due to strict hygiene measures during birth. The clinical impact of these variations is not known but they could lead to lack of barrier flora or poor immune system stimulation in the gut. Modulation of gut microbiota in neonates with infant formulas containing either probiotics, prebiotics or non viable bacterias and their metabolites, or nucleotides is discussed.  相似文献   

3.
Metabolic syndrome is a lifestyle disease, determined by the interplay of genetic and environmental factors. Obesity is a significant risk factor for development of the metabolic syndrome, and the prevalence of obesity is increasing due to changes in lifestyle and diet. Recently, the gut microbiota has emerged as an important contributor to the development of obesity and metabolic disorders, through its interactions with environmental (e.g. diet) and genetic factors. Human and animal studies have shown that alterations in intestinal microbiota composition and shifts in the gut microbiome towards increased energy harvest are associated with an obese phenotype. However, the underlying mechanisms by which gut microbiota affects host metabolism still need to be defined.In this review we discuss the complexity surrounding the interactions between diet and the gut microbiota, and their connection to obesity. Furthermore, we review the literature on the effects of probiotics and prebiotics on the gut microbiota and host metabolism, focussing primarily on their anti-obesity potential.  相似文献   

4.
Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 1014 organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.  相似文献   

5.
Gut bacteria are involved in a number of host metabolic processes and have been implicated in the development of obesity and type 2 diabetes in humans. The use of antibiotics changes the composition of the gut microbiota and there is accumulating evidence from observational studies for an association between exposure to antibiotics and development of obesity and type 2 diabetes. In the present paper, we review human studies examining the effects of antibiotics on body weight regulation and glucose metabolism and discuss whether the observed findings may relate to alterations in the composition and function of the gut microbiota.  相似文献   

6.
The human gut microbiome has gained increasing attention over the past two decades. Several findings have shown that this complex and dynamic microbial ecosystem can contribute to the maintenance of host health or, when subject to imbalances, to the pathogenesis of various enteric and non-enteric diseases. This scoping review summarizes the current knowledge on how the gut microbiota and microbially-derived compounds affect host metabolism, especially in the context of obesity and related disorders. Examples of microbiome-based targeted intervention strategies that aim to restore and maintain an eubiotic layout are then discussed. Adjuvant therapeutic interventions to alleviate obesity and associated comorbidities are traditionally based on diet modulation and the supplementation of prebiotics, probiotics and synbiotics. However, these approaches have shown only moderate ability to induce sustained changes in the gut microbial ecosystem, making the development of innovative and tailored microbiome-based intervention strategies of utmost importance in clinical practice. In this regard, the administration of next-generation probiotics and engineered microbiomes has shown promising results, together with more radical intervention strategies based on the replacement of the dysbiotic ecosystem by means of fecal microbiota transplantation from healthy donors or with the introduction of synthetic communities specifically designed to achieve the desired therapeutic outcome. Finally, we provide a perspective for future translational investigations through the implementation of bioinformatics approaches, including machine and deep learning, to predict health risks and therapeutic outcomes.  相似文献   

7.
The incidence of type 2 diabetes (T2DM) is rapidly increasing worldwide. However, the pathogenesis of T2DM has not yet been well explained. Recent evidence suggests that the intestinal microbiota composition is associated with obesity and T2DM. In this review, we provide an overview about the mechanisms underlying the role of intestinal microbiota in the pathogenesis of T2DM. There is clear evidence that the intestinal microbiota influences the host through its effect on body weight, bile acid metabolism, proinflammatory activity and insulin resistance, and modulation of gut hormones. Modulating gut microbiota with the use of probiotics, prebiotics, antibiotics, and fecal microbiota transplantation may have benefits for improvement in glucose metabolism and insulin resistance in the host. Further studies are required to increase our understanding of the complex interplay between intestinal microbiota and the host with T2DM. Further studies may be able to boost the development of new effective therapeutic approaches for T2DM.  相似文献   

8.
Obesity and type 2 diabetes mellitus (T2DM) are attributed to a combination of genetic susceptibility and lifestyle factors. Their increasing prevalence necessitates further studies on modifiable causative factors and novel treatment options. The gut microbiota has emerged as an important contributor to the obesity--and T2DM--epidemic proposed to act by increasing energy harvest from the diet. Although obesity is associated with substantial changes in the composition and metabolic function of the gut microbiota, the pathophysiological processes remain only partly understood. In this review we will describe the development of the adult human microbiome and discuss how the composition of the gut microbiota changes in response to modulating factors. The influence of short-chain fatty acids, bile acids, prebiotics, probiotics, antibiotics and microbial transplantation is discussed from studies using animal and human models. Ultimately, we aim to translate these findings into therapeutic pathways for obesity and T2DM in humans.  相似文献   

9.
Colorectal cancer (CRC), the third major cause of mortality among various cancer types in United States, has been increasing in developing countries due to varying diet and dietary habits and occupational hazards. Recent evidences showed that composition of gut microbiota could be associated with the development of CRC and other gut dysbiosis. Modulation of gut microbiota by probiotics and prebiotics, either alone or in combination could positively influence the cross-talk between immune system and microbiota, would be beneficial in preventing inflammation and CRC. In this review, role of probiotics and prebiotics in the prevention of CRC has been discussed. Various epidemiological and experimental studies, specifically gut microbiome research has effectively improved the understanding about the role of probiotics and microbial treatment as anticarcinogenic agents. A few human studies support the beneficial effect of probiotics and prebiotics; hence, comprehensive understanding is urgent to realize the clinical applications of probiotics and prebiotics in CRC prevention.  相似文献   

10.
The last ten years’ wide progress in the gut microbiota phylogenetic and functional characterization has been made evidencing dysbiosis in several gastrointestinal diseases including inflammatory bowel diseases and irritable bowel syndrome (IBS). IBS is a functional gut disease with high prevalence and negative impact on patient’s quality of life characterized mainly by visceral pain and/or discomfort, representing a good paradigm of chronic gut hypersensitivity. The IBS features are strongly regulated by bidirectional gut-brain interactions and there is increasing evidence for the involvement of gut bacteria and/or their metabolites in these features, including visceral pain. Further, gut microbiota modulation by antibiotics or probiotics has been promising in IBS. Mechanistic data provided mainly by animal studies highlight that commensals or probiotics may exert a direct action through bacterial metabolites on sensitive nerve endings in the gut mucosa, or indirect pathways targeting the intestinal epithelial barrier, the mucosal and/or systemic immune activation, and subsequent neuronal sensitization and/or activation.  相似文献   

11.
The human gut is a lush microbial ecosystem containing about 100 trillion microorganisms, whose collective genome, the microbiome, contains 100-fold more genes than the entire human genome. The symbiosis of our extended genome plays a role in host homeostasis and energy extraction from diet. In this article, we summarize some of the studies that have advanced the understanding of the microbiome and its effects on metabolism, obesity, and health. Metagenomic studies demonstrated that certain mixes of gut microbiota may protect or predispose the host to obesity. Furthermore, microbiota transplantation studies in germ-free murine models showed that the efficient energy extraction traits of obese-type gut flora are transmissible. The proposed methods by which the microbiome may contribute to obesity include increasing dietary energy harvest, promoting fat deposition, and triggering systemic inflammation. Future treatments for obesity may involve modulation of gut microbiota using probiotics or prebiotics.  相似文献   

12.
The gut microbiota plays important roles in nutrient absorption, immune system development, and pathogen colonization resistance. Perturbations early in life may be detrimental to host health in the short and the long-term. Antibiotics are among the many factors that influence the development of the microbiota. Because antibiotics are heavily administered during the first critical years of gut microbiota development, it is important to understand the effects of these interventions. Infants, particularly those born prematurely, represent an interesting population because they receive early and often extensive antibiotic therapy in the first months after birth. Gibson et al. recently demonstrated that antibiotic therapy in preterm infants can dramatically affect the gut microbiome. While meropenem, ticarcillin-clavulanate, and cefotaxime treatments were associated with decreased species richness, gentamicin and vancomycin had variable effects on species richness. Interestingly, the direction of species richness response could be predicted based on the abundance of 2 species and 2 genes in the microbiome prior to gentamicin or vancomycin treatment. Nonetheless, all antibiotic treatments enriched the presence of resistance genes and multidrug resistant organisms. Treatment with different antibiotics further resulted in unique population shifts of abundant organisms and selection for different sets of resistance genes. In this addendum, we provide an extended discussion of these recent findings, and outline important future directions for elucidating the interplay between antibiotics and preterm infant gut microbiota development.  相似文献   

13.
Gut microbiota plays a key role in the pathogenesis of alcoholic liver disease (ALD). Consumption of alcohol leads to increased gut permeability, small intestinal bacterial overgrowth, and enteric dysbiosis. These factors contribute to the increased translocation of microbial products to the liver via the portal tract. Subsequently, bacterial endotoxins such as lipopolysaccharide, in association with the Toll-like receptor 4 signaling pathway, induce a gamut of damaging immune responses in the hepatic milieu. Because of the close association between deleterious inflammation and ALD-induced microbiota imbalance, therapeutic approaches that seek to reestablish gut homeostasis should be considered in the treatment of alcoholic patients. To this end, a number of preliminary studies on probiotics have confirmed their effectiveness in suppressing proinflammatory cytokines and improving liver function in the context of ALD. In addition, there have been few studies linking the administration of prebiotics and antibiotics with reduction of alcohol-induced liver damage. Because these preliminary results are promising, large-scale randomized studies are warranted to elucidate the impact of these microbiota-based treatments on the gut flora and associated immune responses, in addition to exploring questions about optimal delivery. Finally, fecal microbiota transplant has been shown to be an effective method of modulating gut microbiota and deserve further investigation as a potential therapeutic option for ALD.  相似文献   

14.
Obesity is one of the most serious global public health challenges of the 21st century. The adjustment of gut microbiota is often recommended as an efficient strategy to treat obesity. This modulation of gut microbiota can be performed by many methods, including dietary intervention, antibiotic application, the use of prebiotics and probiotics, bariatric surgery and faecal microbiota transplantation. In most cases, positive effects have been observed in response to treatment, but invalid and even contrary effects have also been observed in some cases due to factors that are unrelated to intervention methods, such as genetic factors, patient age or gender, environmental microbiota, climate, geography and lifestyle. These factors can cause variation of gut microbial populations and thus should also be taken into consideration when selecting modulation strategies.  相似文献   

15.
AimsIn recent years, gut microbiota have gained a growing interest as an environmental factor that may affect the predisposition toward adiposity. In this review, we describe and discuss the research that has focused on the involvement of gut microbiota in human obesity. We also summarize the current knowledge concerning the health effects of the composition of gut microbiota, acquired using the most recent methodological approaches, and the potential influence of gut microbiota on adiposity, as revealed by animal studies.Data synthesisOriginal research studies that were published in English or French until December 2011 were selected through a computer-assisted literature search. The studies conducted to date show that there are differences in the gut microbiota between obese and normal-weight experimental animals. There is also evidence that a high-fat diet may induce changes in gut microbiota in animal models regardless of the presence of obesity. In humans, obesity has been associated with reduced bacterial diversity and an altered representation of bacterial species, but the identified differences are not homogeneous among the studies.ConclusionsThe question remains as to whether changes in the intestinal microbial community are one of the environmental causes of overweight and obesity or if they are a consequence of obesity, specifically of the unbalanced diet that often accompanies the development of excess weight gain. In the future, larger studies on the potential role of intestinal microbiota in human obesity should be conducted at the species level using standardized analytical techniques and taking all of the possible confounding variables into account.  相似文献   

16.
The composition of the mammalian gut microbiome is very important for the health and disease of the host. Significant correlations of particular gut microbiota with host immune responsiveness and various infectious and noninfectious host conditions, such as chronic enteric infections, type 2 diabetes, obesity, asthma, and neurological diseases, have been uncovered. Recently, research has moved on to exploring the causalities of such relationships. The metabolites of gut microbiota and those of the host are considered in a ‘holobiontic’ way. It turns out that the host’s diet is a major determinant of the composition of the gut microbiome and its metabolites. Animal models of bacterial and viral intestinal infections have been developed to explore the interrelationships of diet, gut microbiome, and health/disease phenotypes of the host. Dietary fibers can act as prebiotics, and certain bacterial species support the host’s wellbeing as probiotics. In cases of Clostridioides difficile-associated antibiotic-resistant chronic diarrhea, transplantation of fecal microbiomes has sometimes cured the disease. Future research will concentrate on the definition of microbial/host/diet interrelationships which will inform rationales for improving host conditions, in particular in relation to optimization of immune responses to childhood vaccines.  相似文献   

17.
Several clinical trials have demonstrated that the use of probiotics and synbiotics in patients undergoing abdominal surgery might be beneficial in preventing postoperative infectious complications. However, other investigators report that there is no evidence supporting any benefits from preoperative use of pre- and probiotics (synbiotics) in patients undergoing elective abdominal surgery, and that in some cases there is even an increased risk of mortality. Possible explanations behind these controversies may be found in the postoperative period of administration (median time of 4 days), the oral (instead of jejunal) route of administration with the accompanying unclear survival rate of the probiotics in the stomach due to low pH, and the high-risk operations such as complicated colectomies resulting in a high overall rate of bacterial translocation and infections. In recent years, three important randomized studies on the effects of probiotics in patients undergoing colorectal surgery have reported that the use of probiotics markedly improved intestinal microbial populations and significantly decreased the incidence of further infectious complications. Furthermore, the patients' quality of life was also improved by shortening the duration of postoperative hospital stay and the period needed for antibiotics administration. Improvements in infection-related complications and gut defecation function have also been reported in patients receiving perioperative oral probiotics treatment, suggesting that the use of probiotics could reduce the extent of damage to colon mucosa after surgery. Probiotics can improve the integrity of the gut mucosal barrier as well as the balance of the gut microbiota, and they play a role in decreasing the rate of infection. This area, however, requires more research before preoperative oral intake of probiotics combined with postoperative treatment can be recommended for patients in need of gastrointestinal surgery.  相似文献   

18.
Gut microbiota are involved in the development or prevention of various diseases such as type 2 diabetes,fatty liver, and malignancy such as colorectal cancer,breast cancer and hepatocellular carcinoma. Alzheimer'sdisease, osteoporosis, sarcopenia, atherosclerotic stroke and cardiovascular disease are major diseases associated with decreased activities of daily living(ADL), especially in elderly people. Recent analyses have revealed the importance of gut microbiota in the control of these diseases. The composition or diversity of these microbiota is different between patients with these conditions and healthy controls, and administration of probiotics or prebiotics has been shown effective in the treatment of these diseases. Gut microbiota may affect distant organs through mechanisms that include regulating the absorption of nutrients and/or the production of microbial metabolites, regulating and interacting with the systemic immune system, and translocating bacteria/bacterial products through disrupted mucosal barriers.Thus, the gut microbiota may be important regulators in the development of diseases that affect ADL. Although adequate exercise and proper diet are important for preventing these diseases, their combination with interventions that manipulate the composition and/or diversity of gut microbiota could be a promising strategy for maintaining health condition and preserving ADL. This review thus summarizes current understanding of the role of gut microbiota in the development or prevention of diseases closely associated with the maintenance of ADL.  相似文献   

19.
Symbiosis is the result of the relationship between gut microbiota and human surfaces; in fact, it regulates many functions such as metabolic and protective ones. It is widely known that any changes in the microbes in gut microbiota (dysbiosis) and the regulation of mucosal and systemic host’s immunity have been linked to different diseases such as metabolic syndromes and associated disorders. Recent studies report an aberrant gut microbiota and an alteration of gut microbial metabolic activities in obese subjects, with an important influence of a number of human physiological functions. Most studies suggest that diet, especially the high-fat low-fiber western-style diet, dramatically impacts on gut microbiota composition and functions in those patients with metabolic syndrome. A deeper knowledge of a specific microbiota profile associated with increased risk of metabolic disease and its subsequent modification induced by prebiotics, probiotics or targeted antibiotics will be necessary for the development of new therapeutic approaches in the treatment of metabolic disease.  相似文献   

20.
ABSTRACT

The link between gut microbiota and the development of colorectal cancer has been investigated. An imbalance in the gut microbiota promotes the progress of colorectal carcinogenesis via multiple mechanisms, including inflammation, activation of carcinogens, and tumorigenic pathways as well as damaging host DNA. Several therapeutic methods are available with which to alter the composition and the activity of gut microbiota, such as administration of prebiotics, probiotics, and synbiotics; these can confer various benefits for colorectal cancer patients. Nowadays, fecal microbiota transplantation is the most modern way of modulating the gut microbiota. Even though data regarding fecal microbiota transplantation in colorectal cancer patients are still rather limited, it has been approved as a clinical method of treatment-recurrent Clostridium difficile infection, which may also occur in these patients. The major benefits of fecal microbiota transplantation include modulation of immunotherapy efficacy, amelioration of bile acid metabolism, and restoration of intestinal microbial diversity. Nonetheless, more studies are needed to assess the long-term effects of fecal microbiota transplantation. In this review, the impact of gut microbiota on the efficiency of anti-cancer therapy and colorectal cancer patients’ overall survival is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号