首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stabilometry signals involve irregular and unpredictable components. The purpose of the present study was to investigate these signals with a nonlinear technique to examine how the complexity of the postural control system breaks down under altered visual conditions. We evaluated the dynamical similarities of the postural control system when the eyes were open or closed, or when there was optokinetic stimulation (OKS). A similarity index was calculated by the cross-correlation integral between the two dynamics: eyes open and eyes closed, or eyes open with OKS. Using this technique, dynamical changes were not observed between eyes-open and eyes-closed conditions. This result suggests that the nonvision condition does not produce any striking effect on the postural control system; instead, the eyes-open condition causes a decrease in the stochastic activity of the postural control system, which may originate mainly from the stiffness of the musculoskeletal systems. In contrast, the visual input of OKS affected the dynamics of the postural control system in nearly half of the subjects (group 2) despite showing no significant differences between the eyes-open condition and the other conditions for area as the conventional parameter. However, the other half of the subjects (group 1) did not experience any influence of OKS on their postural dynamics, despite showing significant differences between eyes-open and the other conditions for all traditional parameters. From the results for group 2, we hypothesize that OKS may induce the striking effect on dynamics properties of the multilink network system involving visual and vestibular cortex related to self-motion perception, which acts to decrease the stochastic activity in order to correct disturbed posture. Electronic Publication  相似文献   

2.
3.
Despite an intricate understanding of the neural mechanisms underlying visual and motor systems, it is not completely understood in which brain regions humans transfer visual information into motor commands. Furthermore, in the absence of visual information, the retrieval process for motor memory information remains unclear. We report an investigation where visuomotor and motor memory processes were separated from only visual and only motor activation. Subjects produced precision grip force during a functional MRI (fMRI) study that included four conditions: rest, grip force with visual feedback, grip force without visual feedback, and visual feedback only. Statistical and subtractive logic analyses segregated the functional process maps. There were three important observations. First, along with the well-established parietal and premotor cortical network, the anterior prefrontal cortex, putamen, ventral thalamus, lateral cerebellum, intermediate cerebellum, and the dentate nucleus were directly involved in the visuomotor transformation process. This activation occurred despite controlling for the visual input and motor output. Second, a detailed topographic orientation of visuomotor to motor/sensory activity was mapped for the premotor cortex, parietal cortex, and the cerebellum. Third, the retrieval of motor memory information was isolated in the dorsolateral prefrontal cortex, ventral prefrontal cortex, and anterior cingulate. The motor memory process did not extend to the supplementary motor area (SMA) and the basal ganglia. These findings provide evidence in humans for a model where a distributed network extends over cortical and subcortical regions to control the visuomotor transformation process used during visually guided tasks. In contrast, a localized network in the prefrontal cortex retrieves force output from memory during internally guided actions.  相似文献   

4.
Comparison of memory- and visually guided saccades using event-related fMRI   总被引:8,自引:0,他引:8  
Previous functional imaging studies have shown an increased hemodynamic signal in several cortical areas when subjects perform memory-guided saccades than that when they perform visually guided saccades using blocked trial designs. It is unknown, however, whether this difference results from sensory processes associated with stimulus presentation, from processes occurring during the delay period before saccade generation, or from an increased motor signal for memory-guided saccades. We conducted fMRI using an event-related paradigm that separated stimulus-related, delay-related, and saccade-related activity. Subjects initially fixated a central cross, whose color indicated whether the trial was a memory- or a visually guided trial. A peripheral stimulus was then flashed at one of 4 possible locations. On memory-guided trials, subjects had to remember this location for the subsequent saccade, whereas the stimulus was a distractor on visually guided trials. Fixation cross disappearance after a delay period was the signal either to generate a memory-guided saccade or to look at a visual stimulus that was flashed on visually guided trials. We found slightly greater stimulus-related activation for visually guided trials in 3 right prefrontal regions and right rostral intraparietal sulcus (IPS). Memory-guided trials evoked greater delay-related activity in right posterior inferior frontal gyrus, right medial frontal eye field, bilateral supplementary eye field, right rostral IPS, and right ventral IPS but not in middle frontal gyrus. Right precentral gyrus and right rostral IPS exhibited greater saccade-related activation on memory-guided trials. We conclude that activation differences revealed by previous blocked experiments have different sources in different areas and that cortical saccade regions exhibit delay-related activation differences.  相似文献   

5.
The present study investigated the effects of irrelevant stimulus orientation on visually guided grasping movements. Participants had to grasp a rectangular object at either the ends or the sides, depending on the color of a visual stimulus. In this task, correspondence between stimulus orientation and object orientation (stimulus-object congruency) and correspondence between stimulus orientation and hand orientation (stimulus-hand congruency) varied independently. Two experiments, with different sets of object orientations, revealed a consistent pattern of results. In particular, there were significant effects of stimulus-hand congruency, suggesting that perceiving an object activates congruently oriented hand movements. However, stimulus-object congruency had no effects, indicating that participants did not benefit from a preactivation of object orientation in the present task. The pattern of congruency effects implies that the cognitive representation, which is affected by irrelevant visual information, entails only those object or response features that are needed to select and control a response.  相似文献   

6.
Summary Four monkeys were trained to position, with either hand, a vertical rod in front of one of 5 target lights spaced 20° apart on a semicircular screen. After the monkeys had reached the preoperative criterion (80% trials correct per session) they received a 1- or 2-stage bilateral lesion of posterior parietal cortex restricted to area 7. The lesion produced in all the monkeys considerable but temporary changes in movement latency, accuracy, velocity and duration. Latency increase appeared to be independent of changes in the other parameters. After the first lesion, movement latency increased for the contralateral arm in both left and right working spaces, from 100 ms up to 400 ms depending on the animal. A second lesion symmetrical to the first one increased movement latency of the arm contralateral or ipsilateral to the last lesion, depending on the time interval between the two lesions. In addition, unilateral lesions of area 7 induced a gross inaccuracy in movements of the arm contralateral to the lesion, more marked in the contralateral working space. These lesions also increased movement peak velocity and simultaneously decreased movement duration for the arm contralateral to the lesion. The increase in velocity appeared to be related to the decrease in duration. A second lesion of area 7 in the opposite hemisphere similarly affected accuracy, velocity and duration but for the arm contralateral to the second lesion.  相似文献   

7.
Recent anatomical and physiological studies have suggested that parts of the cingulate cortex are involved in the control of movement. These areas have been collectively termed the cingulate motor area (CMA). Currently almost nothing is known, however, about how neurons in the CMA actually participate in the control of movement. Therefore, we investigated the role of cells in the dorsal and ventral banks of the CMA (CMAd and CMAv, respectively) in the preparation and execution of visually guided arm movements. We recorded the activity of neurons while a monkey performed a visually guided, two-dimensional instructed delay task. A monkey was required to operate a joystick that moved a cursor from a centrally located hold target to one of four peripheral targets. Neurons were classified as exhibiting preparatory activity if the neural discharge during the postinstruction delay period was significantly higher than the preinstruction activity. Neurons were classified as exhibiting movement activity if the neural discharge was significantly elevated around the time of the movement. Of the 115 task-related neurons studied, 18 (16%) exhibited only preparatory activity, 48 (42%) exhibited only movement activity, and 49 (43%) exhibited both preparatory and movement activity. Neurons were further classified in terms of their directional tuning. For 51% of neurons with preparatory activity, that activity was directional. A significantly larger proportion of movement-related activity was directional (78%). For neurons with both directional preparatory and movement activity, the preferred directions were highly correlated (r=0.83). The median onset of movement activity was 10 ms before the beginning of movement (range -200 to 200 ms). The patterns and directionality of task-related activity of CMA neurons observed in this study are similar to those previously reported for other cortical motor areas. Together, these data provide preliminary evidence that neurons in CMAd and CMAv play a role in both the preparation and execution of visually guided arm movements.  相似文献   

8.
Control of familiar visually guided movements involves internal plans as well as visual and other online sensory information, though how visual and internal plans combine for reaching movements remain unclear. Traditional motor sequence learning tasks, such as the serial reaction time task, use stereotyped movements and measure only reaction time. Here, we used a continuous sequential reaching task comprised of naturalistic movements, in order to provide detailed kinematic performance measures. When we embedded pre-learned trajectories (those presumably having an internal plan) within similar but unpredictable movement sequences, participants performed the two kinds of movements with remarkable similarity, and position error alone could not reliably identify the epoch. For such embedded movements, performance during pre-learned sequences showed statistically significant but trivial decreases in measures of kinematic error, compared to performance during novel sequences. However, different sets of kinematic error variables changed significantly between learned and novel sequences for individual participants, suggesting that each participant used distinct motor strategies favoring different kinematic variables during each of the two movement types. Algorithms that incorporated multiple kinematic variables identified transitions between the two movement types well but imperfectly. Hidden Markov model classification differentiated learned and novel movements on single trials based on the above kinematic error variables with 82 ± 5% accuracy within 244 ± 696 ms, despite the limited extent of changes in those errors. These results suggest that the motor system can achieve markedly similar performance whether or not an internal plan is present, as only subtle changes arise from any difference between the neural substrates involved in those two conditions.  相似文献   

9.
10.
 Positron emission tomography (PET) was used to identify the brain areas involved in visually guided reaching by measuring regional cerebral blood flow (rCBF) in six normal volunteers while they were fixating centrally and reaching with the left or right arm to targets presented in either the right or the left visual field. The PET images were registered with magnetic resonance images from each subject so that increases in rCBF could be localized with anatomical precision in individual subjects. Increased neural activity was examined in relation to the hand used to reach, irrespective of field of reach (hand effect), and the effects of target field of reach, irrespective of hand used (field effect). A separate analysis on intersubject, averaged PET data was also performed. A comparison of the results of the two analyses showed close correspondence in the areas of activation that were identified. We did not find a strict segregation of regions associated exclusively with either hand or field. Overall, significant rCBF increases in the hand and field conditions occurred bilaterally in the supplementary motor area, premotor cortex, cuneus, lingual gyrus, superior temporal cortex, insular cortex, thalamus, and putamen. Primary motor cortex, postcentral gyrus, and the superior parietal lobule (intraparietal sulcus) showed predominantly a contralateral hand effect, whereas the inferior parietal lobule showed this effect for the left hand only. Greater contralateral responses for the right hand were observed in the secondary motor areas. Only the anterior and posterior cingulate cortices exhibited strong ipsilateral hand effects. Field of reach was more commonly associated with bilateral patterns of activation in the areas with contralateral or ipsilateral hand effects. These results suggest that the visual and motor components of reaching may have a different functional organization and that many brain regions represent both limb of reach and field of reach. However, since posterior parietal cortex is connected with all of these regions, we suggest that it plays a crucial role in the integration of limb and field coordinates. Received: 23 August 1995 / Accepted: 8 August 1996  相似文献   

11.
An apparatus is described, for testing guided forepaw movements toward a moving target in the cat. It mainly consists of a lever passing at a controllable speed in front of the animal (at max speed, 27cm/sec, total time of accessibility is 750 msec). Animals are trained to pull the lever for food reward. Response times for efficient movements and percentages of various types of inadequate movements are computed for each session. The system also includes a logic circuit to be used to train the animal to a period of immobility prior to the movement.  相似文献   

12.
The behavioral relevance of neuronal activity in primate area MT for motion perception and control of visually guided eye movements is well documented. The projections of area MT comprise connections to subcortical structures and to the parietal network, both of which play a role in visuospatial transformation for guiding eyes and hands. Here, we have investigated, whether area MT is involved in the network needed to control visually guided arm movements. Our results show that half of the neurons tested significantly modulated their activity during visually guided arm movements. We conclude that the main reason for the neuronal modulation is not the arm movement per se, but the use of information from MT for visual feedback in the tracking movement. Moreover, control experiments show that attentional effects cannot solely cause the neuronal modulation. Thus, our study provides strong evidence that area MT is involved in processing visual information for visually guided manual tracking movements.  相似文献   

13.
We used apparent motion targets to explore how degraded visual motion alters smooth pursuit eye movements. Apparent motion targets consisted of brief stationary flashes with a spatial separation (Deltax), temporal separation (Deltat), and apparent target velocity equal to Deltax/Deltat. Changes in pursuit initiation were readily observed when holding target velocity constant and increasing the flash separation. As flash separation increased, the first deficit observed was an increase in the latency to peak eye acceleration. Also seen was a paradoxical increase in initial eye acceleration. Further increases in the flash separation produced larger increases in latency and resulted in decreased eye acceleration. By varying target velocity, we were able to discern that the visual inputs driving pursuit initiation show both temporal and spatial limits. For target velocities above 4-8 degrees /s, deficits in the initiation of pursuit were seen when Deltax exceeded 0.2-0.5 degrees, even when Deltat was small. For target velocities below 4-8 degrees /s, deficits appeared when Deltat exceeded 32-64 ms, even when Deltax was small. Further experiments were designed to determine whether the spatial limit varied as retinal and extra-retinal factors changed. Varying the initial retinal position of the target for motion at 18 degrees /s revealed that the spatial limit increased as a function of retinal eccentricity. We then employed targets that increased velocity twice, once from fixation and again during pursuit. These experiments revealed that, as expected, the spatial limit is expressed in terms of the flash separation on the retina. The spatial limit is uninfluenced by either eye velocity or the absolute velocity of the target. These experiments also demonstrate that "initiation" deficits can be observed during ongoing pursuit, and are thus not deficits in initiation per se. We conclude that such deficits result from degradation of the retino-centric motion signals that drive pursuit eye acceleration. For large flash separations, we also observed deficits in the maintenance of pursuit: sustained eye velocity failed to match the constant apparent target velocity. Deficits in the maintenance of pursuit depended on both target velocity and Deltat and did not result simply from a failure of degraded image motion signals to drive eye acceleration. We argue that such deficits result from a low gain in the eye velocity memory that normally supports the maintenance of pursuit. This low gain may appear because visual inputs are so degraded that the transition from fixation to tracking is incomplete.  相似文献   

14.
Although patients with sensory neuropathies and normal muscle power are rare, they have been extensively studied because they are a model for dissociating the sensory and motor components of movement. We have examined these patients to determine the cerebral functional anatomy of movement in the absence of proprioceptive input. In addition, the disabling symptoms of these patients can be substantially improved by visually monitoring their movements. We hypothesized that, during visually guided movements, these patients would show overactivity of regions specialized for visuomotor control with the possible additional involvement of areas that normally process somatosensory information. We used positron emission tomography (PET) and the tracer H2 15O to determine the functional anatomy of visually and non-visually guided finger movements in three patients with long-standing pan-sensory neuropathies and normal muscle power and six healthy controls. Five conditions were performed with the right hand: a sequential finger movement task under visual guidance, the same motor task without observation of the hand, monitoring a video of the same sequential finger movement, a passive visual task observing a reversing checkerboard, and an unconstrained rest condition. Data were analyzed using conventional subtraction techniques with a statistical threshold of z>2.33 with corrections for multiple comparisons. When compared with the control group, activation was not deficient in any brain areas of the patient cohort in any of the contrasts tested. In particular, in the non-visually guided movement task, in which meaningful visual and proprioceptive input was absent, the patient group activated primary motor, premotor, and cerebellar regions. This suggests that these areas are involved in motor processing independent of sensory input. In all conditions involving visual observation of hand movements, there was highly significant overactivity of the left parietal operculum (SII) and right parieto-occipital cortex (PO) in the patient group. Recent non-human primate studies have suggested that the PO region contains a visual representation of hand movements. Overactivity of this area and the activation of SII by visual input appear to indicate that compensatory overactivity of visual areas and cross-modal plasticity of somatosensory areas occur in deafferented patients. These processes may underlie their ability to compensate for their proprioceptive deficits. Received: 18 May 1998 / Accepted: 18 January 1999  相似文献   

15.
Complete transection of the dorsal column in C2 in cat gave severe defects in forelimb target-reaching and food-taking tested with retrieval of food from a cylinder. Among the symptoms were marked dysmetria in all directions and dyscoordination of movements in different joints, with only slow recovery over weeks and months. It is postulated that normal visual guidance of forelimb movements to a stationary target depends on somatosensory information to the brain via the dorsal column.  相似文献   

16.
This study investigated hemisphere-specific processing of visually aimed movements and associated postural adjustments while controlling for handedness and eyedness. Eleven right-handed, right-eyed and right-footed healthy adult volunteers performed, from a standing position, an aiming task under two hand (right and left hand) and three visual conditions (binocular vision, right and left eye monocular vision). Centre of pressure (CoP) displacement, hand kinematics and the target's position were synchronously recorded during performance of the aiming task. Analysis revealed a lower RMS error, a later postural adjustment onset and a smaller centre of pressure dispersion when aiming was performed with the dominant right compared to the non-dominant left hand. On the other hand, no differences on either aiming performance or postural adjustments were noted under the three visual conditions. These results suggest a strong handedness and absence of an eyedness effect on the accuracy of aiming and associated postural adjustments.  相似文献   

17.
1. We recorded from 257 neurons in the banks of the posterior third of the principal sulcus of two rhesus monkeys trained to look at a fixation point and make saccades to stimuli in the visual periphery. Sixty-six percent (220/257) discharged or were suppressed in association with one or more aspects of the tasks we used. 2. Fifty-eight percent (151/257) of the neurons responded to the appearance of a spot of light in some part of the contralateral visual field. Cells did not seem to have absolute requirements for stimulus shape, size, or direction of motion. 3. Thirty-six percent (29/79) of visually responsive neurons tested quantitatively gave an enhanced response to the stimulus in the receptive field when the monkey had to make a saccade to the stimulus when its appearance was synchronous with the disappearance of the fixation point (synchron task). Twenty-nine percent (19/57) of the neurons gave an enhanced response to the stimulus when the monkey had to make a saccade to the stimulus some time after it appeared (delayed-saccade task). In general, enhancement in the synchron task correlated well with enhancement in the delayed-saccade task. 4. Enhancement was spatially specific. It did not occur when the monkey made a saccade to a stimulus outside the receptive field even though there was a stimulus within the receptive field. 5. Twenty-three percent (27/117) of neurons studied in the delayed-saccade task gave two bursts, one at the appearance of the stimulus and a second one around the saccade. This second burst generally did not occur when the monkey made the same saccade to a remembered target, but instead required the presence of the visual stimulus, and so we describe it as a reactivation of the visual response. Reactivation was also spatially specific. 6. The latency from reactivation to the beginning of the saccade ranged from 160 ms before the saccade to the beginning of the saccade. Reactivation usually continued for several hundred milliseconds after the saccade, sometimes for the duration of the trial. 7. Reactivation and enhancement are not the same mechanism. Although some cells showed both phenomena there was no correlation between enhancement and reactivation. 8. Cells that showed reactivation in the saccade task also showed reactivation at a weaker level in a suppressed-saccade task. In this task the monkeys had to hold fixation despite the disappearance of the fixation point and the continued presence of the peripheral stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
In the frontal lobe of primates, two areas play a role in visually guided eye movements: the frontal eye fields (FEF) and the medial eye fields (MEF) in dorsomedial frontal cortex. Previously, FEF lesions have revealed only mild deficits in saccadic eye movements that recovered rapidly. Deficits in eye movements after MEF ablation have not been shown. We report the effects of ablating these areas singly or in combination, using tests in which animals were trained to make saccadic eye movements to paired or multiple targets presented at various temporal asynchronies. FEF lesions produced large and long-lasting deficits on both tasks. Sequences of eye movements made to successively presented targets were also impaired. Much smaller deficits were observed after MEF lesions. Our findings indicate a major, long-lasting loss in temporal ordering and processing speed for visually guided saccadic eye movement generation after FEF lesions and a significant but smaller and shorter-lasting loss after MEF lesions.  相似文献   

19.
The premotor-parietal network for preparation of visually guided reaching demonstrates activity mainly contralateral to the reaching arm in men but bilaterally in women. These sex differences are most prominent in the dorsal premotor cortex (PMd); however, the functional implications of these differences remain unclear. Therefore, in the experiments described here, we used continuous theta burst stimulation (cTBS) to test hypotheses regarding the roles of PMd both contralateral and ipsilateral to the reaching arm in men and in women. Inhibitory cTBS of the ipsilateral PMd did not have a significant effect on reaction time in either men or women. However, cTBS of the contralateral PMd resulted in a slowed mean reaction time in men but not in women. Movement times were unaffected by stimulation applied to either hemisphere. These results suggest the presence of sex differences in processing within the left PMd during visually guided reaching movements using the right arm. Further, when taken together, the results suggest that ipsilateral PMd activity in women may not be functionally necessary for reaching movements. Rather, this ipsilateral activity may provide a protective redundancy that can compensate for decreased activity from the contralateral PMd. The observation of sex differences in reaction times but not in movement times following cTBS to the contralateral hemisphere suggests that these sex differences are more strongly associated with movement planning than with motor execution.  相似文献   

20.
This study was designed to investigate how activity patterns of primary motor cortical (MI) neurons change when monkeys perform the same movements guided by somatosensory and/or visual cues. Two adult male rhesus monkeys were trained to make wrist extensions and flexions after holding a steady position during an instructed delay period lasting 0.5–2.0 s. Monkeys held against a 0.07 Nm load that opposed flexion movements. Wrist movements were guided by vibratory cues (VIB-trials), visual cues (VIS-trials), or both in combination (COM-trials). Extracellular recordings of 188 MI neurons were made during all three paradigms. Individual neurons were counted twice, once for each movement direction, yielding 376 cases. All neurons had significant task-related activity (TRA) changes relative to delay period activity during at least one of the three paradigms. TRA was analyzed to determine if it was different as a function of the sensory cue(s) that initiated movement and that specified movement endpoints. Cases were grouped by whether the TRA changes were greater in VIB- or VIS-trials; this defined their “bias”. One hundred and eighteen cases (31.4%) had greater TRA changes in VIB-trials (Vb-neurons), whereas 185 (49.2%) showed greater TRA changes in VIS-trials (Vs-neurons). The remaining 73 cases (19.4%) had similar TRA changes in VIB- and VIS-trials (Nb-neurons). For Vb- and Vs-neurons, earlier TRA onsets and greater TRA changes were observed in the trials for which these neurons were biased. During the COM-trials, the TRA was intermediate. During the trials for which the activity was not biased, the TRA was the least. For Nb-neurons, no significant TRA differences were observed across paradigms. TRA changes of MI neurons may represent movement planning-related inputs from other central, presumably cortical, sources as well as contribute to motor outflow from the cortex. These data suggest that Vb- and Vs-neurons are affected differently by somatosensory- and visually related central inputs, resulting in different TRAs, even for essentially identical movements. Such differences may depend not only on the type of sensory information that initiates movement but also whether that information specifies movement endpoints or might interfere with movement monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号