首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have investigated the effect of a new bradykinin receptor antagonist, Hoe 140 (D-Arg- Hyp3,Thi5,D-Tic7,Oic8]-bradykinin), on bradykinin- and platelet-activating factor (PAF)-induced bronchoconstriction and airway microvascular leakage in anesthetized guinea pigs. Extravasation of Evans blue dye and lung resistance were measured simultaneously. Both i.v. (15 nmol/kg) and inhaled bradykinin (1 mM, 45 breaths) caused a significant increase in lung resistance and leakage of dye at all airway levels. Hoe 140 (100 nmol/kg i.v.) almost completely inhibited these airway responses induced by bradykinin except for dye extravasation in trachea induced by inhaled bradykinin. Inhaled PAF (3 mM, 30 breaths) significantly increased lung resistance and leakage of due at all airway levels, but Hoe 140 had no effect on these responses. Bradykinin-induced bronchoconstriction and airway microvascular leakage are predominantly mediated by activation of B2 receptor, since Hoe 140 is a B2 receptor antagonist. Bradykinin receptor-mediated mechanisms do not play an important role on inhaled PAF-induced bronchoconstriction and microvascular leakage.  相似文献   

2.
1. The effects of the inhaled neuropeptides, neurokinin A (NKA) and substance P (SP) on lung resistance (RL) and airway microvascular permeability were studied in anaesthetized guinea-pigs. 2. Single doses of inhaled NKA (3 x 10(-5), 1 x 10(-4), 3 x 10(-4) M; 45 breaths) and SP (1 x 10(-4), 3 x 10(-4), 1 x 10(-3); 45 breaths) caused a dose-dependent increase in both RL and airway microvascular leakage, assessed as extravasation of the albumin marker, Evans blue dye. 3. NKA at 1 x 10(-4) and 3 x 10(-4) M resulted in a significantly higher increase in RL than SP at the same doses. 4. Inhaled SP (3 x 10(-4) M; 45 breaths) caused significantly higher Evans blue dye extravasation in main bronchi and proximal intrapulmonary airways compared to the same dose of NKA. 5. Pretreatment with the specific inhibitor of neural endopeptidase (NEP24.11), phosphoramidon, caused an approximately 100 fold leftward shift of the RL responses to inhaled NKA and SP. 6. Phosphoramidon significantly potentiated both NKA- and SP-induced airway microvascular leakage at proximal intrapulmonary airways, but not at any other airway level. 7. Inhibition of NEP24.11 potentiate both the SP- or NKA-induced airflow obstruction to a larger extent than the induced airway microvascular leakage, suggesting that NEP24.11 is more important in the modulation of the airflow obstruction observed after these mediators.  相似文献   

3.
We studied the effects of indomethacin (10 mg/kg i.v.), a cyclooxygenase inhibitor, and OKY-046 (1, 10 and 30 mg/kg i.v.), a selective thromboxane synthetase inhibitor, on airflow obstruction and airway plasma exudation induced by bradykinin (150 nmol) instilled by the airway route to anesthetized guinea pigs. To do this, we studied changes in lung resistance (RL) and extravasation of Evans Blue dye respectively. Instilled bradykinin produced an immediate and marked increase in RL which peaked at approximately 30 s. We also observed a delayed increase in RL, reaching a second peak at approximately 3 min. Bradykinin produced airway plasma exudation at all airway levels, measured as extravasation of Evans Blue dye. Indomethacin significantly inhibited both the immediate and the delayed increase in RL after bradykinin. OKY-046 had a similar significant and dose-dependent inhibitory effect on these responses. In addition, both drugs inhibited bradykinin-induced Evans blue dye extravasation in intrapulmonary airways. Bradykinin instilled by the airway route significantly decreased systemic blood pressure but this effect was not altered in animals pretreated with either indomethacin or OKY-046. We conclude that the bronchoconstrictor response and airway plasma exudation induced by instilled-bradykinin may be mediated in part via thromboxane A2 generation.  相似文献   

4.
We have investigated the role of bradykinin in airway microvascular leakage and bronchoconstriction induced by inhaled sodium metabisulphite (MBS) in guinea pigs. A selective bradykinin B2 receptor antagonist, HOE 140 (D-Arg[Hyp3, Thi5, D-Tic7, Oic8]-bradykinin), was used because this drug has been shown to abolish the airway responses induced by bradykinin. Lung resistance (RL) was measured for 6 min after challenge with MBS, followed by measurement of extravasation of Evans Blue dye into airway tissues, used as an index of plasma exudation. Aerosolized MBS (40 and 80 mmol/L, 30 breaths) induced a significant increase in RL and leakage of dye in the trachea, main bronchi and intrapulmonary airways, whereas 20 mmol/L MBS caused these responses except for the dye leakage in the trachea and main bronchi. HOE 140 (100 nmol/kg iv) had no effect against these airway responses. We conclude that bradykinin-mediated mechanisms do not play a significant role in the acute airway effects induced by inhaled MBS.  相似文献   

5.
BACKGROUND: U-46619, a thromboxane A(2) (TXA(2)) mimetic, is shown to cause airway microvascular leakage, although the effects is weak when comparing with that to induce bronchoconstriction in guinea pigs. OBJECTIVE: In order to know the airway effect of TXA(2) more accurately, we have examined the effects of STA(2), a TXA(2) mimetic with higher affinity to TXA(2) (TP) receptors than U-46619, to induce airway microvascular leakage and airflow obstruction. METHODS: Anesthetized and ventilated guinea pigs were i.v. given STA(2) (3-30 nmol/kg) or U-46619 (3-100 nmol/kg) 1 min after i.v. Evans blue dye. STA(2)- and U-46619-induced increases in lung resistance (R(L)) was measured for 6 min. The amount of extravasated Evans blue dye in the lower airways was, then, examined as an index of leakage. In selected animals, specific TP receptor antagonists (10 microg/kg S-1452 or 10 mg/kg ONO-3708) were pretreated i.v. RESULTS: Both STA(2) and U-46619 induced significant increases in leakage and airflow obstruction. However, STA(2) induced a slow and significantly less increase in R(L) but caused a significantly greater increase in extravasation of Evans blue dye compared to U-46619. Specific TP receptor antagonists completely abolished both airway effects induced by STA(2) and U-46619. CONCLUSION: Our present results have supported a possibility that TXA(2) induces microvascular leakage as well as bronchoconstriction in the airways.  相似文献   

6.
1. To study the effect of maturation on substance P (SP)- and neurokinin A (NKA)-induced airflow obstruction and airway microvascular leakage (MVL), we have measured changes in both lung resistance (RL) and extravasation of Evans blue dye in anaesthetized immature (aged 14 +/- 1 days) and adult guinea-pigs (aged 80 +/- 3 days). 2. RL and its recovery after hyperinflation at 5 min were measured for 6 min after i.v. SP (0.2, 1 and 30 nmol kg-1), NKA (1 and 10 nmol kg-1) or vehicle (0.9% NaCl). After measurement of RL, MVL in trachea, main bronchi and intrapulmonary airways was also examined. 3. The order of potency in inducing airflow obstruction did not change with age (NKA > SP) but immature animals required a larger dose of SP or NKA than adults to cause a significant increase in RL. 4. The order of potency in inducing airway microvascular leakage was SP > NKA in both immature and adult animals. The amount of extravasated dye after SP was significantly less in immature airways, especially in central airways. 5. Phosphoramidon (2.5 mg kg-1), a neutral endopeptidase (NEP) inhibitor, significantly increased RL after 0.2 nmol kg-1 SP only in adult airways. Phosphoramidon enhanced the dye extravasation after 0.2 nmol kg-1 SP in both immature and adult airways with a significantly greater amount of dye in adult animals, suggesting that mechanisms other than changes in NEP activity may be responsible for this age-related difference.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effect of two beta 2-adrenoceptor agonists, salbutamol (100 micrograms/kg i.v.) and broxaterol (100 micrograms/kg i.v.), on airway microvascular leakage induced by vagal stimulation was studied in anaesthetised guinea pigs. Airway microvascular leakage was measured by Evans blue extravasation. Broxaterol, but not salbutamol, inhibited Evans blue dye extravasation at all airway levels, an effect prevented by pretreatment with propranolol (1 mg/kg). Neither of the beta 2-agonists had any effect on substance P-induced Evans blue dye extravasation. Broxaterol inhibits the prejunctional release of tachykinins from airway sensory nerves by stimulation of beta-receptors. The mechanism by which beta-adrenoceptor agonists prevent airway microvascular leakage deserves further study.  相似文献   

8.
1. The mechanisms behind bradykinin-induced effects in the airways are considered to be largely indirect. The role of cholinergic nerves and eicosanoids, and their relationship in these mechanisms were investigated in guinea-pigs. 2. The role of cholinergic nerves was studied in animals given atropine (1 mg kg-1, i.v.), hexamethonium (2 mg kg-1, i.v.), or vagotomized. To study the role of eicosanoids, animals were pretreated with a thromboxane A2 (TxA2) receptor antagonist (ICI 192,605; 10(-6) mol kg-1, i.v.) or with a leukotriene (LT) receptor C4/D4/E4 antagonist (ICI 198,615; 10(-6) mol kg-1, i.v.). 3. After pretreatment with a drug, bradykinin (150 nmol) was instilled into the tracheal lumen. We measured both airway insufflation pressure (Pi), to assess airway narrowing, and the content of Evans blue dye in airway tissue, to assess plasma exudation. 4. Bradykinin instillation into the trachea caused an increase in Pi and extravasation of Evans blue dye. The increase in Pi was significantly attenuated by atropine or the TxA2 receptor antagonist, but not by hexamethonium, vagotomy or the LT receptor antagonist. 5. The bradykinin-induced exudation of Evans blue dye was significantly attenuated in the intrapulmonary airways by the TxA2 receptor antagonist, but not by atropine, hexamethonium, cervical vagotomy or the LT receptor antagonist. 6. A thromboxane-mimetic U-46619 (20 nmol kg-1, i.v. or 10 nmol intratracheally), caused both an increase in Pi and extravasation of Evans blue dye at all airway levels. Atropine pretreatment slightly attenuated the peak Pi after the intratracheal administration of U-46619, but not after i.v. administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
1. We studied the effects of a thromboxane A2 receptor (TP receptor) antagonist, ICI-192,605 (0.5 mg kg-1, i.v.) and a selective thromboxane (Tx) synthetase inhibitor, OKY-046 (30 mg kg-1, i.v.), on airway responses induced by leukotriene D4 (LTD4; 0.2 nmol) or prostaglandin F2 alpha (PGF2 alpha; 20 nmol) instilled via the airways route to anaesthetized guinea-pigs. For a comparison, airway responses to a TxA2-mimetic, U-46619 (0.02 nmol) were also studied. We measured both lung resistance (RL) to monitor airflow obstruction, and extravasation of Evans Blue dye to quantify airway plasma exudation. 2. Instilled LTD4 into the tracheal lumen induced an immediate peak and subsequently persistent increase in RL and produced a large amount of extravasation of Evans Blue dye at all airway levels. Both ICI-192,605 and OKY-046 significantly attenuated the persistent increase in RL following the immediate response and reduced LTD4-induced extravasation of Evans Blue dye in the trachea and proximal intrapulmonary airway. Instilled LTD4 produced significant increases in immunoreactive TxB2 in bronchoalveolar lavage fluid obtained 1.5 min after instillation of LTD4. 3. Instilled PGF2 alpha into the tracheal lumen induced an immediate increase in RL which peaked at approximately 15 s. We also observed a delayed sustained increase in RL, reaching a second peak at approximately 4 min. PGF2 alpha produced small but significant increases in the amount of Evans Blue dye at all airway levels. As with PGF2 alpha, instillation of U-46619 produced a biphasic increase in RL and extravasation of Evans Blue dye.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Recent in vitro studies have shown that the Rho/Rho kinase pathway is involved in the mechanism of not only airway smooth muscle contraction but also vascular endothelial permeability caused by certain stimuli. This suggests that Rho/Rho kinase inhibitors may become useful agents against asthma via reduction of increased airway microvascular leakage, one of the main features of this disease. Thus, we wanted to know the in vivo effect of Y-27632, a selective Rho kinase inhibitor, on airway microvascular leakage caused by leukotriene D(4) (LTD(4)) and histamine, potent mediators of allergic airway inflammation, by comparing its effect against airflow obstruction. For comparison, the effects of procaterol, a beta(2)-adrenoceptor agonist, on these responses were also studied. Tracheostomized guinea pigs were given either aerosolized Y-27632 (3 or 15 mmol/l), procaterol (6 micromol/l) or vehicle (0.9% NaCl) for 5 min under spontaneous breathing. After being mechanically ventilated, the animals were given intravenous Evans blue dye 15 min after the end of inhalation. One minute later, either 2 nmol/kg LTD(4), 300 nmol/kg histamine or vehicle was administered intravenously. After measurements of lung resistance (R(L)) for 6 min, the lungs of animals were taken out, and the amount of extravasated Evans blue dye was examined as an index of leakage. Inhaled Y-27632 dose-dependently attenuated increases in R(L) caused by LTD(4) and histamine. The degree of inhibition was almost similar between 15 mmol/l Y-27632 and 6 micromol/l procaterol. By contrast, only 15 mmol/l, but not 3 mmol/l, Y-27632 partially reduced LTD(4)-induced leakage. Histamine-induced Evans blue dye extravasation was not inhibited by 15 mmol/l Y-27632. Procaterol significantly inhibited the dye extravasation caused by either LTD(4) or histamine. These results suggest that Y-27632 is not a useful agent in attenuating airway microvascular leakage which is seen in asthma, although it is potent in inhibiting airflow obstruction.  相似文献   

11.
1. Microvascular leakage, a primary feature of inflammation, is well known for worsening the asthmatic condition. Gene expression of and a specific receptor for type-C natriuretic peptide (CNP), initially considered a neuropeptide, have been detected in the human vascular wall and secretion of CNP from vascular endothelial cells has recently been demonstrated. These facts suggest the presence of a vascular natriuretic peptide system and led us to expect that CNP may act beneficially on airway microvascular leakage in asthma. In the present study, we investigated the effects of CNP against leukotriene (LT) D4 -induced airway microvascular leakage and bronchocon-striction and how these effects were potentiated by thiorphan, a potent neutral endopeptidase 3.4.24.11 (NEP) inhibitor. 2. Anaesthetized male guinea-pigs, ventilated via a tracheal cannula, were placed into a plethysmograph for 10 min, in order to measure pulmonary mechanics and mean blood pressure, after challenge with 2 μg/kg LTD4 and then the extravasation of 20 mg/kg Evans blue dye into airway tissue was investigated to indicate and evaluate microvascular leakage. 3. Intravenous administration of CNP (100, 300 and 1000 μg/kg) significantly inhibited the LTD4-induced microvascular leakage and bronchoconstriction in a dose-dependent manner. These inhibitory effects were enhanced by pretreatment with 20 mg/kg thiorphan, suggesting the important role of NEP in the pulmonary metabolism of CNP. 4. We believe that these results are encouraging for the further investigation of the therapeutic applications of exogenous CNP in asthma.  相似文献   

12.
1. This study sought to determine whether neurogenic inflammation occurs in the airways by examining the effects of capsaicin or substance P on microvascular plasma leakage in the trachea and lungs of male pathogen-free C57BL/6 mice. 2. Single bolus intravenous injections of capsaicin (0.5 and 1 micromol kg(-1), i.v.) or substance P (1, 10 and 37 nmol kg(-10, i.v.) failed to induce significant leakage in the trachea, assessed as extravasation of Evans blue dye, but did induce leakage in the urinary bladder and skin. 3. Pretreatment with captopril (2.5 mg kg(-1), i.v.), a selective inhibitor of angiotensin converting enzyme (ACE), either alone or in combination with phosphoramidon (2.5 mg kg(-1), i.v.), a selective inhibitor of neutral endopeptidase (NEP), increased baseline leakage of Evans blue in the absence of any exogenous inflammatory mediator. The increase was reversed by the bradykinin B2 receptor antagonist Hoe 140 (0.1 mg kg(-1), i.v.). 4. After pretreatment with phosphoramidon and captopril, capsaicin increased the Evans blue leakage above the baseline in the trachea, but not in the lung. This increase was reversed by the tachykinin (NK1) receptor antagonist SR 140333 (0.7 mg kg(-1), i.v.), but not by the NK2 receptor antagonist SR 48968 (1 mg kg(-1), i.v.). 5. Experiments using Monastral blue pigment as a tracer localized the leakage to postcapillary venules in the trachea and intrapulmonary bronchi, although the labelled vessels were less numerous in mice than in comparably treated rats. Blood vessels of the pulmonary circulation were not labelled. 6. We conclude that neurogenic inflammation can occur in airways of pathogen-free mice, but only after the inhibition of enzymes that normally degrade inflammatory peptides. Neurogenic inflammation does not involve the pulmonary microvasculature.  相似文献   

13.
1. The inbred genetically hypertensive strain (GH) of the Otago Wistar rat possesses more sensory neurons containing the neuropeptide substance P (SP) than does its genetically related control normotensive strain. 2. As SP contributes to airway inflammation by increasing microvascular permeability, we assessed the extravasation of Evans Blue dye in trachea and main bronchus of anaesthetized GH and control rats, in the presence of endogenous (capsaicin-liberated) or exogenous SP. 3. Following intravenous administration of either capsaicin (75 microg kg(-1)) or SP (3.3 nmol kg(-1)), extravasation of Evans Blue in airways from GH rats was only about 60% of that in airways of control rats. This difference was not gender-specific and responses to capsaicin were abolished by pretreatment with a selective NK1 receptor antagonist SR 140333 (360 nmol kg(-1)). 4. By contrast, the extravasation of dye caused by intravenous 5-hydroxytryptamine (0.5 micromol kg(-1)) was similar in magnitude in both GH and control strains. 5. Falls in systemic arterial blood pressure in response to exogenous SP (0.1-3 nmol kg(-1)) or acetylcholine (0.2-2 nmol kg(-1)) were also very similar between strains, but those in response to capsaicin (75 microg kg(-1)) in the GH rats were about double those in control rats. The hypotensive response to SP was abolished by SR 140333, but that to capsaicin was unaffected. 6. Our results indicate that the increased peripheral innervation density by SP-nerves in GH rats is accompanied by reduced inflammatory responses to SP. This does not involve decreased vasodilator potency of SP and is therefore probably related to altered endothelial responsiveness.  相似文献   

14.
1. The objective of this study was to assess whether or not endogenous nitric oxide (NO) could mediate the hypotensive response to platelet-activating factor (PAF) and modulate PAF-induced microvascular albumin leakage in the conscious rat. 2. PAF (0.19 and 1.9 nmol kg-1, i.v.) evoked dose-dependent hypotension and significantly enhanced albumin extravasation in the large airways, pancreas, stomach and duodenum 15 min after its administration. Inhibition of NO synthesis by NG-nitro-L-arginine methyl ester (L-NAME, 0.125-2 mg kg-1, i.v.) produced marked dose-dependent increases in albumin accumulation (up to 290%) in large airways, liver, spleen, pancreas, kidney, stomach and duodenum as measured by the extravasation of Evans blue dye. L-NAME (2 mg kg-1) treatment markedly potentiated PAF (1.9 nmol kg-1)-induced albumin extravasation in these tissues, whereas it did not modify the hypotensive response to PAF. 3. Maintenance of mean arterial blood pressure at the level observed following 2 mg kg-1 L-NAME by infusion of noradrenaline (620-790 ng kg-1 min-1) neither affected significantly albumin extravasation nor potentiated the permeability effect of PAF in the vascular beds studied with the exception of large airways, where noradrenaline mimicked the effects of L-NAME. 4. These results indicate that inhibition of endogenous NO formation leads to an increase in albumin extravasation and to potentiation of the vascular permeability effect of PAF, whereas the hypotensive action of PAF seems to be independent of NO formation in the conscious rat. These data suggest an important role for NO in the regulation of albumin extravasation.  相似文献   

15.
Ikezono K  Kamata M  Mori T 《Pharmacology》2005,73(4):209-215
While the guinea pig has been the preferred choice for use as a model of allergic bronchial asthma in the evaluation of anti-asthmatic drugs, it has been shown that antigen-induced bronchoconstriction in guinea pigs is attenuated by epinephrine released from the adrenal gland. In order to investigate the possible influence of the adrenal gland on the effects of antiexudative and bronchodilative drugs on antigen-induced airway responses, we examined the inhibitory effects of procaterol, a selective beta(2)-adrenoceptor agonist, on antigen-induced airway microvascular leakage and bronchoconstriction in adrenalectomized guinea pigs and compared them with the drug's effects in sham-operated animals. Guinea pigs sensitized passively with anti-ovalbumin (OA) guinea-pig serum were adrenalectomized or sham-operated under urethane anesthesia and examined 30 min after surgery in the following experiments. (1) Animals were intravenously administered Evans blue dye to quantify airway plasma exudation, and then OA was inhaled for 10 min while measuring pulmonary inflation pressure, a parameter of bronchoconstriction. Procaterol (1, 3, 10, or 30 microg/kg) or saline (control) was administered into the airways 10 min prior to OA inhalation. The amount of extravasated Evans blue dye in the airways was calculated. (2) Venous blood samples were collected during OA or saline inhalation and plasma catecholamine levels were compared. In control animals, OA-induced increases in both the amount of Evans blue dye and in pulmonary inflation pressure were markedly greater in adrenalectomized animals than in sham-operated animals. Procaterol dose-dependently inhibited OA-induced airway microvascular leakage and bronchoconstriction, and its effects were more potent in adrenalectomized animals (significant at 1 microg/kg and higher) than in sham-operated animals (significant at 10 microg/kg and higher). Although the plasma concentration of epinephrine during OA inhalation was approximately 3 times higher than that during saline inhalation in sham-operated animals, no difference was seen in adrenalectomized animals. In conclusion, while procaterol essentially possesses pronounced inhibitory effects on antigen-induced airway microvascular leakage and bronchoconstriction in guinea pigs, the effects are considerably masked by epinephrine released from the adrenal gland.  相似文献   

16.
在扑尔敏预先处理的致敏豚鼠,白三烯拮抗剂4-氧-8-[对-(4-苯丁氧基)苯甲酰氨基]-2-(5-四唑基)-4H-1-苯并吡喃(ONO-1078,0.03,0.3mg·kg-1,iv)显著抑制抗原引起的肺内压增高,并完全抑制肺内气道中心部和外周部的依文思蓝渗出。肺内压与这两部位的染料渗出量呈正相关,但与气管和主支气管的染料渗出无相关性。在扑尔敏处理的肺条和气管条,ONO-1078(1μmol·L-1)仅部分抑制抗原诱导的收缩(45.8%和33.3%)。结果说明ONO-1078抑制抗原诱导的气道收缩作用,至少部分通过抑制微血管渗漏,并主要作用在相对外周的气道。  相似文献   

17.
1. Nociceptin/orphanin FQ (N/OFQ) is the endogenous peptide ligand for a specific G-protein coupled receptor, the N/OFQ peptide receptor (NOP). The N/OFQ-NOP receptor system has been reported to play an important role in pain, anxiety and appetite regulation. In airways, N/OFQ was found to inhibit the release of tachykinins and the bronchoconstriction and cough provoked by capsaicin. 2. Here we evaluated the effects of NOP receptor activation in bronchoconstriction and airway microvascular leakage induced by intraesophageal (i.oe.) hydrochloric acid (HCl) instillation in rabbits. We also tested the effects of NOP receptor activation in SP-induced plasma extravasation and bronchoconstriction. 3. In anesthetized New Zealand rabbits bronchopulmonary function (total lung resistance (R(L)) and dynamic compliance (C(dyn))) and airway microvascular leakage (extravasation of Evans blue dye) were evaluated. 4. Infusion of i.oe. HCl (1 N) led to a significant increase in bronchoconstriction and plasma extravasation in the main bronchi and trachea of rabbits pretreated with propranolol, atropine and phosphoramidon. 5. Bronchoconstriction and airway microvascular leakage were inhibited by N/OFQ (3-30 microg kg(-1) i.v.) in a dose-dependent manner. The NOP receptor agonist [Arg14,Lys15]N/OFQ mimicked the inhibitory effect of N/OFQ, being 10-fold more potent, UFP-101, a peptide selective NOP receptor antagonist, blocked the inhibitory effects of both agonists. 6. Under the same experimental conditions, N/OFQ and [Arg14,Lys15]N/OFQ did not counteract the bronchoconstriction and airway microvascular leakage induced by substance P. 7. These results suggest that bronchoconstriction and airway plasma extravasation induced by i.oe. HCl instillation are inhibited by activation of prejunctional NOP receptors.  相似文献   

18.
1. We have studied the effect of the sensory neuropeptides substance P (SP), neurokinin A (NKA), neurokinin B (NKB) and calcitonin gene-related peptide (CGRP) on microvascular permeability in guinea-pig airways in vivo and investigated whether CGRP would potentiate the effect of SP. We used the extravasation of intravenously-injected Evans blue dye as an index of permeability. 2. The tachykinins SP, NKA and NKB (0.025-5.0 nmol kg-1, i.v.) significantly (P less than 0.05) increased extravasation of dye in a dose-related manner and with a similar pattern of distribution; they were most potent in the trachea and main bronchi, less potent in the larynx and intrapulmonary airways, and had little significant effect in the bladder. 3. SP was significantly more potent in causing extravasation of dye than NKA or NKB with ED50 values (nmol kg-1) in the range 0.04-0.1, depending on the airway level, compared with values in the range 0.3-0.7 for the neurokinins. 4. CGRP (0.0025-2.5 nmol kg-1, i.v.) had no significant effect on microvascular permeability and did not potentiate SP-induced extravasation of dye. 5. Each neuropeptide decreased mean arterial blood pressure, indicating vasodilatation, in a dose-related manner. Co-injection of CGRP and SP produced additive decreases in arterial pressure. 6. We conclude that, in guinea-pig airways, tachykinins increase microvascular permeability via tachykinin receptors of the NK-1 sub-type (indicated by an order of potency of SP greater than NKA = NKB) on endothelial cells. The response appears to be related to mechanisms in addition to vasodilatation. The relevance of the responses to the tachykinins in asthma is discussed.  相似文献   

19.
Kinins have been suggested to be involved in human airway diseases such as asthma and rhinitis. MEN16132 is a non-peptide kinin B(2) receptor antagonist able to inhibit the responses produced by intravenous bradykinin into the airways, as bronchoconstriction and microvascular leakage; we tested the effect of MEN16132 on endogenously generated bradykinin through the dextran sulfate-induced contact activation of kinin-kallikrein cascade in guinea-pigs. After dextran sulfate administration (1.5 mg/kg i.v.), the pulmonary insufflation pressure was monitored and the microvascular leakage of upper and lower airways was assessed using Evans blue as tracer of plasma protein extravasation. Our results demonstrated that topical MEN16132 strongly inhibited the dextran sulfate-induced bronchoconstriction (0.3 mM solution aerosol for 5 min) and plasma protein extravasation in both lower airways (3-10 microM solution aerosol for 5 min) and nasal mucosa (0.3 nmol/nostril); Icatibant, the peptide antagonist of kinin B(2) receptor, exerted a 3-30-fold less potent inhibitory effect than MEN16132. We conclude that local application of MEN16132 into the airways abolishes the responses produced by the endogenous generation of bradykinin and it can be useful as new pharmacological tool to check the role of kinins in human diseases.  相似文献   

20.
1. We have investigated the effects of chlorpheniramine, atropine and capsaicin pretreatment on inhaled sodium metabisulphite (MBS)-induced airway microvascular leakage and bronchoconstriction in anaesthetized guinea-pigs in order to clarify the mechanisms involved in these responses. The effects of frusemide and nedocromil sodium were also examined. 2. Lung resistance (RL) was measured for 6 min after inhalation of MBS (20, 40, 80 and 200 mM; 30 breaths), followed by measurement of extravasation of Evans blue dye into airway tissues, used as an index of airway microvascular leakage. MBS caused an increase in RL and leakage of dye at all airway levels in a dose-dependent manner. 3. Chlorpheniramine (10 mg kg-1, i.v.), atropine (1 mg kg-1, i.v.), their combination or inhaled nedocromil sodium (10 mg ml-1, 7 min) had no effect against the airway microvascular leakage induced by 80 mM MBS (30 breaths). Capsaicin pretreatment (50 mg kg-1, s.c.) caused a significant decrease in the leakage of dye in the main bronchi and inhaled frusemide (10 mg ml-1, 7 min) also in the main bronchi and proximal intrapulmonary airway. 4. Chlorpheniramine, atropine, their combination, capsaicin pretreatment and frusemide, but not nedocromil sodium, inhibited significantly the peak RL induced by 80 mM MBS (30 breaths) by approximately 50%. 5. We conclude that a cholinergic reflex and neuropeptides released from sensory nerve endings may participate in the mechanisms of MBS-induced airway responses. Frusemide but not nedocromil sodium may have an inhibitor effect on these neural mechanisms. The inhibitory effect of nedocromil sodium against lower doses of MBS is not excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号