首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time dependence of the ability of phenyl methyl sulfonyl fluoride (PMSF) to protect adult hens from developing signs of paralysis following the administration of 750 mg/kg tri-ortho-cresyl phosphate (TOCP), p.o., of 1.7 mg/kg O,O-diisopropyl phosphorofluoridate (DFP), s.c., was investigated. PMSF was able to protect the hens from organophosphorus-induced delayed neurotoxicity (OPIDN) when given between 1 and 24 h before the administration of TOCP, or when given 4 h before DFP. However, PMSF was ineffective at preventing paralysis when given 24 h following dosing with TOCP or when given later than 4 h before DFP administration. These results support the notion that PMSF acts at the same site as the organophosphorus esters.  相似文献   

2.
The neuropathic syndrome resulting in the cat and the rat from single or multiple doses of the phosphorous acid ester tiphenyl phosphite (TPP) has been reported to differ from the syndrome caused by numerous phosphoric acid esters, which is known as organophosphorous compound-induced delayed neurotoxicity (OPIDN). Since the hen is used to test compounds for OPIDN, we chose to study the neurotoxicity of single subcutaneous doses of TPP using this animal model. TPP (1000 mg/kg) produced progressive ataxia and paralysis which began to develop 5–10 days after dosing. Similar signs were observed when subcutaneous doses of the OPIDN-causing agents tri-o-cresyl phosphate (TOCP) or diisopropyl phosphorofluoridate (DFP) were administered. The minimum neurotoxic dose of TPP was 500 mg/kg. Prior administration of phenylmethylsulfonyl fluoride (PMSF) prevented the development of a neuropathy induced by DFP, but did not fully protect the hens from TPP or TOCP. PMSF slowed, but did not prevent, the neuropathy caused by TOCP. PMSF reduced the neurotoxicity of 500 mg/kg TPP, but increased the neurotoxicity of 1000 mg/kg TPP. TPP was found to be a very potent inhibitor of neurotoxic esterase (NTE), the putative target site for OPIDN, in vitro, with a ki of about 2.1×105 M–1min–1. Equimolar doses of either TPP (1000 mg/kg) and TOCP (1187 mg/kg) caused over 80% inhibition of neurotoxic esterase (NTE) in brain and sciatic nerve. This high level of NTE inhibition persisted for several weeks. This prolonged inhibition probably accounts for the inability of PMSF to block the neurotoxicity of TOCP. The dose-response curve for NTE inhibition 48 h after dosing indicated that a level of 70% inhibition correlated with the neurotoxicity of TPP.Subneurotoxic doses of TPP and DFP were found to have an additive effect which could be blocked by PMSF. These results indicate that TPP can cause OPIDN in the hen. The synergism between PMSF and the higher dose of TPP suggests the presence of a second neurotoxic effect as well.  相似文献   

3.
Neuropathy target esterase (NTE) is the target protein for neuropathic organophosphorus (OP) compounds that produce OP compound-induced delayed neurotoxicity (OPIDN). Inhibition/aging of brain NTE within hours of exposure predicts the potential for development of OPIDN in susceptible animal models. Lymphocyte NTE has also found limited use as a biomarker of human exposure to neuropathic OP compounds. Recently, a highly sensitive biosensor was developed for NTE activity using a tyrosinase carbon-paste electrode for amperometric detection of phenol produced by hydrolysis of the substrate, phenyl valerate. The I50 (20 min at 37 degrees C) for N,N'-di-2-propylphosphorodiamidofluoridate (mipafox) against hen lymphocyte NTE was 6.94 +/- 0.28 microM amperometrically and 6.02 +/- 0.71 microM colorimetrically. For O,O-di1-propyl O-2,2-dichlorvinyl phosphate (PrDChVP), the I50 against hen brain NTE was 39 +/- 8 nM amperometrically and 42 +/- 2 nM colorimetrically. The biosensor enables NTE to be assayed in whole blood, whereas this cannot be done with the usual colorimetric method. Amperometrically, I50 values for PrDChVP against hen and human blood NTE were 66 +/- 3 and 70 +/- 14 nM, respectively. To study the possibility of using blood NTE inhibition as a biochemical marker of neuropathic OP compound exposure, NTE activities in brain and lymphocytes as well in brain and blood were measured 24 h after dosing hens with PrDChVP. Brain, lymphocyte, and blood NTE were inhibited in a dose-responsive manner, and NTE inhibition was highly correlated between brain and lymphocyte (r = .994) and between brain and blood (r = .997). The results suggest that the biosensor NTE assay for whole blood could serve as a biomarker of exposure to neuropathic OP compounds as well as a predictor of OPIDN and an adjunct to its early diagnosis.  相似文献   

4.
Hou WY  Long DX  Wang HP  Wang Q  Wu YJ 《Toxicology》2008,252(1-3):56-63
Little is known regarding early biochemical events in organophosphate-induced delayed neurotoxicity (OPIDN) except for the essential inhibition of neuropathy target esterase (NTE). We hypothesized that the homeostasis of lysophosphatidylcholine (LPC) and/or phosphatidylcholine (PC) in nervous tissues might be disrupted after exposure to the organophosphates (OP) which participates in the progression of OPIDN because new clues to possible mechanisms of OPIDN have recently been discovered that NTE acts as lysophospholipase (LysoPLA) in mice and phospholipase B (PLB) in cultured mammalian cells. To bioassay for such phospholipids, we induced OPIDN in hens using tri-o-cresyl phosphate (TOCP) as an inducer with phenylmethylsulfonyl fluoride (PMSF) as a negative control; and the effects on the activities of NTE, LysoPLA and PLB, the levels of PC, LPC, and glycerophosphocholine (GPC), and the aging of NTE enzyme in the brain, spinal cord, and sciatic nerves were examined. The results demonstrated that the activities of NTE, NTE-LysoPLA, LysoPLA, NTE-PLB and PLB were significantly inhibited in both TOCP- and PMSF-treated hens. The inhibition of NTE and NTE-LysoPLA or NTE-PLB showed a high correlation coefficient in the nervous tissues. Moreover, the NTE inhibited by TOCP was of the aged type, while nearly all of the NTE inhibited by PMSF was of the unaged type. No significant change in PC or LPC levels was observed, while the GPC level was significantly decreased. However, there is no relationship found between the GPC level and the delayed symptoms or aging of NTE. All results suggested that LPC and/or PC homeostasis disruption may not be a mechanism for OPIDN because the PC and LPC homeostasis was not disrupted after exposure to the neuropathic OP, although NTE, LysoPLA, and PLB were significantly inhibited and the GPC level was remarkably decreased.  相似文献   

5.
Inhibition of neuropathy target esterase (NTE, neurotoxic esterase)and acetylcholinesterase (AChE) activities was compared in brainand spinal cords of adult While Leghorn hens and adult maleLong Evan rats 4–48 hr after admiriistration of tri-ortho-tolylphosphate (TOTP po, 50–500 mg/kg to hens; 300–1000mg/kg to rats), phenyl saligenin phosphate (PSP im 0.1–2.5mg/kg to hens; 5–24 mg/kg to rats), mipafox (3–30mg/kg ip to hens and rats), diisopropyl phosphorofluoridate(DFP sc, 0.25–1.0 mg/kg to hens; 1–3 mg/kg to rats),dichlorvos (5–60 mg/kg ip to hens; 5–30 mg/kg torats), malathion (75–300 mg/kg po to hens; 600–2000mg/kg to rats), and carbaryl (300–560 mg/kg ip to hens;30–170 mg/kg to rats). Inhibitions of NTE and AChE weredose-related after administration of all compounds to both species.Hens and rats given TOTP, PSP, mipafox, and DFP demonstrateddelayed neuropathy 3 weeks later, with spinal cord lesions andclinical signs more notable in hens. Ratios of NTE/AChE inhibitionin hen spinal cord, averaged over the doses used, were 2.6 afterTOTP, 5.2 after PSP, 1.3 after mipafox, and 0.9 after DFP, whichcontrast with 0.53 after dichlorvos, 1.0 after malathion, and0.46 after carbaryl. Rat NTE/AChE inhibition ratios were 0.9after TOTP, 2.6 after PSP, 1.0 after mipafox, 0.62 after DFP,1.3 after dichlorvos, 2.2 after malathion, and 1.1 after carbaryl.The lower NTE/AChE ratios in rats given dosages of the fourorganophosphorus compounds that caused delayed neuropathy interferredwith survival, an effect that was not a problem in hens. Thisobservation, along with the absence of overt and specific clinicalsigns and the restricted presence of neuropathological lesionsin rats, suggests that the hen remains the animal of choicefor testing for organophosphorus-induced delayed neuropathy.  相似文献   

6.
Phenylmethylsulfonyl fluoride (PMSF), a nonneuropathic inhibitorof neurotoxk esterase (NTE), is a known potentiator of organophosphorus-induceddelayed neurotoxicity (OPIDN)- The ability of PMSF posttreatment(90 mg/kg, sc, 4 hr after the last PSP injection) to modifydevelopment of delayed neurotoxicity was examined in 2-, 5-,and 8-week-old White Leghorn chickens treated either one, two,or three times (doses separated by 24 hr) with the neuropathicOP compound phenyl saligenin phosphate (PSP, 5 mg/kg, sc). NTEactivity was measured in the cervical spinal cord 4 hr afterthe last PSP treatment. Development of delayed neurotoxicitywas measured over a 16-day postexposure period. All PSP-treatedgroups exhibited >97% NTE inhibition regardless of age ornumber of OP treatments. Two-week-old birds did not developclinical signs of neurotoxicity in response to either singleor repeated OP treatment regimens nor following subsequent treatmentwith PMSF. Five-week-old birds were resistant to the clinicaleffects of a single PSP exposure and were minimally affectedby repeated doses. PMSF posttreatment, however, significantlyamplified the clinical effects of one, two, or three doses ofPSP. A single exposure to PSP induced slight to moderate signsof delayed neurotoxicity in 8-week-old birds with more extensiveneurotoxicity being noted following repeated dosing. As with5-week-old birds, PMSF exacerbated the clinical signs of neurotoxicitywhen given after one, two, or three doses of PSP in 8-week-oldbirds. Axonal degeneration studies supported the clinical findings:PMSF posttreatment did not influence the degree of degenerationin 2-week-old chickens but resulted in more severe degeneration(relative to PSP only exposure) in cervical cords from both5- and 8-week-old birds. The results indicate that PMSF doesnot alter the progression of delayed neurotoxicity in very young(2 weeks of age) chickens but potentiates PSP-induced delayedneurotoxicity in the presence of 0–3% residual NTE activityin older animals. We conclude that posttreatment with neuropathicor nonneuropathic NTE inhibitors, following virtually completeNTE inhibition by either single or repeated doses of a neuropathicagent in sensitive age groups, can modify both the clinicaland morphological indices of delayed neurotoxicity. This studyfurther supports the hypothesis that potentiation of OPIDN occursthrough a mechanism unrelated to NTE.  相似文献   

7.
To examine the phenomenon of apparent age resistance of young chicks to organophosphate-induced delayed neuropathy (OPIDN), groups of either 2- or 10-week-old chicks were exposed subcutaneously daily for 4 days to the neuropathic organophosphate (OP), di-isopropylfluorophosphate (DFP, 1 mg/kg), the non-neuropathic OP, paraoxon (PO, 0.25 mg/kg) or atropine (20 mg/kg). Subsequently, all birds were examined at post-exposure intervals (calculated from the last day of exposure) for up to 56 days for neurological deficits and morphological lesions in the central and peripheral nervous systems (CNS, PNS). Clinically, none of the birds in the 2-week-old groups, or in the 10-week-old PO or atropine exposed groups had neurological deficits. However, all birds in the 10-week-old DFP exposed group developed ataxia by 7 days post-exposure (DPE) and then progressive paralysis. Therefore, all birds in the 10-week-old groups were killed at 14 DPE. Pathologically, the 2-week-old DFP exposed chicks had increasingly severe lesions of Wallerian-like degeneration predominantly in the spinal cord from 7 DPE and subsequently. In the 10-week-old DFP exposed chicks, the degenerative lesions of OPIDN were first detected in the CNS at 3 DPE and then with equally increasing severity in the CNS and PNS up to 14 DPE. A higher incidence of neuronal necrosis and chromatolysis in ventral motor horn neurons of spinal cord grey matter and in dorsal root ganglia occurred in both the DFP exposed age groups compared with those lesions in other groups. These results demonstrate that after neuropathic DFP exposure, 2-week-old chicks develop pathological lesions in the spinal cord without neurological deficits. In both age groups, onset of degenerative lesions in the spinal cord preceeded those in the PNS. The claim of apparent age resistance of chicks to OPIDN needs to be re-evaluated.  相似文献   

8.
Diisopropyl phosphorofluoridate (DFP) is an organophosphorus ester, which produces delayed neurotoxicity (OPIDN) in hens in 7-14 days. OPIDN is characterized by mild ataxia in its initial stages and severe ataxia or paralysis in about 3 weeks. It is marked by distal swollen axons, and exhibits aggregations of neurofilaments (NFs), microtubules, proliferated smooth endoplasmic reticulum, and multivesicular bodies. These aggregations subsequently undergo disintegration, leaving empty varicosities. Previous studies in this laboratory have shown an increased level of medium-molecular weight NF (NF-M) and decreased levels of high- and low-molecular weight NF (NF-H, NF-L) proteins in the spinal cord of DFP-treated hens. The main objective of this investigation was to study the effect of DFP administration on NF subunit levels when OPIDN is prevented or potentiated by pretreatment or post-treatment with phenylmethylsulfonyl fluoride (PMSF), respectively. Hens pretreated or post-treated with PMSF were killed 1, 5, 10, and 20 days after the last treatment. The alteration in NF subunit protein levels observed in DFP-treated hen spinal cords was not observed in protected hens. Estimation of NFs in the potentiation experiments, however, showed a different pattern of alteration in NF subunit levels. The results showed that an alteration in NF subunit levels in DFP-treated hens might be related to the development of OPIDN, since these changes were suppressed in PMSF-protected hens. However, results from PMSF post-treated hen spinal cords suggested that potentiation of OPIDN by PMSF was mediated by a mechanism different from that followed by DFP alone to produce OPIDN.  相似文献   

9.
Phenylmethylsulfonyl fluoride (PMSF) is a protease and esterase inhibitor that causes protection, or potentiation/“promotion,” of organophosphorus delayed neuropathy (OPIDN), depending on whether it is dosed before or after an inducer of delayed neuropathy, such as mipafox. The molecular target of the potentiation/promotion of OPIDN has not yet been identified. The kinetic data of phenyl valerate esterase inhibition by PMSF were obtained with membrane chicken brain fractions, the animal model and tissue in which neuropathy target esterase (NTE) was first described. Data were analyzed using a kinetic model with a multienzymatic system in which inhibition, simultaneous chemical hydrolysis of the inhibitor and “ongoing inhibition” (inhibition during the substrate reaction) were considered. Three main esterase components were discriminated: two sensitive enzymatic entities representing 44 and 41 %, with I 50 (20 min) of 35 and 198 μM at 37 °C, respectively, and a resistant fraction of 15 % of activity. The estimated constant of the chemical hydrolysis of PMSF was also calculated (kh = 0.28 min?1). Four esterase components were globally identified considering also previously data with paraoxon and mipafox: EPα (4–8 %), highly sensitive to paraoxon and mipafox, spontaneously reactivates after inhibition with paraoxon, and resistant to PMSF; EPβ (38–41 %), sensitive to paraoxon and PMSF, but practically resistant to mipafox, this esterase component has the kinetic characteristics expected for the PMSF potentiator target, even though paraoxon cannot be a potentiator in vivo due to high AChE inhibition; EPγ (NTE) (39–48 %), paraoxon-resistant and sensitive to the micromolar concentration of mipafox and PMSF; and EPδ (10 %), resistant to all the inhibitors assayed. This kinetic characterization study is needed for further isolation and molecular characterization studies, and these PMSF phenyl valerate esterase components will have to be considered in further studies of OPIDN promotion. A simple test for monitoring the four esterase components is proposed.  相似文献   

10.
Certain sulfonates, like phenylmethanesulfonyl fluoride (PMSF), carbamates, and phosphinates, when given prior to neuropathic doses of organophosphates such as diisopropyl phosphorofluoridate (DFP), protect hens from organophosphate-induced delayed polyneuropathy (OPIDP). Protection was related to inhibition of the putative target of OPIDP, which is called Neuropathy Target Esterase (NTE). NTE inhibition above 70-80% in the nervous system of hens followed by a molecular rearrangement called aging initiates OPIDP. PMSF and other protective chemicals inhibit NTE but OPIDP does not develop because aging cannot occur. DFP (1 mg/kg sc) inhibited NTE above 70-80% in peripheral nerve and caused OPIDP in hens. Lower doses (0.3 and 0.5 mg/kg sc) caused about 40-60% NTE inhibition and no or marginal OPIDP. Chlorpyrifos (90 mg/kg po) also caused OPIDP. When repeated (30 mg/kg sc daily for 9 days) or single (5-120 mg/kg sc) doses of PMSF were given after either DFP or chlorpyrifos, OPIDP developed in birds treated with nonneuropathic doses of DFP and was more severe in birds treated with chlorpyrifos or higher doses of DFP. PMSF increased NTE inhibition to greater than 90%. Promotion of OPIDP with a single dose of PMSF (120 mg/kg sc) was obtained in birds up to 11 days after a marginally neuropathic dose of DFP (0.5 mg/kg sc). Promotion was also obtained with phenyl N-methyl N-benzyl carbamate (40 mg/kg iv) but not with non-NTE inhibitors in vivo such as paraoxon or benzenesulfonyl fluoride when given at maximum tolerated doses. These results indicate that protection from OPIDP is only one effect of PMSF because promotion of OPIDP is also observed depending upon the sequence of dosing. Either effect is always related to the doses of PMSF, which inhibit NTE.  相似文献   

11.
Certain esterase inhibitors such as O-(2-chlo-ro-2,3,3-trifluorocyclobutyl) O-ethyl S-propyl phosphorothioate (KBR-2822) and phenylmethanesulfonyl fluoride (PMSF) cause exacerbation (promotion) of toxic and traumatic axonopathies. Although these chemicals are capable of inhibiting neuropathy target esterase (NTE), which is the target for organophosphate induced delayed neuropathy, the target for promotion is unlikely to be NTE. Experiments were aimed to ascertain if neuropathy is caused by repeated dosing with a promoter not causing NTE inhibition and in the absence of deliberate injury to axons. Hens were treated with KBR-2822 (0.2 or 0.4 mg/kg per day) by gavage for 90 days and observed for clinical signs up to 21–23 days after treatment when histopathological examination was carried out. NTE and acetylcholinesterase (AChE) were measured at intervals and mean percentages of inhibition at steady state of inhibition/resynthesis (on day 20) were as follows: mean inhibition NTE was ≤8% in the 0.2 mg/kg group and between 15 and 18% in the 0.4 mg/kg group in brain, spinal cord and peripheral nerve; mean AChE inhibition in brain was 31 and 57% in the two experimental groups, respectively. Controls treated with paraoxon (not neuropathic or a promoter and given at 0.05 mg/kg per day by gavage) showed 45% mean AChE inhibition and no NTE inhibition. Neither clinical nor morphological signs of neuropathy were observed in any group. To ascertain whether sub-clinical lesions were produced by the repeated treatment with KBR-2822, hens were given KBR-2822 (0.2 mg/kg per day) for 21 days by gavage followed by PMSF (120 mg/kg s.c. 24 h after the last dose of KBR-2822). A control group of hens was treated with the neuropathic DFP (0.03 mg/kg s.c. daily for 21 days causing 40–50% NTE inhibition) followed by PMSF (120 mg/kg s.c.). After PMSF, the KBR-2822 treated hens did not develop neuropathy whereas DFP treated hens did. Lack of neuropathy after repeated treatment with KBR-2822 indicates that a continuous promoting `pressure' on hen axons is harmless in the absence of a concurrent biochemical or neurotoxic injury. Received: 22 May 1997 / Accepted: 16 September 1997  相似文献   

12.
Organophosphorus (OP) compounds used as insecticides and chemical warfare agents are known to cause potent neurotoxic effects in humans and animals. Organophosphorus-induced delayed neuropathy (OPIDN) is currently thought to result from inhibition of neurotoxic esterase (NTE), but the actual molecular and cellular events leading to the development of OPIDN have not been characterized. This investigation examined the effects of OP compounds on the SY5Y human neuroblastoma cells at the cellular level to further characterize cellular targets of OP neurotoxicity. Mipafox and paraoxon were used as OP models that respectively do and do not induce OPIDN. Mipafox (0.05 mM) significantly decreased neurite length in SY5Y cells differentiated with nerve growth factor (NGF) while paraoxon at the same concentration had no effect when evaluated after each of three 4-day developmental windows during which cells were treated daily with OP or vehicle. In contrast, paraoxon but not mipafox altered intracellular calcium ion levels ([Ca(2+)](i)), as seen in three types of experiments. First, immediately following the addition of a single high concentration of OP to the culture, paraoxon caused a transient increase in [Ca(2+)](i), while mipafox up to 2 mM had no effect. Paraoxon hydrolysis products could also increase intracellular Ca(2+) levels, although the pattern of rise was different than it appeared immediately after paraoxon administration. Second, repeated low-level paraoxon treatment (0.05 mM/day for 4 days) decreased basal [Ca(2+)](i) in NGF-differentiated cells, though mipafox had no effect. Third, carbachol, a muscarinic acetylcholine receptor agonist, transiently increased [Ca(2+)](i) in differentiated cells, an affect attenuated by 4-day pretreatment with paraoxon (0.05 mM/day), but not by pretreatment with mipafox. These results indicate that the decrease in neurite extension that resulted from mipafox treatment was not caused by a disruption of Ca(2+) homeostasis. The effects of OPs that cause or do not cause OPIDN were clearly distinguishable, not only by their effects on neurite length, but also by their effects on Ca(2+) homeostasis in differentiated SY5Y cells.  相似文献   

13.
Hens injected in one sciatic artery with diisopropylfluorophosphate (DFP) (0.184 mg/kg) developed monolateral ataxia on the injected side 10-12 days later. The inhibition of neuropathy target esterase (NTE) was 85% in the sciatic nerve of the injected leg and less than 60% in the contralateral sciatic nerve, in spinal cord and in brain. Other hens injected in the wing vein with the same dose of DFP showed low inhibition of NTE in the nervous system and did not develop delayed neuropathy. Hens injected in one sciatic artery with phenylmethanesulphonyl fluoride (PMSF) (1 mg/kg) and 24 hr later with high subcutaneous dose of DFP (1.1 mg/kg) developed monolateral ataxia 10-12 days later on the side not injected with PMSF. The level of NTE inhibition after PMSF was greater than 40% in the sciatic nerve on the injected side compared with less than 20% in other parts of the nervous system. The same dose of PMSF injected in the wing vein produced low NTE inhibition in the nervous system and failed to protect the animals from the same high systemic dose of DFP. We conclude that both toxic and protective effects of NTE inhibitors for delayed neuropathy are better related to the level of NTE inhibition in the peripheral nerve on the site of injection than to NTE inhibition in other parts of the nervous system. Furthermore we suggest that NTE inhibition should also be measured in the peripheral nerve in the standard toxicity testing for organophosphate-induced delayed neurotoxicity.  相似文献   

14.
Organophosphorus (OP) used as pesticides and hydraulic fluids can produce acute poisoning known as OP-induced delayed neuropathy (OPIDN), whose effects take long time to recover. Thus a secure therapeutic strategy to prevent the most serious effects of this poisoning would be welcome. In this study, tri-o-cresyl phosphate (TOCP, 500 mg/kg p.o.) was given to hens, followed or not by nimodipine (1 mg/kg i.m.) and calcium gluconate (Ca-glu 5 mg/kg i.v.). Six hours after TOCP intoxication, neuropathy target esterase (NTE) activity inhibition was observed, peaking after 24 h exceeding 80% inhibition. A fall in the plasmatic calcium levels was noted 12 h after TOCP was given and, in the sciatic nerve, Ca2+ fell 56.4% 24 h later; at the same time calcium activated neutral protease (CANP) activity increased 308.7%, an effect that lasted 14 days. Any bird that received therapeutic treatment after TOCP intoxication presented significant signs of OPIDN. These results suggest that NTE may be implicated in the regulation of calcium entrance into cells being responsible for the maintenance of normal function of calcium channels, and that increasing CANP activity is responsible to triggering OPIDN. Thus, with one suitably adjusted dose of nimodipine as well as Ca-glu, we believe that this treatment strategy may be used in humans with acute poisoning by neuropathic OP.  相似文献   

15.
To examine the efficacy of calcium gluconate (two doses of Ca-Glu 5 mg/kg i.v.) to alleviate the injurious effects of organophosphorus induced delayed neuropathy (OPIDN) in the presence or absence of phenylmethanesulfonyl fluoride (PMSF 90 mg/kg i.m.), 14 groups of four isabrown hens were used. To measure the lymphocyte neuropathy target esterase (LNTE)activity, groups receiving just distilled water (control), groups receiving just Tri-orto-cresyl phosphate (TOCP; 500 mg/kg p.o.) (Positive control), and other groups receiving TOCP and Ca-Glu or PMSF simultaneously or 12 hours later following intoxication by TOCP were used. They were sacrificed 12 and 24 hours after the administration of TOCP. To observe a 28-day time course of neurotoxicity scores and calcium plasma concentration, five groups were used. Regarding free Ca(2+)in the plasma, the positive control produced a characteristic profile time course up and down during 28 days, and some hens with maximum score of neurotoxicity in 28 days. The treatment, which prevented greater oscillation in free Ca(2+) in the plasma, presented a decrease in OPIDN in relation to the positive control. Twelve hours after the administration of TOCP, LNTE was 70-80% inhibited when compared with control, whereas the first decrease in the free Ca(2+) in the plasma was significantly different from the control only 24 hours after the administration of TOCP. In summary, the sooner the Ca-Glu is started, the less severe the neuropathy effects.  相似文献   

16.
Initiation of organophosphorus-induced delayed neuropathy (OPIDN) is thought to consist of two molecular events involving the phosphorylation of the target enzyme, neurotoxic esterase, or neuropathy target enzyme (NTE), and a subsequent “aging” reaction which transforms the inhibited NTE into a charged moiety critical to the neuropathic process. Compounds that inhibit NTE but cannot age because of their chemical structure abort this two-stage initiation process, and when administered before a neurotoxic organophosphorus compound (OP), protect against the neuropathy by blocking NTE's active site (Johnson, 1970). In support of this, we report that prior exposure to a nonaging NTE inhibitor, phenylmethylsulfonyl fluoride (PMSF), protects rats from neurological damage after subsequent exposure to a neurotoxic OP, Mipafox. Adult, male, Long Evans rats were exposed to either PMSF (250 mg/kg, sc) or to Mipafox (15 mg/kg, ip) and a time course of brain NTE inhibition and recovery was defined. A separate group of PMSF-treated rats was exposed to Mipafox when brain NTE inhibition was 87.7 ± 2.3%. Conversely, another group of rats, pretreated with Mipafox, was dosed with PMSF when NTE inhibition was 90.2 ± 0.8%. A third group of animals, treated with PMSF, was exposed to Mipafox 14 days later, when NTE activity had recovered to within 10 ± 4.2% of control amounts. Histopathological survey (14 to 21 days post-exposure) indicated severe cervical cord damage (damage score ≥3) in the follwing frequencies: PMSF, 0%; Mipafox, 85%; PMSF-4 hr-Mipafox, 0%; Mipafox-4 hr-PMSF, 100%; PMSF-14 days-Mipafox, 75%; controls, 0%. These data indicate that PMSF pretreatment protects rats against Mipafox-induced neurological damage and that the timing of administration and order of presentation are critical to this protection. These results support the hypothesis that the initiation of OPIDN is a multistage event involving inhibition and aging, and that these stages are experimentally separable.  相似文献   

17.
Tri-ortho-cresyl phosphate (TOCP) is an organophosphorus ester, which can cause a type of neurotoxicity known as organophosphate-induced delayed neuropathy (OPIDN). Our recent study has shown that the enhanced degradation of neurofilament (NF) in peripheral nerve of hens is an early event of TOCP-induced OPIDN (Song et al., 2009). The main objective of this investigation is to study the effect of TOCP administration on NF content and NF degradation when OPIDN is blocked by pretreatment with phenylmethylsulfonyl fluoride (PMSF). The hens were pretreated 24 h earlier with PMSF and subsequently treated with a single dosage of 750 mg/kg TOCP, then sacrificed on the corresponding time points of 0, 1, 5, 10, and 21 days after dosing TOCP, respectively. The tibial nerves were dissected, homogenized, and centrifuged at 100,000 × g. The level of NF triplet protein in both pellet and supernatant fractions of tibial nerves was determined. Western blotting analysis showed a significant increase of three NF subunits in hens treated with PMSF and TOCP compared with the control. These changes were observed within 24 h of PMSF administration and then followed by an obvious recovery. Furthermore, accompanied with the increase of NF content, a significant decline in NF-L degradation rate was observed in both fractions of tibial nerves. Taken together, these results demonstrated the pretreatment with PMSF could inhibit TOCP-induced NF degradation while it protected hens against the development of OPIDN, which suggested the inhibition of NF-associated protease in peripheral nerves might be an underlying protective mechanism of PMSF against OPIDN.  相似文献   

18.
Although clinical, pathological, and biochemical effects of organophosphorus-induced delayed neuropathy (OPIDN) have been intensively investigated in the adult hen, detailed electrophysiological studies are lacking. Adult white leghorn hens were treated with a single oral dose of either 30 mg/kg tri-2-cresyl phosphate (TOCP), 750 mg/kg TOCP, 4 mg/kg di-n-butyl-2,2-dichlorovinyl phosphate (DBCV), or 30 mg/kg di-n-butyl-2,2-dichlorovinyl phosphinate (DBCV-P). The 750 mg/kg TOCP and DBCV, but not the 30 mg/kg TOCP and DBCV-P, treatments resulted in clinical signs of OPIDN and mild to marked damage of the tibial nerve 21 days after dose. Twenty-four hr lymphocyte neurotoxic esterase (NTE) inhibition was used as an index of brain NTE inhibition for the various organophosphorus compound (OP) treatment. Twenty-four hr lymphocyte NTE inhibition for 30 mg/kg TOCP, 750 mg/kg TOCP, DBCV, and DBCV-P was 54.1, 87.1, 84.8, and 68.3%, respectively. Twenty-one days after dose, the TOCP-treated hens exhibited some abnormalities in conduction velocity and action potential duration in the tibial or sciatic nerves. No abnormalities were observed in action potential parameters of either the DBCV or DBCV-P treatments. Neurotoxic OP (TOCP and DBCV) treatment resulted in decreased refractoriness in the tibial nerve, increased refractoriness in the sciatic nerve, and elevated strength duration threshold for both nerves. These changes were not present in nerves from DBCV-P (a non-neurotoxic NTE inhibitor)-treated hens. These results suggest that refractory period and strength duration abnormalities in peripheral nerve correlate well with the production of OPIDN and are evident without coincident clinical signs or histopathology.  相似文献   

19.
Organophosphorus (OP) compounds have been reported to inhibit Ca/Mg-ATPase, but the relevance of this inhibition to organophosphate-induced delayed neuropathy (OPIDN) has not been explored. To determine if inhibition of this enzyme was related to the development of OPIDN, neuropathic and nonneuropathic OP compounds were sted for their ability to inhibit Ca-stimulated ATPase activity in the P2 synaptosomal fraction from hen brain. Following in vitro exposure to 10(-3) to 10(-5) M OP compounds, Ca-stimulated ATPase activity was inhibited by chlorpyrifos, chlorpyrifos-oxon, phenyl saligenin phosphate (PSP), and tri-o-tolyl phosphate (TOTP), but not by parathion, paraoxon, or diisopropyl fluorophosphate (DFP). Further investigation of inhibition induced by chlorpyrifos determined that inhibition was noncompetitive with respect to calcium and ATP. OP compound hydrophobicity was well correlated with in vitro inhibition of Ca-stimulated ATPase, suggesting that OP compounds interact with membrane lipids, and this interaction may contribute to the noncompetitive inhibition of Ca-stimulated ATPase that was observed. Subsequent to in vivo exposure, DFP, but not PSP, produced inhibition of Ca-stimulated ATPase activity in the hen brain P2 synaptosomal fraction. These data indicate that inhibition of Ca-stimulated ATPase activity is not correlated to neuropathic potential and demonstrate that inhibition of Ca/Mg-ATPase is not responsible for OPIDN.  相似文献   

20.
Neurotoxic esterase (NTE) is a protein which is hypothesized to be the site where certain organophosphorus compounds act to produce delayed-onset neurotoxicity. Adult white Leghorn hens (Gallus domesticus) were injected subcutaneously (0.5 mg/kg and 2.0 mg/kg) with diisopropyl phosphorofluoridate (DFP). Control and DFP-treated hens were killed 24 h after treatment and their brains sectioned into telencephalic, cerebellar, diencephalic, mesencephalic, metencephalic tegmentum, and myelencephalic portions. NTE activity was highest in the telencephalon and cerebellum, and brainstem activity progressively decreased moving caudally with the myelencephalon approaching reported spinal cord levels. Percent inhibition of NTE by DFP (0.5 mg/kg and 2.0 mg/kg) did not differ among brain regions or whole brain. The IC50's for DFP were not significantly different either among brain regions or whole brain. The results suggest that nervous system regions with higher NTE levels are protected from delayed neuropathy by virtue of overabundant NTE activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号