首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: The purpose of this study was to evaluate the diagnostic potential of a whole-body bone marrow MR protocol in the detection of bone metastases. METHOD: Whole-body bone marrow MRI was performed in 18 patients with known malignant tumors and suspected bone metastases. The imaging protocol consisted of fast T1-weighted and STIR sequences applied in different anatomical positions covering the whole skeleton. MRI findings indicating bone metastases were compared with findings from bone scintigraphy. Metastatic lesions were confirmed by follow-up MR examinations, bone scintigraphy, radiography, or CT. RESULTS: A total number of 216 lesions were detected with MRI in comparison with 159 lesions detected with bone scintigraphy. Follow-up examinations confirmed 105 lesions. MRI detected 96 (91.4%) of the confirmed lesions, whereas bone scintigraphy detected 89 (84.8%). The entire examination, including patient positioning and changing of imaging coils, required 45 min of room time. CONCLUSION: Whole-body bone marrow MRI as used in this study is an effective method for evaluating the entire skeletal system in patients with suspected metastatic disease.  相似文献   

2.
Purpose Scintigraphy with 99mTc-depreotide, a somatostatin analogue–technetium ligand, has been used for evaluation of various malignant neoplasms, including lung cancer. The diagnosis of bone metastases in patients with lung cancer is not always definitive with current imaging methods. Visualisation of somatostatin receptors (SSTRs) in bone lesions, when the primary tumour exhibits such receptors, could be helpful in characterising them as metastatic. The aim of this study was to assess the value of 99mTc-depreotide in differentiating between benign and malignant bone lesions in patients with lung cancer.Methods The study population comprised 20 patients (17 males and three females, mean age 63 years) with proven lung cancer in whom bone lesions had been detected by conventional imaging methods. All patients underwent 99mTc-hydroxydiethylene diphosphonate and 99mTc-depreotide scintigraphy within 2 weeks. Bone lesions were classified as benign or malignant on the basis of clinical, imaging and/or histological criteria.Results 99mTc-depreotide uptake in the primary tumour was seen in 19 of the 20 patients. Conventional imaging methods detected 55 bone lesions, 31 of which were classified as malignant. Twenty-eight (90%) of these lesions showed 99mTc-depreotide uptake, suggesting bone metastases, while three did not. Twenty-four bone lesions were classified as benign by conventional imaging methods, and none of them showed 99mTc-depreotide uptake. In addition, 99mTc-depreotide demonstrated extra-osseous lesions in six patients.Conclusion In patients with lung cancer and bone lesions, 99mTc-depreotide scintigraphy uptake in the bone lesions supports the diagnosis of malignancy, in particular if the primary lung tumour also exhibits SSTRs. Furthermore, whole-body 99mTc-depreotide scintigraphy may disclose extra-osseous disease.  相似文献   

3.
This study was undertaken to assess the utility of whole-body turbo short tau inversion recovery (STIR) magnetic resonance imaging (MRI) to detect metastases to liver, brain, and bone as a single examination in women with breast cancer. Seventeen patients with biopsy-proven breast cancer and suspected metastatic disease attending over a 12-month period referred for both conventional imaging and whole-body MRI were included in the study. Three patients were found to be free of metastases at both conventional and MR imaging. Appendicular or axial skeletal metastases were identified in 11 of 17 patients, with correlation between findings at whole-body MRI and scintigraphy in 15 of the 17 patients. Five patients had evidence of hepatic metastases on whole-body MRI, of which metastases were identified in only three patients at CT despite contrast enhancement. Four patients had brain abnormalities (metastases in three patients, meningioma in one patient) detected on both whole-body and dedicated brain MRI. Preliminary clinical experience suggests that turbo STIR whole-body MRI may represent a convenient and cost-effective method of total body screening for metastases in patients with breast carcinoma.  相似文献   

4.
We used a combination of bone and bone-marrow scintigraphy to study 25 patients with prostatic cancer. Of the 18 cases whose 99mTc-methylene diphosphonate (MDP) bone scans showed hot spots in the lower lumbar region of the spine and/or the pelvic bone, 8 had normal bone-marrow scintigrams. These 8 patients were subsequently shown to have senile, degenerative changes of the spine. On the other hand, in 9 of the 10 patients whose bone-marrow scintigrams showed accumulation defects, follow-up study and characteristic X-ray findings confirmed the presence of metastases. In all 6 cases with extensive bone metastases shown by 99mTc-MDP bone scintigraphy, 99mTc-sulphur-colloid bone-marrow scintigraphy showed multiple accumulation defects. In conclusion, bone-marrow scintigraphy was found to be useful in distinguishing metastatic lesions from benign degenerative changes in the cases with suspected bone involvement, as well as in evaluating equivocal lesions in the pelvis.  相似文献   

5.
OBJECTIVE: The objectives of this study were to assess the efficacy and reliability of whole-body turbo short tau inversion recovery (STIR) magnetic resonance imaging (MRI) for detecting skeletal metastasis and to compare the results with those of bone scintigraphy. METHODS: Twenty-six patients with primary cancer (mean age=56 years, age range: 34-75 years) were assessed for bone metastasis with whole-body MRI and bone scintigraphy. Eight bone regions in each patient were assessed (total of 208 sites) with each of these 2 techniques. A turbo STIR sequence and panoramic table were used during MRI. Whole-body MRI and scintigraphy findings were compared with biopsy or follow-up imaging results. RESULTS: After at least 12 months of follow-up, 9 patients had bone metastases in a total of 31 sites. Whole-body MRI showed 29 metastases (94%) in the total 208 skeletal sites investigated in the 26 patients. Bone scintigraphy revealed metastases in 16 (52%) of the 208 sites. CONCLUSION: Whole-body turbo STIR MRI is a reliable method for screening patients with suspected skeletal metastases. This technique is also advantageous in that it reveals extraskeletal organ and soft tissue metastases.  相似文献   

6.
The usefulness of fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) in differentiated thyroid cancer (DTC) has been demonstrated by many investigators, but in only a small number of studies have FDG-PET images been compared with those obtained using other non-iodine tumour-seeking radiopharmaceuticals. In most of the studies, planar imaging was performed for comparison using thallium-201 chloride or technetium-99m 2-methoxyisobutylisonitrile (99mTc-MIBI). Furthermore, FDG-PET studies were not always performed in the hypothyroid state with increased levels of thyroid stimulating hormone (TSH), which are known to increase FDG uptake by DTC. The aim of this study was to compare the ability of FDG-PET to detect metastatic DTC with that of 99mTc-MIBI whole-body single-photon emission tomography (SPET) and post-therapeutic iodine-131 scintigraphy, evaluated under TSH stimulation. Nineteen patients (8 men, 11 women; age range, 38–72 years, mean 60 years; 17 thyroidectomised and 2 inoperable patients following 131I ablation of the remaining thyroid tissue; 16 papillary and 3 follicular carcinomas) with metastatic DTC underwent FDG-PET whole-body scan (WBS) and 99mTc-MIBI SPET WBS at an interval of less than 1 week, followed by 131I therapy. The SPET images were reconstructed using the maximum likelihood expectation maximisation (ML-EM) method. All patients were hypothyroid at the time of each scan. 131I WBS was performed 3–5 days after oral administration of the therapeutic dose. A total of 32 lesions [10 lymph node (LN), 15 lung, 6 bone, 1 muscle] were diagnosed as metastases, as confirmed by histopathology and/or other imaging modalities (X-ray, US, CT, MRI, bone, 201Tl and 131I scans). FDG-PET, 99mTc-MIBI SPET and post-therapeutic 131I scintigraphy respectively revealed a total of 26 (81.3%), 20 (62.5%) and 22 (68.8%) lesions. These techniques respectively demonstrated nine (90.0%), eight (80.0%) and six (60.0%) LN metastases, and eleven (73.3%), seven (46.7%) and ten (66.7%) lung metastases. They each demonstrated five of the six bone metastases (83.3%). FDG-PET and 99mTc-MIBI SPET were positive in 17 (78.3%) and 14 (63.6%) of the 22 131I-positive lesions, respectively, and also in nine (90.0%) and six (60.0%) of the ten 131I-negative lesions, respectively. Three of the five 131I-positive and FDG-PET-negative lesions were miliary type lung metastases with a maximal nodular diameter of less than 10 mm. Comparison of FDG-PET with 99mTc-MIBI SPET revealed concordant results in 24 lesions, and discordant results in eight lesions (seven with positive FDG-PET alone and one with positive 99mTc-MIBI SPET alone). In conclusion: (a) even using whole-body SPET, FDG PET is superior to 99mTc-MIBI in terms of ability to detect metastases of DTC; (b) the higher sensitivity of FDG-PET compared with the previous studies could partly be due to increased serum TSH.  相似文献   

7.
The aim of this study was to investigate the usefulness of whole body MR imaging (WB-MRI) in the detection of bone metastases from breast cancer and to compare the results with those from bone scintigraphy. In 21 patients with suspected bone metastasis from breast cancer, both bone scintigraphy and WB-MRI were performed. With WB-MRI, coronal images were obtained using a body coil in an FOV of 48 cm, and sequences of fast short TI inversion recovery (STIR) and gadolinium-enhanced fast spoiled GRASS (SPGR) were used in three parts: from the head to the thorax, the abdomen to the pelvis, and the lower extremities. Of the total 105 metastatic bone lesions, 65 (61.9%) were detected by bone scintigraphy, 98 (93.3%) by fast STIR, and 74 (70.5%) by fast SPGR. Thus, the detection of bone metastases by WB-MRI was excellent. However, detectability in the ribs was lower for WB-MRI than for bone scintigraphy. Contrast-enhanced MRI was useful in the differentiation of osteosclerotic lesions, in which high signal intensity is rare, pleural effusion, which has high signal intensity on STIR, and bone metastatic lesions. In conclusion, WB-MRI showed high reliability in the detection of bone metastatic lesions from breast cancer.  相似文献   

8.
A report is presented of a patient with mixed small and large cell lymphocytic lymphoma and extensive metastatic calcification of pulmonary elastic tissue. This was not detected on X-ray examination, but there was avid retention in both lung fields of 99mTc-methylene diphosphonate after administration for bone scintigraphy.  相似文献   

9.
Iodine-131 metaiodobenzylguanidine (131I-MIBG) therapy is an effective treatment for patients with malignant paraganglioma for which surgical resection is not indicated. We performed high-dose 131I-MIBG therapy on two patients with malignant paraganglioma and multiple bone metastases. The bone metastases were diagnosed by magnetic resonance imaging (MRI). Metastatic bone lesions were evaluated by whole-body 131I-MIBG imaging and bone scintigraphy. Whole-body 131I-MIBG imaging showed extensive metastatic bone lesions, whereas conventional bone scintigraphy did not. There was a remarkable discrepancy between 131I-MIBG imaging and bone scintigraphy in the diagnosis of metastatic bone lesions of malignant paraganglioma in our two patients. High-dose 131I-MIBG imaging may detect early stages of bone metastases, compared with bone scintigraphy, in patients with malignant paraganglioma.  相似文献   

10.
An extensive 99mTc-methylene diphosphonate uptake defect was observed on bone scintigraphy in a 35-year-old male with chronic myelogenous leukemia. This type of bone scintigraphy pattern is quite unusual in leukemic patients and we speculate that acute disturbance of blood supply to the bone marrow was probably the cause.  相似文献   

11.
The aim of this study was to evaluate the diagnostic potential of whole-body MRI (WB-MRI) for the detection of bone marrow and extramedullary involvement in patients with non-Hodgkins lymphoma. WB-MRI, which was performed on 34 patients, consisted of the recording of T1-weighted spin-echo images and a fast STIR sequence covering the entire skeleton. The WB-MRI findings for bone marrow and extramedullary involvement were compared with those from 67Ga and bone scintigraphies and bone marrow biopsy results. Two MRI specialists reviewed the WB-MRI results and two expert radiologists in the field of nuclear medicine reviewed the bone and 67Ga scintigraphy findings. Bone marrow and extramedullary involvement of non-Hodgkins lymphoma were confirmed by follow-up radiographs and CT and/or a histological biopsy. The detection rate of WB-MRI was high. More bone marrow involvement was detected by biopsy, and more lesions were detected by scintigraphies. In total, 89 lesions were detected by WB-MRI, whereas 15 were found by biopsy, 5 by 67Ga scintigraphy, and 14 by bone scintigraphy. WB-MRI could also detect more extramedullary lesions than 67Ga scintigraphy; i.e., 72 lesions were detected by WB-MRI, whereas 54 were discovered by 67Ga scintigraphy. WB-MRI is useful for evaluating the involvement of bone marrow and extramedullary lesions throughout the skeleton in patients with non-Hodgkins lymphoma.  相似文献   

12.
Our objective was to compare fast spin-echo (FSE) short inversion time inversion recovery (STIR) whole-body MR imaging with standard procedures in staging children with lymphoma. Eight children (age range, 2–16 years) underwent multi-station FSE STIR whole-body MR at initial staging (n=5) or for restaging following completion of therapy (n=5). Whole-body MR and conventional staging procedures, including CT (n=10), gallium-67 scintigraphy (n=9), bone scintigraphy (n=3) and bone marrow biopsy (n=7) were retrospectively compared for detection of sites involved by lymphoma and for the assigned stage. FSE STIR whole-body MR detected more sites of possible lymphomatous involvement at initial staging (87/88) and at restaging (5/5) than did conventional imaging (74/88, 3/5). MR was more sensitive than conventional imaging in detecting bone marrow involvement at initial staging. Following treatment, however, residual and therapy-induced bone marrow signal abnormalities could not be differentiated from lymphomatous involvement. Detection of nodal and visceral involvement correlated well. Our results suggest that FSE STIR whole-body MR imaging is a sensitive technique for evaluating lymphomatous involvement of bone marrow as well as non-marrow sites. Larger prospective trials are needed to determine if FSE STIR whole-body MR can replace standard radiographic procedures for initial staging and contribute in the follow-up of lymphoma in children.  相似文献   

13.
Magnetic resonance imaging (MRI) is a sensitive method for the diagnosis of bone marrow abnormalities, but its usefulness in detecting active disseminated cancer in this tissue in treated patients has not been determined. We therefore examined 14 children who had been treated for disseminated bone marrow involvement by neuroblastoma (n=6), lymphoma (n=3), Ewing's sarcoma (n=3), osteosarcoma (n=1), and leukemia (n= 1). MRI studies were performed at 21 marrow sites to evaluate residual or recurrent tumor and were correlated with histologic material from the same site. T1- and T2-weighted sequences were employed in 21 and 14 studies, respectively; short tau inversion recovery (STIR) in 18; and static gadolinium diethylene triamine pentaacetic acid (Gd-DPTA)-enhanced, T1-weighted sequences in 13. All MRI studies showed an altered bone marrow signal. Technetium 99m methylene diphosphonate (99mTc-MDP) bone scintigraphy was also performed (19 studies). On histologic examination, 7 marrow specimens contained tumor, and 14 did not. Of the 7 tumor-positive lesions, all T1-weighted, 4 of 6 T2-weighted, and all 6 STIR sequences showed abnormal signal; all 5 GdDTPA-enhanced, T1-weighted sequences showed enhancement of the lesion. However, abnormal signals were also observed on all T1-weighted, 6 of 8 T2-weighted, 11 of 12 STIR, and 5 of 8 Gd-DTPA-enhanced, T1-weighted images of the tumor-negative sites. In this clinical setting, MRI did not consistently differentiate changes associated with treatment from malignant disease.  相似文献   

14.

Objective

Recent many studies have shown that whole body “diffusion-weighted imaging with background body signal suppression” (DWIBS) seems a beneficial tool having higher tumor detection sensitivity without ionizing radiation exposure for pediatric tumors. In this study, we evaluated the diagnostic performance of whole body DWIBS and 18F-FDG PET/CT for detecting lymph node and bone metastases in pediatric patients with neuroblastoma.

Methods

Subjects in this retrospective study comprised 13 consecutive pediatric patients with neuroblastoma (7 males, 6 females; mean age, 2.9?±?2.0 years old) who underwent both 18F-FDG PET/CT and whole-body DWIBS. All patients were diagnosed as neuroblastoma on the basis of pathological findings. Eight regions of lymph nodes and 17 segments of skeletons in all patients were evaluated. The images of 123I-MIBG scintigraphy/SPECT-CT, bone scintigraphy/SPECT, and CT were used to confirm the presence of lymph node and bone metastases. Two radiologists trained in nuclear medicine evaluated independently the uptake of lesions in 18F-FDG PET/CT and the signal-intensity of lesions in whole-body DWIBS visually. Interobserver difference was overcome through discussion to reach a consensus. The sensitivities, specificities, and overall accuracies of 18F-FDG PET/CT and whole-body DWIBS were compared using McNemer’s test. Positive predictive values (PPVs) and negative predictive values (NPVs) of both modalities were compared using Fisher’s exact test.

Results

The total numbers of lymph node regions and bone segments which were confirmed to have metastasis in the total 13 patients were 19 and 75, respectively. The sensitivity, specificity, overall accuracy, PPV, and NPV of 18F-FDG PET/CT for detecting lymph node metastasis from pediatric neuroblastoma were 100, 98.7, 98.9, 95.0, and 100%, respectively, and those for detecting bone metastasis were 90.7, 73.1, 80.3, 70.1, and 91.9%, respectively. In contrast, the sensitivity, specificity, overall accuracy, PPV, and NPV of whole-body DWIBS for detecting bone metastasis from pediatric neuroblastoma were 94.7, 24.0, 53.0, 46.4 and 86.7%, respectively, whereas those for detecting lymph node metastasis were 94.7, 85.3, 87.2, 62.1, and 98.5%, respectively. The low specificity, overall accuracy, and PPV of whole-body DWIBS for detecting bone metastasis were due to a high incidence of false-positive findings (82/108, 75.9%). The specificity, overall accuracy, and PPV of whole-body DWIBS for detecting lymph node metastasis were also significantly lower than those of 18F-FDG PET/CT for detecting lymph node metastasis, although the difference between these 2 modalities was less than that for detecting bone metastasis.

Conclusion

The specificity, overall accuracy, and PPV of whole-body DWIBS are significantly lower than those of 18F-FDG PET/CT because of a high incidence of false-positive findings particularly for detecting bone metastasis, whereas whole-body DWIBS shows a similar level of sensitivities for detecting lymph node and bone metastases to those of 18F-FDG PET/CT. DWIBS should be carefully used for cancer staging in children because of its high incidence of false-positive findings in skeletons.
  相似文献   

15.
BACKGROUND: When reporting bone scans, it is important to distinguish between normal variants and skeletal pathology involving the sternum. There are only limited reports dealing with age-related normal variants of the sternum on bone scintigraphy. METHODS: We have studied the age-related variants of sternal uptake on bone scintigraphy. In a prospective study, 152 consecutive patients (66 males and 86 females) undergoing whole-body bone scanning, and who had no symptoms associated with the sternum, were evaluated for patterns of normal sternal uptake. Three hours after intravenous injection of (99m)Tc-methylene diphosphonate ((99m)Tc-MDP), whole-body bone scans in the anterior and posterior projections were acquired. Patterns of sternal uptake, including the sites and distribution of increased and decreased uptake, were analysed using age-related groups. RESULTS: Three patterns of tracer uptake in the sternum were recognized: a uniform pattern was most common in children (< or =12 years); a heterogeneous uptake pattern was frequently seen in adolescents, young adult and adult groups; and a segmented pattern was commonly seen in the geriatric group (>60 years). A predominant focal finding was a hot spot at the angle of Louis. In addition, there were focal spots of decreased tracer uptake in the lower sternum, just above the xiphoid process, and spots of increased tracer uptake in the body of the sternum. Such focal spots were not seen in subjects of less than 12 years of age. CONCLUSION: Evolutionary changes of the sternum appear to exist throughout life. There are age-related normal variants of sternal uptake on bone scintigraphy.  相似文献   

16.
The aim of this study was to compare the results of whole-body MRI using a recently developed rolling table platform with findings of nuclear scintigraphy in patients with bone metastases. Twenty-six patients with known or suspected bone metastases who had undergone radionuclide scintigraphy were examined by MRI. Patients were placed on a rolling table platform with integrated phased-array surface coils [BodySURF (system for unlimited field of view)] capable of pulling the patient through the isocenter of the magnet. Using a five-station approach three different image sets (T1-weighted gradient recalled echo, half-Fourier acquired single-shot turbo spin echo, and short tau inversion recovery) were collected in the coronal plane. In addition, the spine was imaged in the sagittal plane. The MRI findings were compared with the results obtained by scintigraphy. The whole-body MR examination lasting merely 40 min was feasible in all 26 patients. The MRI revealed excellent correlation with scintigraphy regarding metastatic lesions. A total of 60 regions with metastatic lesions were identified on bone scintigraphy. Fifty-three regions were detected on identical locations by MRI. The regions missed by MRI were located mainly in ribs and skull. The MRI could identify additional bone metastases in spine, pelvis, and femur. The MRI screening for bone metastases correlated well with bone scintigraphy. Use of the rolling table platform permits rapid imaging based on three different contrast mechanisms of the entire skeletal system.  相似文献   

17.
OBJECTIVE: The purpose of this study was to compare the diagnostic accuracy of whole-body MR imaging, skeletal scintigraphy, and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for the detection of bone metastases in children. SUBJECTS AND METHODS: Thirty-nine children and young adults who were 2--19 years old and who had Ewing's sarcoma, osteosarcoma, lymphoma, rhabdomyosarcoma, melanoma, and Langerhans' cell histiocytosis underwent whole-body spin-echo MR imaging, skeletal scintigraphy, and FDG PET for the initial staging of bone marrow metastases. The number and location of bone and bone marrow lesions diagnosed with each imaging modality were correlated with biopsy and clinical follow-up as the standard of reference. RESULTS: Twenty-one patients exhibited 51 bone metastases. Sensitivities for the detection of bone metastases were 90% for FDG PET, 82% for whole-body MR imaging, and 71% for skeletal scintigraphy; these data were significantly different (p < 0.05). False-negative lesions were different for the three imaging modalities, mainly depending on lesion location. Most false-positive lesions were diagnosed using FDG PET. CONCLUSION: Whole-body MR imaging has a higher sensitivity than skeletal scintigraphy for the detection of bone marrow metastases but a lower sensitivity than FDG PET.  相似文献   

18.
18F-fluoride PET/CT was performed on 44 oncologic patients to evaluate its diagnostic accuracy in assessing malignant osseous involvement and in differentiating malignant from benign bone lesions. METHODS: (18)F-fluoride PET and (18)F-fluoride PET/CT were interpreted separately. Lesions showing increased (18)F-fluoride uptake were categorized as malignant, benign, or inconclusive. The final diagnosis of lesions was based on histopathology, correlation with contemporaneous diagnostic CT or MRI, or clinical follow-up of at least 6 mo (mean, 10 +/- 3 mo). RESULTS: Increased (18)F-fluoride uptake was detected at 212 sites, including 111 malignant lesions, 89 benign lesions, and 12 lesions for which the final diagnosis could not be determined. In a lesion-based analysis, the sensitivity of PET alone in differentiating benign from malignant bone lesions was 72% when inconclusive lesions were considered false negative and 90% when inconclusive lesions were considered true positive. On PET/CT, 94 of 111 (85%) metastases presented as sites of increased uptake with corresponding lytic or sclerotic changes, and 16 of the 17 remaining metastases showed normal-appearing bone on CT, for an overall sensitivity of 99% for tumor detection. For only 1 metastasis was PET/CT misleading, suggesting the false diagnosis of a benign lesion. The specificity of PET/CT was significantly higher than that of PET alone (97% vs. 72%, P < 0.001). PET/CT identified benign abnormalities at the location exactly corresponding to the scintigraphic increased uptake for 85 of 89 (96%) benign lesions. In a patient-based analysis, the sensitivity of PET and PET/CT was 88% and 100%, respectively (P < 0.05) and the specificity was 56% and 88%, respectively (not statistically significant). Among the 12 patients referred for (18)F-fluoride assessment because of bone pain despite negative findings on (99m)Tc-methylene diphosphonate bone scintigraphy, (18)F-fluoride PET/CT suggested malignant bone involvement in all 4 patients with proven skeletal metastases, a potential benign cause in 4 of 7 patients who had no evidence of metastatic disease, and a soft-tissue tumor mass invading a sacral foramen in 1 patient. CONCLUSION: The results indicate that (18)F-fluoride PET/CT is both sensitive and specific for the detection of lytic and sclerotic malignant lesions. It accurately differentiated malignant from benign bone lesions and possibly assisted in identifying a potential cause for bone pain in oncologic patients. For most lesions, the anatomic data provided by the low-dose CT of the PET/CT study obviates the performance of full-dose diagnostic CT for correlation purposes.  相似文献   

19.
The purpose of this study was to compare the diagnostic sensitivity of unenhanced magnetic resonance (MR) imaging, and MR imaging with a new superparamagnetic iron oxide (SPIO)-enhanced contrast agent (SHU 555 A) with biphasic helical computed tomography during arterial portography (CTAP) in patients with focal liver lesions. Eighteen patients with a total of 91 (78 malignant, 13 benign) proven liver lesions underwent unenhanced short tau inversion recovery (STIR), T2-weighted (T2-w) TSE, and SHU 555 A-enhanced T2-w turbo spin-echo (TSE) MR imaging and biphasic helical CTAP. The standard of reference was histopathologic analysis of resected specimens in 59 lesions, intraoperative ultrasound with biopsy in 20 lesions, and CT-guided biopsy and follow-up in 12 lesions. Diagnostic performance of the imaging modalities was compared quantitatively and qualitatively by assessing lesion involvement in liver segments. There were 68 lesions detected on unenhanced T2-w TSE, which resulted in a sensitivity of 75%. With the STIR sequence, 76 lesions were detected, for a sensitivity of 84%, and with SHU 555 A-enhanced MRI, 84 lesions were detected, for a sensitivity of 92%. CTAP detected 88 lesions, for a sensitivity of 97%. The accuracy for unenhanced T2-w TSE was 98%, for STIR 99%, for enhanced-MRI 100%, and for CTAP 95%. The specificity was 100% for SHU 555 A-enhanced MRI and 95% for CTAP. SHU 555 A-enhanced MRI was superior to nonenhanced MRI (P < 0.05) and equivalent to CTAP in terms of sensitivity. Due to the absence of false-positive results on SHU 555 A-enhanced MRI, the specificity and accuracy of enhanced MRI were higher than those of CTAP, but the difference was not statistically significant (P = 0.134).  相似文献   

20.
The aim of this study was two-fold: to compare 67Ga scintigraphy with MRI (a) for the staging of malignant lymphoma of the bone and (b) with regard to accuracy in detecting residual disease after first-line chemotherapy for restaging. METHODS: Twenty-one patients with 36 malignant osseous lesions were examined, including 7 patients with primary or multifocal osseous lymphoma and 14 patients with malignant lymphoma and simultaneous or secondary involvement of the bone. After first-line therapy, MRI and 67Ga scintigraphy were performed on 13 patients. The remission status based on all clinical and radiological findings during the follow-up was used as the gold standard. RESULTS: The osseous lesions were located on the axial skeleton in 64% of patients and on the appendicular skeleton in 36%. 67Ga scintigraphy detected 77% of the osseous lesions examined by MRI. For restaging after first-line therapy, MRI had a sensitivity of 90% and a specificity of 80% when dynamic MRI information was included. There were several false-positive results as a result of the pathologic increase in signal intensity ratios of reactive hematopoietic regions after chemotherapy. For 67Ga scintigraphy, a sensitivity of 70% and a specificity of 93% were calculated. CONCLUSION: These data show that monitoring malignant lymphoma of the bone still presents diagnostic problems. Given the high sensitivity of MRI and the high specificity of 67Ga scintigraphy but the limited specificity of MRI and sensitivity of 67Ga scintigraphy, both methods are valuable but should be used as complementary diagnostic tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号