首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanoma-associated antigens may be the driving force behind the lymphocytic infiltrates in melanomas and the occurrence of melanoma regression. To investigate the clinical relevance of melanoma differentiation antigens (MDAs) as T-cell targets, the relationship between the presence and localization of T-cell subsets and the expression of MDAs was studied by immunohistochemistry and the diversity of CD8+ T cells in regressive melanomas was assessed using laser-assisted microdissection. While MDA expression as well as T-cell subset distribution, as assessed by immunohistochemical analysis, was heterogeneous within and between lesions, they were histologically independent phenomena. In four lesions studied in detail by PCR analysis of microdissected T cells, a limited T-cell diversity and evidence for clonally expanded tumour infiltrating lymphocytes were found. However, no major differences in T-cell diversity, as assessed by PCR analysis, between peri-and intra-tumoural areas became apparent, this despite the known clinical significance of the specific localization of a T-cell infiltrate. T cells of clonal origin did not show preferential localization to regressive tumour areas. Moreover, clonally related cells were found in two lesions with a non-brisk infiltrate, while in two lesions with a brisk infiltrate (clinically, a good prognostic factor) no evidence for clonally expanded tumour infiltrating lymphocytes was found. These data support the notion that specific immune reactivity and homing of specific cells to the tumour can occur in melanoma patients. However, they also show that the presence of clonally expanded T cells in the tumour is not necessarily associated with an effective anti-tumour immune response and may, for instance, represent regulatory cells. It appears that the clinical impact of an anti-tumour immune response is largely decided at the tumour site, where micro-environmental conditions dictate the functional state of the T cells. Full understanding of these processes can only be achieved by performing more dynamic analyses of the local host-tumour interactions.  相似文献   

2.
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS with presumed autoimmune origin. Pathogenic autoimmune responses in MS are thought to be the result of a breakdown of self tolerance. Several mechanisms account for the natural state of immunological tolerance to self antigens, including clonal deletion of self-reactive T cells in the thymus. However, autoimmune T cells are also part of the normal T-cell repertoire, supporting the existence of peripheral regulatory mechanisms that keep these potentially pathogenic T cells under control. One such mechanism involves active suppression by regulatory T cells. It has been indicated that regulatory T cells do not function properly in autoimmune disease. Immunization with attenuated autoreactive T cells, T-cell vaccination, may enhance or restore the regulatory immune networks to specifically suppress autoreactive T cells, as shown in experimental autoimmune encephalomyelitis, an animal model for MS. In the past decade, T-cell vaccination has been tested for MS in several clinical trials. This review summarizes these clinical trials and updates our current knowledge on the induction of regulatory immune networks by T cell vaccination.  相似文献   

3.
Autoimmune diseases are caused by antigenically complex immune responses of the adaptive and innate immune system against specific cells, tissues or organs. Antigen‐specific approaches for induction of immune tolerance in autoimmunity, based on the use of antigenic peptides or proteins, have failed to deliver the desired therapeutic results in clinical trials. These approaches, which are largely relying on triggering clonal anergy and/or deletion of defined autoreactive specificities, do not address the overwhelming antigenic, molecular, and cellular complexity of most autoimmune diseases, which involve various immune cells and ever‐growing repertoires of antigenic epitopes on numerous self‐antigens. Advances in the field of regulatory T‐cell (Treg) biology have suggested that Treg cells might be able to afford dominant tolerance provided they are properly activated and expanded in vivo. More recently, nanotechnology has introduced novel technical advances capable of modulating immune responses. Here, we review nanoparticle‐based approaches designed to induce immune tolerance, ranging from approaches that primarily trigger clonal T‐cell anergy or deletion to approaches that trigger Treg cell formation and expansion from autoreactive T‐cell effectors. We will also highlight the therapeutic potential and positive outcomes in numerous experimental models of autoimmunity.  相似文献   

4.
The destruction of many immune-mediated diseases is a result of T-cell responses against usually harmless antigens. Extensive research has been conducted to discover new mechanisms to specifically modulate harmful effector T cells while leaving normal immune responses intact. Since proteins of the CD28 family members are expressed on T cells, blockade of these proteins has become a possible target for potential therapies. The CD28 family contains proteins that have the ability to both enhance and diminish T-cell responses. Therefore, blockade of targets that enhance T-cell signaling may reduce destructive autoimmune responses, while blockade of targets that diminish T-cell signaling may enhance antitumor responses. In this article, the function of these proteins will be reviewed and a sample of clinical trials highlighting the potential efficacy and drawbacks of their use in humans will be described briefly. Finally, inducible costimulator and programmed death-1, two future targets of T-cell therapies, will be highlighted.  相似文献   

5.
Conversion of arginine into citrulline is a post‐translational modification that is observed in normal physiological processes. However, abnormal citrullination can provoke autoimmunity by generating altered self‐epitopes that are specifically targeted by autoantibodies and T cells. In this review we discuss the recognition of citrullinated antigens in human autoimmune diseases and the role that this modification plays in increasing antigenic diversity and circumventing tolerance mechanisms. Early published work demonstrated that citrullinated proteins are specifically targeted by autoantibodies in rheumatoid arthritis and that citrullinated peptides are more readily presented to T cells by arthritis‐susceptible HLA class II ‘shared epitope’ proteins. Emerging data support the relevance of citrullinated epitopes in other autoimmune diseases, including type 1 diabetes and multiple sclerosis, whose susceptible HLA haplotypes also preferentially present citrullinated peptides. In these settings, autoimmune patients have been shown to have elevated responses to citrullinated epitopes derived from tissue‐specific antigens. Contrasting evidence implicates autophagy or perforin and complement‐mediated membrane attack as inducers of ectopic citrullination. In either case, the peptidyl deiminases responsible for citrullination are activated in response to inflammation or insult, providing a mechanistic link between this post‐translational modification and interactions with the environment and infection. As such, it is likely that immune recognition of citrullinated epitopes also plays a role in pathogen clearance. Indeed, our recent data suggest that responses to citrullinated peptides facilitate recognition of novel influenza strains. Therefore, increased understanding of responses to citrullinated epitopes may provide important insights about the initiation of autoimmunity and recognition of heterologous viruses.  相似文献   

6.
Antigen-specific T cells play a pivotal role in adaptive immune responses. However, they also contribute to the progression of a variety of diseases including autoimmune disorders, graft rejection and graft-versus-host disease (GVHD). Non-specific immune-ablation treatments compromise the ability of the host to respond to infection, whereas the selective removal of epitope-specific T cells could theoretically ameliorate T-cell-mediated pathology while preserving the rest of the host immune function. In this study we investigated whether it is possible to destroy specific unwanted antigen-specific T cells by incubating polyclonal T-cell populations with major histocompatibility complex (MHC) tetramers that are conjugated to the ribosomal-inactivating toxin, saporin. This strategy resulted in a dramatic reduction in the number of targeted antigen (Ag)-specific CD8 T cells with no observable bystander toxicity in vitro. Moreover, in a model of transferable T-cell-dependent neurological disease induced by intracerebral (i.c.) lymphocytic choriomeningitis virus (LCMV) infection, the targeted killing of LCMV-specific CD8 T cells extended the survival of mice or fully prevented their death, depending on the dose of cells transferred. In addition, the tetramer– saporin conjugate also reduced liver damage in a model of donor T-cell-mediated hepatic destruction. These data provide a proof of principle that MHC tetramers could be exploited for the elimination or clinical manipulation of T-cell responses by linking effector molecules (a toxin in this case) to MHC tetramers. Also, the results suggest that it may be feasible to remodel T-cell responses, especially in immunocompromised hosts who receive adoptive cell transfers with many potential alloreactive cells.  相似文献   

7.
Limited heterogeneity of autoantigens and T cells in autoimmune diseases?   总被引:1,自引:0,他引:1  
For many induced and spontaneous autoimmune diseases, a predominant role for T cells in the organ-specific destruction process has been shown. In one of the induced models of autoimmunity, experimental allergic encephalomyelitis (EAE), a very small heterogeneity of T-cell receptor (TcR) molecules is expressed by the pathogenic T cells in both rats and mice. Contrary to induced autoimmune diseases, little is known about the autoantigens recognized by these autoimmune T cells and the heterogeneity of their TcR in spontaneous autoimmune diseases. The aim of this work was to establish a system which allows characterization of relevant autoantigens in spontaneous insulin-dependent diabetes mellitus (IDDM) in non-obese diabetic (NOD) mice. A completely different approach was taken to characterize the gene products of the minor lymphocyte stimulatory (Mls) loci. These gene products are responsible for the clonal elimination or the clonal stimulation of T cells expressing particular TcR V beta genes and therefore could be implicated in induction of autoimmune diseases by oligoclonal T-cell populations. The finding that Mls antigens are encoded by retroviral sequences leads to the hypothesis that viruses could be the inducing agents of autoimmune diseases.  相似文献   

8.
Autoimmune diseases are caused by pathogenic antibody and/or T-cell responses that are left unchecked by regulatory immune mechanisms. Recent studies in immunology have focused on subsets of regulatory T cells (Tregs) that can suppress autoimmune responses. Invariant natural killer T (iNKT) cells are a subset of Tregs that recognize glycolipid antigens in the context of CD1d proteins. iNKT cells play a suppressive role in several autoimmune diseases and, therefore, are attractive targets for development of immunotherapies for these diseases. While preclinical studies with reagents, such as the sea sponge-derived iNKT-cell antigen α-galactosylceramide, have been promising, there are substantial concerns about treating humans with autoimmunity, or at risk of developing autoimmunity, with these reagents.  相似文献   

9.
CD8(+) T-cell responses to non-pathogen, cell-associated antigens such as minor alloantigens or peptide-pulsed dendritic cells (DC) are usually strongly dependent on help from CD4(+) T cells. However, some studies have described help-independent primary CD8(+) T-cell responses to cell-associated antigens, using immunization strategies likely to trigger natural killer (NK) cell activation and inflammatory cytokine production. We asked whether NK cell activation by MHC I-deficient cells, or administration of inflammatory cytokines, could support CD4(+) T-cell help-independent primary responses to peptide-pulsed DC. Injection of MHC I-deficient cells cross-primed CD8(+) T-cell responses to the protein antigen ovalbumin (OVA) and the male antigen HY, but did not stimulate CD8(+) T-cell responses in CD4-depleted mice; hence NK cell stimulation by MHC I-deficient cells did not replace CD4(+) T-cell help in our experiments. Dendritic cells cultured with tumour necrosis factor-α (TNF-α) or type I interferon-α (IFN-α) also failed to prime CD8(+) T-cell responses in the absence of help. Injection of TNF-α increased lymph node cellularity, but did not generate help-independent CD8(+) T-cell responses. In contrast, CD4-depleted mice injected with IFN-α made substantial primary CD8(+) T-cell responses to peptide-pulsed DC. Mice deficient for the type I IFN receptor (IFNR1) made CD8(+) T-cell responses to IFNR1-deficient, peptide-pulsed DC; hence IFN-α does not appear to be a downstream mediator of CD4(+) T-cell help. We suggest that primary CD8(+) T-cell responses will become help-independent whenever endogenous IFN-α secretion is stimulated by tissue damage, infection, or autoimmune disease.  相似文献   

10.
Allergic immune responses are initiated and maintained by T cells that recognize peptidic fragments of allergens in the context of major histocompatibility complex (MHC) class II molecules. An anomaly of this model exists in the T-cell response to haptens. Haptens are nonpeptide antigens that alone are too small to provoke an immune response. Nevertheless. T-cell responses to haptenic allergens clearly occur and are critically involved in allergic immune responses to drugs such as penicillin. Although the mechanisms that generate T-cell epitopes from protein antigens are well understood, haptens create T-cell epitopes by alternative mechanisms. These may include binding of haptens directly to preformed MHC-peptide complexes on the cell surface, or indirect association with MHC molecules after conjugation with self cell surface or serum proteins that are then processed and presented as haptenated peptide antigens. Which of these unorthodox mechanisms of epitope generation is dominant in allergy to penicillin is unknown. This study aims to determine the nature of the epitopes recognized by amoxicillin-specific T cells from allergic donors, and to clarify whether T-cell responses to penicillin antibiotics are MHC restricted and require haptenated self proteins to be processed before recognition. Human T-cell lines specific for amoxicillin were raised and used in assays with processing-disabled and MHC-class Il-typed antigenpresenting cells to determine the MHC restriction and processing requirements of T cells recognizing amoxicillin. Fixation of antigenpresenting cells with paraformaldehyde. before or after pulsing with amoxicillin. established that T cells can recognize amoxicillin-containing epitopes with a similar ezfficiency irrespective of whether the antigenic conjugate has been internalized and processed. These results suggest that amoxicillin can bind directly to preformed MHC-peptide complexes and need not necessarily involve the processing of haptenated self carrier proteins before recognition of the conjugate by amoxicillinpecific T cells.  相似文献   

11.
The human autoimmune thyroid diseases (AITDs) are characterized by profuse infiltrates of both CD4+ and CD8+ T cells. The intrathyroidal T-cell-receptor repertoire in Graves' disease, more than in Hashimoto's disease, has been shown to be biased as evidenced by phenotypic analysis and by the use of a restricted T-cell-receptor variable (V) gene repertoire seen in both TCR alpha and beta chains. Evidence for a bias in the T-cell repertoire has also been observed in animal models of induced and spontaneous autoimmune thyroiditis. We found a similar phenomenon of autoimmune thyroid-related T-cell bias in thyroid-humanized scid mice. In these studies we transplanted lymphocyte-depleted thyrocytes and autologous peripheral lymphocytes from AITD patients with a basement membrane preparation which allowed the formation of an artificial thyroid which we have called an "organoid". T-cell clonal expansion was present in these artificial mixed-cell organoids which appeared to mimic the in vivo process. Such clonal expansion was suggestive of an antigen-driven immune response and could also be identified in thyroid tissue from patients with Graves' disease. Our data on scid mice grafted with human mixed-cell thyroid organoids, therefore, suggested that the major antigens driving T-cell selection in patients with AITD were most likely to be thyroid specific. These antigens include thyroglobulin, thyroid peroxidase, and the receptor for thyroid stimulating hormone (TSHR) on the surface of thyroid epithelial cells and we found significant T-cell proliferation to synthetic TSHR peptides in patients with AITD as compared with normals. Our search for a TCR recognition motif for the autoantigen TPO did not reveal any specific sequence motifs. Instead, analysis of the physico-chemical characteristics i.e. hydrophobicity of the amino acids in the CDR3 (N) region of the TCR alpha chain, revealed a strong negative linear correlation between strength of stimulation and the average hydrophobicity of N-region amino acids. This led us to hypothesize that lower affinity T-cell clones were commonly more hydrophobic in their CDR3 alpha region amino acids in keeping with potential crossreactivity of such T cells as a consequence of promiscuous, hydrophobic CDR3 regions. This phenomenon would be analogous to polyreactive, natural autoantibodies which tend to be crossreactive and 'sticky'. Thus, the physico-chemical characteristics of the TCR alpha CDR3 region supported the interaction with antigen/MHC by potentially cross-reactive T cells of low affinity. It would seem likely that such low-affinity autoreactive T-cell populations serve as a pool of potentially pathogenetic cells. These cells would be able to respond to an insult which, via a number of possible mechanisms such as molecular mimicry, would initiate a thyroid lymphocytic infiltration in an antigen-driven fashion with intrathyroidal T-cell expansion and a marked bias in the utilization of T-cell-receptor V genes.  相似文献   

12.
Subclinical autoimmune responses can be frequently detected in healthy individuals. Sustained activation of autoreactive lymphocytes is, however, required for the development of autoimmune diseases associated with ongoing tissue destruction either in single organs or generalized with multiple manifestations. Clinical and experimental evidence suggests that prolonged presentation of self antigens by dendritic cells is crucial for the development of destructive autoimmune disease. We discuss here a simplified threshold model where the key parameters for the magnitude of the autoimmune response are the amount of previously ignored self peptides presented by dendritic cells and the duration of the antigen presentation in secondary lymphoid organs. Multiple factors influence the threshold for the conversion of an autoimmune response to overt autoimmune disease. Frequent or persistent viral infections of the target organ may favor autoimmune disease by increasing the amounts of released self antigens, generating cytokine-mediated bystander activation of self-reactive lymphocytes and/or sustaining a chronic response via neoformation of lymphoid structures in the target organ.  相似文献   

13.
14.
The etiology and immunologic states of autoimmune diseases have mainly been discussed without consideration of extrathymic T cells, which exist in the liver, intestine, and excretion glands. Because extrathymic T cells are autoreactive and are often simultaneously activated along with autoantibody-producing B-1 cells, these extrathymic T cells and B-1 cells should be introduced when considering the immunologic states of autoimmune diseases. The immunologic states of autoimmune diseases resemble those of aging, chronic GVH disease, and malarial infection. Namely, under all these conditions, conventional T and B cells are rather suppressed concomitant with thymic atrophy or involution. In contrast, extrathymic T cells and B-1 cells are inversely activated at this time. These facts suggest that the immunologic states of autoimmune diseases should be revaluated by introducing the concept of extrathymic T cells and autoantibody-producing B-1 cells, which might be primordial lymphocytes in phylogeny.  相似文献   

15.
In the pathogenesis of autoimmune diseases, tolerance against self-determinants is lost and autoreactive lymphocytes are activated leading to pathological damage of single or multiple organs. Viral and other microbial infections have been implicated in these processes. Viruses may induce immunopathological damage by maintaining a chronic immune response against the locally persisting infectious agent. Alternatively, viruses may help to initiate anti-self immunoreactivity, e.g. by induction of an inflammatory milieu needed to overcome tolerance against self-antigens. Presentation of viral antigens and/or previously immunologically ignored self-antigens in secondary lymphoid organs is most probably the key event in the initiation of autoimmune diseases. Translocation of antigens to secondary lymphoid organs and primary induction of T cell responses is primarily mediated by dendritic cells (DCs). We discuss here two transgenic models of autoimmune diseases where DC-mediated antigen transport initiated autoimmune responses against microbial neoself antigens. In the first model, dose and timing of antigen delivery by DCs and turnover of antigenic peptides presented by DCs are the main parameters regulating the outcome of autoimmune diabetes. In the second model, chronic stimulation of organ-specific immune responses via DCs leads to severe cardiovascular immunopathology with arteritis, myocarditis and eventually dilated cardiomyopathy. Taken together, transgenic mouse models are valuable tools for delineating basic pathogenic mechanisms and evaluating therapeutic strategies to interfere with early detrimental processes that lead to manifest autoimmune diseases.  相似文献   

16.
Liu G  Zhao Y 《Immunology》2007,122(2):149-156
Regulatory CD4(+) CD25(+) T (Treg) cells with the ability to suppress host immune responses against self- or non-self antigens play important roles in the processes of autoimmunity, transplant rejection, infectious diseases and cancers. The proper regulation of CD4(+) CD25(+) Treg cells is thus critical for optimal immune responses. Toll-like receptor (TLR)-mediated recognition of specific structures of invading pathogens initiates innate as well as adaptive immune responses via antigen-presenting cells (APCs). Interestingly, new evidence suggests that TLR signalling may directly or indirectly regulate the immunosuppressive function of CD4(+) CD25(+) Treg cells in immune responses. TLR signalling may shift the balance between CD4(+) T-helper cells and Treg cells, and subsequently influence the outcome of the immune response. This immunomodulation pathway may therefore have potential applications in the treatment of graft rejection, autoimmune diseases, infection diseases and cancers.  相似文献   

17.
Gilliet M  Liu YJ 《Human immunology》2002,63(12):1149-1155
Suppression by T-regulatory (Tr) cells is essential for the induction of T-cell tolerance and the prevention of autoimmune diseases, organ rejection, and graft-versus-host disease. Increasing attention has been devoted to understand the role of dendritic cells (DC) in the control of Tr-cell differentiation. Here we review the recent evidence that cluster designation (CD)40-ligand activated plasmacytoid-derived DCs (DC2) have the ability to induce primary Tr-cell differentiation. We propose that in addition to the regulatory functions of immature myeloid DC, Tr-cell induction by DC2 represents a nonredundant mechanism for the safeguard of peripheral T-cell tolerance. DC2 can be used as tool to drive potent antigen specific Tr-cell differentiation and expansion in vitro and in vivo.  相似文献   

18.
19.
While myelin-reactive T cells are widely believed to play a pathogenic role in multiple sclerosis (MS), no substantial differences appear to exist in T-cell responses to myelin antigens between MS patients and healthy subjects. As an example, indistinguishable peripheral T-cell responses and serum antibody levels have been found in MS patients and healthy controls to alpha B-crystallin, a dominant antigen in MS-affected brain myelin. This suggests that additional factors are relevant in allowing myelin-reactive T cells to become pathogenic. In this study, we examined whether the inflammatory state of the CNS is relevant to the pathogenicity of alpha B-crystallin-specific T cells in mice. In normal mice, T-cell responses against alpha B-crystallin are limited by robust immunological tolerance. Reactive T cells were therefore generated in alpha B-crystallin-deficient mice, and these T cells were transferred into C57BL/6 recipients. While such a transfer in itself never induced any clinical signs of experimental autoimmune encephalomyelitis (EAE) in healthy recipient mice, acute EAE could be induced in animals that had been infected 7 days before with the avirulent A7(74) strain of Semliki Forest virus (SFV). SFV infection alone did not induce clinical disease, nor did it alter the expression levels of the target antigen. Our findings indicate that at least in mice, alpha B-crystallin-specific T cells can trigger EAE but only when prior viral infection has induced an inflammatory state in the CNS that helps recruit and activate T cells.  相似文献   

20.
Type 1 diabetes (T1D) is an organ-specific autoimmune disease in which the insulin-producing beta cells in the pancreatic islets are selectively eliminated. T cells specific for beta-cell antigens are the mediators of this precise cellular destruction. However, antibodies to beta-cell proteins are also generated and may be used for predicting disease in at-risk populations. Over the past two decades, numerous beta-cell proteins and lipids have been implicated as autoantigens in patients or in non-obese diabetic (NOD) mice, a well-studied animal model of T1D. Here, we present a review of these antigens, accompanied by their T-cell epitopes, where known, and a discussion of our current understanding of why particular self-proteins become disease-inciting antigens. Although two dozen beta-cell antigens have been identified to date, few of these have been confirmed to be recognized by pathogenic T cells early in the disease process. Further identification and characterization of initiating beta-cell antigens targeted by pathogenic T cells should be a priority for future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号