首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental and clinical studies have demonstrated that early postnatal overnutrition represents a risk factor for later obesity and associated metabolic and cardiovascular disturbance. In the present study, we assessed the levels of glucose transporter 4 (GLUT-4), GLUT-1, insulin receptor (IR), IR substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K) and Akt expression, as well as insulin-stimulated glucose transport and Akt activity in adipocytes from adult rats previously raised in small litters (SL). The normal litter (NL) served as control group. We also investigated glycemia, insulinemia, plasma lipid levels, and glucose tolerance. Our data demonstrated that early postnatal overfeeding induced a persistent hyperphagia accompanied by a significant increase in body weight until 90 days of age. The SL group also presented a significant increase ( approximately 42%) in epidydimal fat weight. Blood glucose, plasma insulin, and lipid levels were similar among the animals from the SL and NL groups. While insulin-stimulated glucose uptake was approximately twofold higher in adipocytes from the NL group, no stimulatory effect was observed in the SL group. The impaired insulin-stimulated glucose transport in adipose cells from the SL rats was associated with a significant decrease in GLUT-4, IRS-1 and PI3K expression, and Akt activity. In contrast, IR and Akt expression in adipocytes was not different between the SL and NL groups. Despite these alterations, our results showed no differences in glucose tolerance test in rats raised under different feeding conditions. Our findings reinforce a potent and long-term effect of neonatal overfeeding, which can program major changes in the metabolic regulatory mechanisms.  相似文献   

2.
Summary With the exception of ob/ob mice, circulating plasma leptin is elevated in all other obese rodents as well as in obese humans, suggesting that leptin resistance rather than leptin deficiency is a characteristic feature of obesity. The exact molecular mechanisms leading to leptin resistance and the applicability of exogenous leptin to overcome resistance to the anorectic effect of the hormone, are insufficiently characterized. The aim of this study was to investigate whether chronic leptin administration could prevent the development of obesity and its associated disorders in transgenic mice with toxigene mediated ablation of brown adipose tissue (BAT). Daily injections of leptin were started at the age of 6 weeks, when body weight, food intake and plasma leptin levels of transgenics were not different from control mice. Over the next 6 weeks, leptin treated transgenics showed the same excessive body weight gain as transgenic mice injected with saline. Leptin treatment was furthermore not able to prevent the development of hyperphagia, hyperglycaemia, hyperinsulinaemia and hyperlipidaemia in transgenic mice. In contrast, control mice injected with leptin had significantly lower body weight, food intake and plasma triglycerides than those treated with saline. In summary, leptin treatment was not able to prevent the development of obesity and its associated abnormalities in transgenic mice with BAT deficiency. This data suggests that intact BAT function is of critical importance for leptin's effect on food intake and energy expenditure, and that primary dysfunction of BAT is associated with leptin resistance, even when hyperleptinaemia is not yet present. [Diabetologia (1997) 40: 810–815] Received: 11 November 1996 and in final revised form: 8 April 1997  相似文献   

3.
BACKGROUND: Leptin concentrations are increased during late pregnancy, and leptin receptors are expressed in placental and fetal tissues, suggesting a role for leptin in placental and/or fetal growth, or both. In humans, leptin concentrations in adulthood are inversely related to body weight at birth, independent of adult adiposity, and correlate with fasting insulin. Glucocorticoids and insulin regulate leptin secretion. Excessive exposure to glucocorticoids during late fetal development in the rat causes intrauterine growth retardation (IUGR), together with hypertension and hyperinsulinaemia in adulthood. Leptin may have a role in the development of some forms of hypertension. OBJECTIVE: To determine whether IUGR induced by maternal glucocorticoid treatment during the last third of pregnancy in the rat is associated with modulation of either maternal or fetal leptin concentrations, the placental expression of leptin or the short form of the leptin receptor (ObR-S), or combinations thereof, and to evaluate whether hypertension or hyperinsulinaemia in the early-growth-retarded adult progeny of dexamethasone-treated dams is associated with altered leptin concentrations. DESIGN AND METHODS: Dexamethasone was administered to pregnant rats from day 15 to day 21 of gestation via a chronically implanted subcutaneous osmotic minipump. Protein expression of leptin and ObR-S in the placenta at day 21 of pregnancy was measured by western blotting. Plasma leptin and insulin concentrations were determined by radioimmunoassay and ELISA respectively. Systolic hypertension was measured by tail cuff plethysmography. RESULTS: Dexamethasone administration during the last third of pregnancy decreased placental mass and fetal body weight at day 21 of gestation, caused maternal hyperleptinaemia but fetal hypoleptinaemia, and suppressed placental leptin protein expression whilst up-regulating placental protein expression of ObR-S. The male and female offspring of dexamethasone-treated dams were hypertensive from 12 weeks of age. One-year-old offspring of dexamethasone-treated dams exhibited significant hyperleptinaemia compared with age-matched controls, an effect associated with hyperinsulinaemia in the male, but not female, offspring. CONCLUSIONS: The rat model of maternal dexamethasone treatment is established as a paradigm of 'programmed' hypertension in man. Our data show modification of placental leptin and leptin receptor protein expression by dexamethasone treatment during the last third of pregnancy. We also show that leptin concentrations are suppressed during fetal life but increased in adulthood in this rat model of programmed hypertension. Our data do not necessarily establish a causal relationship between fetal hypoleptinaemia and impaired fetal growth during early life, or between hyperleptinaemia and hypertension in adulthood. Nevertheless, they suggest that hyperleptinaemia may be a component of the cluster of metabolic abnormalities seen in the insulin resistance syndrome in man. They also suggest that excessive fetal exposure to glucocorticoids could be a common early-life stimulus to the association between hyperinsulinaemia, hypertension and hyperleptinaemia often seen in individuals of low birthweight.  相似文献   

4.
Early life nutrition is important in the regulation of metabolism in adulthood. We studied the effects of different fatty acid composition diets on adiposity measures, glucose tolerance, and peripheral glucocorticoid (GC) metabolism in overfed neonatal rats. Rat litters were adjusted to a litter size of three (small litters (SLs)) or ten (normal litters (NLs)) on postnatal day 3 to induce overfeeding or normal feeding respectively. After weaning, SL and NL rats were fed a ω6 polyunsaturated fatty acid (PUFA) diet (14% calories as fat, soybean oil) or high-saturated fatty acid (high-fat; 31% calories as fat, lard) diet until postnatal week 16 respectively. SL rats were also divided into the third group fed a ω3 PUFA diet (14% calories as fat, fish oil). A high-fat diet induced earlier and/or more pronounced weight gain, hyperphagia, glucose intolerance, and hyperlipidemia in SL rats compared with NL rats. In addition, a high-fat diet increased 11β-hsd1 (Hsd11b1) mRNA expression and activity in the retroperitoneal adipose tissue of both litter groups compared with standard chow counterparts, whereas high-fat feeding increased hepatic 11β-hsd1 mRNA expression and activity only in SL rats. SL and a high-fat diet exhibited significant interactions in both retroperitoneal adipose tissue and hepatic 11β-HSD1 activity. Dietary ω3 PUFA offered protection against glucose intolerance and elevated GC exposure in the retroperitoneal adipose tissue and liver of SL rats. Taken together, the results suggest that dietary fatty acid composition in the post-sucking period may interact with neonatal feeding and codetermine metabolic alterations in adulthood.  相似文献   

5.
The aims of our study were to investigate effects of postnatal overnutrition, obtained by restricting the number of pups per litter, on microcirculatory reactivity, fat depots, its total percentage and lipid profile. Microvascular reactivity was evaluated in the cremaster muscle of 24 hamsters divided into four groups, with 6 animals in each one: normal (NL) and restricted (RL) litter groups, both at 6th and 21st weeks of age. The NL group had 8-9 pups and the RL 3 pups per litter and to avoid the litter effect, only one animal was used per litter. The results have shown that the RL group had higher velocity of weight, body mass and fat gain compared to the NL one at weeks 6 and 21. Significant differences were also observed on urogenital fat depot, total cholesterol and low density lipoprotein between groups. At the lowest concentration of Ach, the RL group showed smaller arteriolar dilatation at the 21st than at the 6th week [5(3-13) vs 19(8-40)%, p<0.01] while the NL one did not show any difference within the group. The highest concentration of Ach at the 21th week pointed to endothelial-dependent microvascular dysfunction in RL compared to NL [3(8-26) vs. 13(8-26)%, p<0.05]. Endothelial-independent microvascular reactivity was similar between groups. Our data suggest that postnatal overnutrition is associated to muscle endothelial-dependent microvascular dysfunction, greater body mass and total percentage of fat and impaired the lipid profile. In conclusion, the imprinting promoted by this experimental model of obesity was able to influence microvascular reactivity later in life.  相似文献   

6.
7.
A growing body of evidence suggests that maternal undernutrition sensitizes the offspring to the development of energy balance metabolic disorders such as type 2 diabetes, dyslipidemia, and obesity. The present study aimed at examining the impact of maternal undernutrition on leptin plasma levels in newborn male rats and on the arcuate nucleus proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons that are major leptin targets. Using a model of perinatal maternal 50% food-restricted diet (FR50) in the rat, we evaluated leptin plasma levels and hypothalamic POMC and NPY gene expression from postnatal day (PND) 4 to PND30 in both control and FR50 offspring. In control rats, a postnatal peak of plasma leptin was observed between PND4 and PND14 that reached a maximal value at PND10 (5.17 +/- 0.53 ng/ml), whereas it was dramatically reduced in FR50 pups with the higher concentration at PND7 (0.93 +/- 0.23 ng/ml). In FR50 animals, using semiquantitative RT-PCR and in situ hybridization, we showed that the hypothalamic POMC mRNA level was decreased from PND14 until PND30, whereas NPY gene expression was not significantly modified. In PND21 FR50 animals, we observed strikingly reduced immunoreactive beta-endorphin nerve fibers projecting to the hypothalamic paraventricular nucleus without affecting NPY projections. Our data showed that maternal undernutrition drastically reduces the postnatal surge of plasma leptin, disturbing particularly the hypothalamic wiring as well as the gene expression of the anorexigenic POMC neurons in male rat pups. These alterations might contribute to the adult metabolic disorders resulting from perinatal growth retardation.  相似文献   

8.
OBJECTIVE: Adult survivors of childhood acute lymphoblastic leukaemia (ALL) often exhibit GH deficiency (GHD), due to prophylactic cranial radiotherapy (CRT). It is not known whether the observed risk for adiposity in these patients is associated with impaired insulin sensitivity and whether the insulin sensitivity is affected by GH replacement therapy. SUBJECTS AND DESIGN: Eleven patients with GHD (median age 29 years), previously given prophylactic CRT for ALL, and 11 sex-, age- and body mass index (BMI)-matched controls were investigated with bioimpedance analysis (BIA) and analysis of serum leptin, serum free fatty acids (FFA) and serum insulin. Insulin sensitivity was measured by a euglycaemic-hyperinsulinaemic clamp technique (IS-clamp). Moreover, the effects of 12 months of individually titrated GH treatment (median dose 0.5 mg/day) on these parameters were investigated. RESULTS: At baseline, the patients had lower fat free mass (FFM) (P = 0.003), higher percentage fat mass (FM) (P = 0.05), serum insulin (P = 0.02) and serum leptin/kg FM (P = 0.01) than controls. The patients had a tendency towards impaired IS-clamp (P = 0.06), which disappeared after correction for body composition (IS-clamp/kg FFM; P > 0.5). In the patients, time since CRT was positively correlated with percentage FM (r = 0.70, P = 0.02), and there was an independent negative association between serum FFA and IS-clamp (P = 0.05). Twelve months of GH treatment increased serum IGF-I (P = 0.003) and FFM (P = 0.02) and decreased percentage FM (P = 0.03), but no significant changes were seen in serum leptin/kg FM, serum FFA, FFA-clamp, serum insulin or IS-clamp (all, P > or = 0.2). CONCLUSIONS: Young adult survivors of childhood ALL with GHD had increased fat mass, hyperleptinaemia and impaired insulin sensitivity, which could be a consequence of radiation-induced impairment of GH secretion or mediated by other hypothalamic dysfunctions, such as leptin resistance or other unknown factors, affected by CRT. Twelve months of individualized GH replacement therapy led to positive effects on body composition, but the hyperleptinaemia, hyperinsulinaemia and the impaired insulin sensitivity remained unchanged.  相似文献   

9.
OBJECTIVE: To study the relationship of leptin concentrations with indices of obesity, fasting insulin, insulin resistance and lipid profiles (total cholesterol, low density lipoprotein (LDL)-cholesterol, high density lipoprotein (HDL)- cholesterol and triglyceride) in an Asian cohort. DESIGN: Cross sectional study. SUBJECTS: A total of 133 healthy volunteers were enrolled (64 female: age: 25-61 y, body mass index (BMI): 18.7-45.1 kg/m2 and 69 male: age: 25-61 y, BMI: 19.3-35.0 kg/m2). MEASUREMENTS: Weight, height, waist and hip circumferences, blood pressure, lean body mass (by bioelectric impedence analysis (BIA)), plasma leptin and lipid profiles were taken after a 10 h fast. RESULTS: Percentage of body fat measured by bioelectric impedance was the strongest determinant of plasma leptin (r = 0.844, P < 0.0001). Females had higher leptin concentrations than males for the same fat mass. In a multiple linear regression model, body fat percentage, (percentage body fat* gender), hip circumference and fasting insulin were significant determinants of leptin concentration (r = 0.882, P < 0.0001). CONCLUSION: Leptin concentration correlated closely with percentage body fat in Asian subjects. Hip circumference as a corollary for peripheral obesity, was better associated with leptin than waist circumference or waist-to-hip ratio (WHR). Distribution of fat in females tended to be peripheral and may partly explain the gender difference. Fasting insulin level and central obesity were correlated with HDL-cholesterol, triglyceride and blood pressure, while fasting leptin had little correlation with these metabolic parameters. Therefore, insulin resistance was a better guide to cardiovascular risk assessment than plasma leptin.  相似文献   

10.
11.
Kiss1 neurons have recently emerged as a putative conduit for the metabolic gating of reproduction, with leptin being a regulator of hypothalamic Kiss1 expression. Early perturbations of the nutritional status are known to predispose to different metabolic disorders later in life and to alter the timing of puberty; however, the potential underlying mechanisms remain poorly defined. Here we report how changes in the pattern of postnatal feeding affect the onset of puberty and evaluate key hormonal and neuropeptide [Kiss1/kisspeptin (Kp)] alterations linked to these early nutritional manipulations. Female rats were raised in litters of different sizes: small (four pups per dam: overfeeding), normal (12 pups per dam), and large litters (20 pups per litter: underfeeding). Postnatal overfeeding resulted in persistently increased body weight and earlier age of vaginal opening, as an external sign of puberty, together with higher levels of leptin and hypothalamic Kiss1 mRNA. Conversely, postnatal underfeeding caused a persistent reduction in body weight, lower ovarian and uterus weights, and delayed vaginal opening, changes that were paralleled by a decrease in leptin and Kiss1 mRNA levels. Kisspeptin-52 immunoreactivity (Kp-IR) in the hypothalamus displayed similar patterns, with lower numbers of Kp-IR neurons in the arcuate nucleus of postnatally underfed animals, and a trend for increased Kp-positive fibers in the periventricular area of early overfed rats. Yet, gonadotropin responses to Kp at puberty were similar in all groups, except for enhanced responsiveness to low doses of Kp-10 in postnatally underfed rats. In conclusion, our data document that the timing of puberty is sensitive to both overfeeding and subnutrition during early (postnatal) periods and suggest that alterations in hypothalamic expression of Kiss1/kisspeptin may underlie at least part of such programming phenomenon.  相似文献   

12.
The present study was carried to develop and analyze the consequences of hypercaloric pellet-diet cycle that promotes obesity in rats. Male Wistar rats were randomly distributed into two groups that received either normal diet (ND; n =32; 3,5 Kcal/g) or a hypercaloric diet (HD; n =32; 4,6 Kcal/g). The ND group received commercial Labina rat feeding while the HD animals received a cycle of five hypercaloric diets over a 14-week period. The effects of the diets were analyzed in terms of body weight, body composition, hormone-metabolite levels, systolic arterial pressure and glucose tolerance at the 5% significance level. The hypercaloric pellet diet cycle promoted an increase in body weight and fat, systolic arterial pressure and a high serum level of glucose, triacylglycerol, insulin and leptin. The HD group also presented an impaired glucose tolerance. In conclusion, the results of this study show that the hypercaloric pellet-diet cycle promoted obesity in Wistar rats and displayed several characteristics that are commonly associated with human obesity, such as high arterial pressure, insulin resistance, hyperglycaemia, hyperinsulinaemia, hyperleptinaemia and dyslipidaemia.  相似文献   

13.
目的探索ω3-长链多不饱和脂肪酸(ω3-PUFA)膳食干预对早期过度营养大鼠成年期白色脂肪组织线粒体功能的影响和机制。方法应用小窝鼠模型,形成营养过度组(SL组,3只/窝)或正常营养组(NL组,10只/窝),断奶后给予正常饮食或ω3-PUFA饮食(SL-FO组),喂养至13周。定期测量大鼠摄食量、体重和直肠温度,13周进行动物能量代谢监测;分别于3周、13周处死,收集皮下脂肪组织。分离小鼠腹股沟皮下前脂肪细胞诱导分化,并在分化晚期给予50μmol/L二十碳五烯酸(EPA)干预48 h。检测脂肪组织和脂肪细胞线粒体相关基因的mRNA和蛋白表达水平,以及线粒体拷贝数和细胞耗氧率。结果3周时,SL组大鼠体重、摄食量、脂肪细胞面积均大于NL组,体温低于NL组并持续到13周;13周时,SL组大鼠耗氧量、CO2产出量、产热量均低于NL组;同时3周和13周脂肪组织的线粒体功能相关基因解耦联蛋白1(UCP1)、肉毒碱棕榈酰转移酶1(CPT1)、沉默信息调节蛋白1(SIRT1)及线粒体生物合成调控基因过氧化物酶体增殖物激活受体γ共激活因子1α(PGC1α)表达均显著降低(P<0.05)。断乳后ω3-PUFA膳食能减低SL大鼠体重增加,提高白色脂肪UCP1蛋白表达,恢复能量代谢水平和线粒体功能相关基因表达。体外EPA干预,脂肪细胞线粒体拷贝数增加,线粒体生物合成和功能相关基因mRNA和蛋白表达水平提高,线粒体基础耗氧率和质子漏增加(P<0.05)。结论ω3-PUFA能改善因早期过度营养而降低的大鼠皮下白色脂肪线粒体功能和生物合成,可能是鱼油膳食阻止早期过度营养程序化,恢复产热代谢的重要机制。  相似文献   

14.

Objective

Obesity and osteoporosis seem to have a common pathogenesis, especially because bone and adipose tissue have common origins. Since early weaning (EW) decreases adipogenesis and osteogenesis in neonate, further programming for obesity and hyperleptinemia, we hypothesized that these changes in adipogenesis could affect bone metabolism.

Materials/Methods

Lactating rats were separated into 3 groups: control — dams whose pups ate milk throughout lactation; mechanical EW (MEW) — dams were involved with a bandage interrupting suckling in the last 3 days of lactation; pharmacological EW (PEW) — dams were bromocriptine-treated (0.5 mg/twice a day via intraperitoneal injection) 3 days before weaning. The adult offspring was subjected to dual-energy X-ray absorptiometry and bone tissue was also evaluated by computed tomography, microcomputed tomography and biomechanical tests, beyond serum analyses.

Results

MEW and PEW presented higher total bone mineral density (BMD), total bone mineral content, spine BMD and bone area in postnatal day 150 (PN150). In PN180, both groups also presented increase of these parameters and higher femur BMD and fourth lumbar vertebra (LV4) BMD, femoral head radiodensity and LV4 vertebral body radiodensity, trabecular number, stiffness and break load; lower trabecular separation, maximal deformation and break deformation, and also hyperleptinemia and higher visceral fat mass and 25-hydroxivitamin D, whereas parathyroid hormone was unchanged. Serum C-terminal cross-linked telopeptide of type I collagen was lower for both groups.

Conclusions

Since both models program for obesity and increased bone mass, and leptin increases plasma vitamin D levels, probably leptin is the link between obesity and higher bone mass.  相似文献   

15.
Lactation in the rat is characterized by the suppression of pulsatile LH secretion, a large increase in food intake, and changes in energy balance due to the metabolic drain of milk production. The change in energy balance may be a major component in altering reproductive function. A number of factors may contribute to changing energy balance of a lactating animal; one is leptin, the product of adipose tissue, which is known to act partly as a satiety factor to decrease food intake. The aims of the present study were to determine whether there are changes in leptin levels during lactation, a state of high energy demand, and during periods of acute suckling in the presence or absence of changes in energy demand. Our goals were to determine whether lactation and the suckling stimulus influenced serum leptin levels and whether there was a potential role for leptin in the suppression of LH secretion during lactation. The first experiment was performed during diestrus of the estrous cycle, and chronic lactation, (day 9 post partum) in animals suckling 8 pups. The results showed that leptin levels were significantly decreased in both ovarian intact or ovariectomized lactators; this decrease parallels the suppression of pulsatile LH secretion. Serum insulin levels were not altered in the lactating animals. The second experiment was performed in ovariectomized lactators whose 8 pup litters were removed for 48 h, starting on day 9. On day 11, mothers received no pups or pups that were either nonfostered (resulting in no milk production) or fostered (resulting in milk production). The pups were allowed to suckle for 24 h. Following 24 h of acute suckling, serum leptin, and insulin levels correlated with the energy drain on the mother. The levels of leptin were normal and of insulin were elevated in mothers producing no milk. Conversely, leptin levels were suppressed and insulin levels normal in mothers producing milk. The third experiment used the same groups as described for the second experiment except that serial blood samples were collected for measurement of pulsatile LH secretion following 24 h of acute suckling. The results showed that regardless of whether leptin levels remained normal or were suppressed in response to acute suckling, pulsatile LH secretion was significantly inhibited compared with the nonsuckled control animals. In summary, these data suggest that the metabolic drain of milk production, and not the suckling stimulus itself, is the most likely factor responsible for the suppression of leptin secretion during lactation. Furthermore, although the decreased levels of leptin may be causally related to the inhibition of pulsatile LH secretion during chronic lactation, changes in leptin are not a prerequisite for the suppression of LH secretion in response to suckling.  相似文献   

16.
S ummary Plasma erythropoietin (erythropoiesis stimulating factor(s), ESF), PCV and body weight were measured in normal mice from birth until the age of 70 d. Low but detectable ESF activity was present at birth, followed by undetectable levels 12–48 h after birth. Thereafter the ESF level rapidly increased. Peak levels were obtained 15–20 d after birth. During the same phase an increased growth velocity occurred, coincident with decreased PCV levels. A fall to undetectable levels in plasma ESF activity coincided with decelleration of growth 40–50 d after birth. In small litters (four pups per litter) growth velocity and PCV levels were significantly higher than in large litters (16 pups per litter) 8 and 15 d after birth. The plasma ESF activity, however, did not differ between the two groups. Prohibiting suckling for a period of 16 h did not change the plasma ESF level. The hypothesis is put forward that growth directly or indirectly stimulates ESF production.  相似文献   

17.
We have previously reported the expression of leptin mRNA and protein in adult rat brain and pituitary gland. We report here the presence of leptin and leptin receptor mRNA in neonatal female rat brain and pituitary using RT-PCR as well as leptin and leptin receptor immunoreactivity in neonatal rat brain. In addition, we describe age-related changes in leptin mRNA expression in female rat brain and pituitary from postnatal day 2 to 28, evaluated using semi-quantitative RT-PCR analysis. Age-related differences in leptin (ob) mRNA levels were tissue-dependent. The most striking developmental changes were noted in the pituitary and cerebral cortex. In the pituitary, ob mRNA levels were maximal during postnatal days 7-14 and fell sharply by postnatal day 22. In cortex, ob mRNA levels were low in neonatal pups (day 2-7) but increased significantly between postnatal days 14 and 28. Leptin mRNA was detectable at postnatal day 2 in hypothalamus and subcutaneous fat. No significant differences in the level of expression were observed between postnatal day 2 and 28. Serum leptin levels were highest at day 7-14 and decreased significantly by day 21-28, coincident with the fall in pituitary leptin expression. The high levels of leptin expression in the neonatal pituitary suggest that this gland may contribute to the circulating leptin levels during early postnatal development, when adipose deposits are minimal. These data indicate that regulation of leptin gene expression in the postnatal period is tissue-dependent, a finding, which suggests that local leptin expression may have important functional significance in the development of the brain-pituitary system.  相似文献   

18.
Brennan  Rahim  Blum  Adams  Eden  & Shalet 《Clinical endocrinology》1999,50(2):163-169
OBJECTIVE: In order to explore the mechanism of obesity in long-term survivors of childhood leukaemia, fat mass, lean body mass and serum leptin were assessed in a cohort of 32 (17 males) adults who had received cranial irradiation (XRT) in childhood as part of their treatment for acute lymphobiastic leukaemia (ALL), and compared with 35 age and body mass index (BMI) matched young adults (18 male). DESIGN: Thirty-one patients and 18 controls had fat mass and lean body mass assessed by dual x-ray absorptiometry (DEXA), using a lunar DPX-L scanner. Serum leptin concentrations were also measured in 27 patients and all controls. Growth hormone status had previously been determined using an insulin tolerance test and arginine stimulation test. Nine patients were classified as severe growth hormone (GH) deficient (group 1), 12 patients as GH insufficient (group 2) and 11 patients as normal (group 3). RESULTS: BMI and absolute fat mass were not significantly different between the patients and controls regardless of their gender (P = 0.1 and P = 0.14 respectively). In contrast, absolute lean mass was significantly reduced (P < 0.01) and leptin concentrations were significantly increased (P < 0.001) in patients compared with controls. BMI, fat mass and leptin concentrations but not lean mass were significantly different between the three GH status groups (P < 0.01, P < 0.01, P = 0.004, and P = 0.67 respectively). When leptin concentrations were expressed per unit of fat mass, they were increased in the patients compared with the controls (P = 0.03) with significant differences between the GH status groups (P = 0.004), being significantly higher in the severe GH deficient group. CONCLUSIONS: Young adults who receive cranial irradiation in childhood are prone to GH deficiency and hyperleptinaemia. The pathophysiological significance of the hyperleptinaemia remains to be established but it has occurred either as a consequence of radiation induced hypothalamic damage or GH deficiency.  相似文献   

19.
Inactivation of the GR in the nervous system affects energy accumulation   总被引:3,自引:0,他引:3  
The homeostatic regulation of body weight protects the organism from the negative consequences of starvation and obesity. Glucocorticoids (GCs) modulate this regulation, although the underlying mechanisms remain unclear. To address the role of central GRs in the regulation of energy balance, we studied mice in which GRs have selectively been inactivated in the nervous system. Mutant mice display marked growth retardation. During suckling age this is associated with normal fat deposition causing a 60% temporary increase of percent body fat, compared with control littermates. After weaning, fat and protein depositions are reduced so that adults are both smaller and leaner than their controls. Decreased food intake and, after weaning, reduced metabolic efficiency account for these developmental disturbances. Plasma levels of leptin and insulin, two important energy balance regulators, are elevated in young mutants but normal in adults. Leptin/body fat ratio is higher at all ages, suggesting disturbed control of circulating leptin as a consequence of chronically elevated GC levels in mutant animals. Adult mutants display increased hypothalamic CRH and NPY levels, but peptide levels of melanin concentrating hormone and Orexin A and B are unchanged. The increased levels of plasma GCs and hypothalamic CRH may act as catabolic signals most likely leading to persistently reduced energy accumulation.  相似文献   

20.
The purpose of these studies was to determine the effect of suckling on the plasma oxytocin (OT) concentration profile in conscious primiparous rats during midlactation. Comparisons were made with plasma prolactin (PRL) levels obtained in the same rats. OT levels in the majority of rats exhibited a single peak during the first 5-30 min, then fell rapidly during the course of a 45-min period of suckling. The plasma OT levels were sustained over a longer period in mothers suckling 8 rather than 6 pups; the amplitudes of the OT response were similar, however. By contrast, plasma PRL profiles indicated that a steady secretion of the hormone occurred throughout the suckling period, with suckling of 8 pups resulting in significantly higher plasma levels than suckling of 6 pups. A considerably greater increase in the peak plasma OT concentration resulted when hungry foster litters of 6 pups were suckled after the mothers' own 6 pups had been suckled. Plasma PRL levels during the two sucklings, though, were similar. The rapid onset of the OT response to suckling was seen more clearly in urethane-anesthetized rats following mammary nerve stimulation. Plasma OT levels rose to a peak within 5 s after the onset, then fell to prestimulus levels by the end of the 65-second stimulation period. These results suggest that different regulating mechanisms are involved in the secretory responses of OT and PRL to suckling and that different thresholds of activation are likely to exist for the two hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号