共查询到20条相似文献,搜索用时 15 毫秒
1.
Dehghani F Hischebeth GT Wirjatijasa F Kohl A Korf HW Hailer NP 《The European journal of neuroscience》2003,18(5):1061-1072
In this study we investigated whether treatment with the immunosuppressant mycophenolate mofetil (MMF) has beneficial effects on neuronal damage after excitotoxic injury. Organotypic hippocampal slice culture (OHSC), lesioned by the application of N-methyl-d-aspartate (NMDA) after 6 days in vitro, showed an improved preservation of the hippocampal cytoarchitecture after continuous treatment with MMF for 3 further days (10 or 100 micro g/mL). Treatment with NMDA and MMF (100 microg/mL) reduced the number of damaged propidium iodide (PI)+ neurons by 50.7% and the number of microglial cells by 52%. Continuous treatment of lesioned OHSCs with MMF for 3 days almost abrogated the glial proliferative response, reflected by the 91.5% reduction in the number of bromo-desoxy-uridine (BrdU)-labelled microglial cells and astrocytes. Microglial cells in MMF-treated OHSCs contained fragmented nuclei, indicating apoptotic cell death, an effect which was also found in isolated microglial cells treated with MMF. The beneficial effect of MMF on neuronal survival apparently does not reflect a direct antiexcitotoxic effect, as short-term treatment of OHSCs with NMDA and MMF for 4 h did not reduce the number of PI+ neurons. In conclusion, MMF inhibits proliferation and activation of microglia and astrocytes and protects neurons after excitotoxic injury. 相似文献
2.
Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures 总被引:4,自引:0,他引:4
Xu GP Dave KR Vivero R Schmidt-Kastner R Sick TJ Pérez-Pinzón MA 《Brain research》2002,952(2):153-158
The main goals of the current study were to assess: (a) whether a sublethal ischemic insult could protect the CA1 subregion of the hippocampus in organotypic slices against a lethal ischemic insult; and (b) whether this protection is long lasting as determined with an accurate immunohistochemical neuronal marker, NeuN. Hippocampal slice cultures were grown for 12-14 days in vitro. Slices were exposed either to oxygen/glucose deprivation (OGD) for 45 min (ischemia), or OGD for 15 min (ischemic preconditioning), 48 h prior to 45 min OGD, or were untreated (sham). Cell death was estimated by propidium iodide fluorescence 1 day after OGD and by NeuN immunohistochemistry 7 days after OGD. Image analysis was employed to measure the relative optical density of the NeuN-signal in all groups. After ischemia, damaged neurons were shrunken or lost and NeuN immunoreactivity was reduced. Relative optical density of NeuN (ROD [NeuN]) was 0.193+/-0.015 in control (sham) (n=9). In slices that underwent ischemia, ROD [NeuN] declined to 0.108+/-0.018 (n=5) in CA1 (*P<0.05 ROD [NeuN] in preconditioned slice cultures was 0.190+/-0.037 (76% higher than the ischemia group). Similar results were found after measuring PI fluorescence. In the CA1 sub-region, PI fluorescence was about 13, 47 and 17% in the sham, ischemic and IPC groups, respectively. We suggest that the immunohistochemical approach validates the dye uptake method used in slice cultures and yields quantitative data specific for neurons. We also conclude that the organotypic hippocampal slice model is useful for studying delayed ischemic preconditioning that is maintained for hours or days after the preconditioning event. 相似文献
3.
4.
Hoffmann U Pomper J Graulich J Zeller M Schuchmann S Gabriel S Maier RF Heinemann U 《Brain research》2006,1069(1):207-215
In neonates, asphyxia is usually followed by hyperoxic treatment. In order to study whether hyperoxic reoxygenation might cause additional impairment of neuronal function, we subjected organotypic hippocampal slice cultures of juvenile rats (7 DIV, P6-8) to 30 min anoxia followed by 60 min hyperoxic or normoxic reoxygenation (95% or 19% O2, respectively). Spontaneous and evoked field potentials as well as [Ca2+]o were recorded in the pyramidal layer of area CA1 or area CA3. In area CA1, 30 min of anoxia led to decline of evoked field potential amplitudes by on average 67% and to profound changes in field potential characteristics and Ca2+ homeostasis which were not related to outcome after reoxygenation. Hyperoxic reoxygenation resulted first in a fast recovery of the field potential amplitude to 82% of the control value and then, in 75% of slice cultures, in a large negative field potential shift accompanied by a prolonged decrease of [Ca2+]o and loss of excitability outlasting the experiment. Recovery of field potential amplitude under normoxic conditions stayed poor, with a first increase to 51% and a second decrease to 22%. In contrast, field potential amplitude in area CA3 recovered to 80% of the initial amplitude, irrespective of the reoxygenation mode. The selective loss of function during hyperoxic reoxygenation in area CA1 might be a first sign of neuronal injury that we observed 1 h after end of hyperoxic reoxygenation in a previous study. Whether the poor outcome after normoxic reoxygenation would favour long-term recovery remains to be determined. 相似文献
5.
Stroke produces neuronal death by two general processes which differ in their temporal course. Acute neuronal death occurs within minutes, while delayed neuronal death evolves within 24 h. To better examine mechanisms of delayed death, we developed a new in vitro model of delayed neuronal injury using extended electrophysiological recordings in paired hippocampal slices. We exposed one hippocampal slice of each pair to 10 μMN-methyl-d-aspartate (NMDA) until the orthodromic CA1 PS disappeared. Thereafter, NMDA-treated slices regained near full recovery of PS amplitude within one hour. However, 10 h later, NMDA-treated slices demonstrated a rapid decline in PS amplitude of 82% ± 15. CA1 orthodromic evoked PS was lost completely at an average 12.4 ± 1.6 h after NMDA exposure. This sudden loss of response contrasted with paired, untreated slices, where CA1 PS could be elicited for 22.6 ± 4.0 h (P < 0.05). Treatment with 10 mM MgCl2 begun after NMDA exposure and continued for 35 min, prevented delayed loss of CA1 orthodromic PS, which then could be elicited for 20.3 ± 2.1 h. These results indicate that delayed injury can be evaluated using the hippocampal slice. They also suggest that activation of NMDA receptors can induce delayed neuronal injury in CA1 neurons, and that magnesium treatment after NMDA can prevent this injury. 相似文献
6.
Frank L. Heppner Thomas Skutella Nils P. Hailer Dorit Haas Robert Nitsch 《The European journal of neuroscience》1998,10(10):3284-3290
The aim of this study was to analyse microglial reactions to excitotoxic N ‐methyl‐ d ‐aspartic acid (NMDA)‐induced degeneration of rat dentate and hippocampal neurons in vitro . We used a migration model combining the techniques of microglial single cell culture and organotypic hippocampal slice culture (OHSC). Site‐specific oxidative damage in OHSCs was induced by pretreatment with 50 μ m NMDA. Neuronal injury determined by propidium iodide (PI) uptake included the hippocampal cell layers of the dentate gyrus (DG) and the cornu ammonis (CA). Fluorescence‐prelabelled microglial cells with ameboid morphology were transferred onto the OHSC and migrated predominantly to the prelesioned cell layers of DG and CA when compared with unlesioned areas of the OHSC. In NMDA pretreated slices, microglial cells clustered around degenerating granule cells in the DG and pyramidal cells in the CA. This effect was significantly inhibited in unlesioned slice cultures and in NMDA‐exposed cultures that were pretreated with the NMDA‐antagonist MK‐801. Our observations suggest that microglia – attracted by the presence of stimuli provided by NMDA‐induced neuronal death – migrate specifically towards these lesioned neurons. 相似文献
7.
Neurogenesis in hippocampal slice cultures 总被引:8,自引:0,他引:8
Raineteau O Rietschin L Gradwohl G Guillemot F Gähwiler BH 《Molecular and cellular neurosciences》2004,26(2):241-250
8.
Upon perfusion with Mg2+-free artificial cerebrospinal fluid (ACSF) organotypic hippocampal slice cultures develop seizure-like events and tonic recurrent discharges in which areas CA3 and CA1 and, in contrast to acute slices, also the dentate gyrus (DG) participate. Using the fluorescent dye propidium iodide (PI) we show that sustained epileptic activity causes cell death in the DG and pyramidal cell layer particularly evident in the granule cell layer of the DG. This correlates with the decrease of the electrophysiological responses to hilar stimulation. Interestingly, perfusion with carbogenated serum-free ACSF also induces some cell death which is, however, mild compared with low magnesium treated slice cultures. 相似文献
9.
Kenneth H. Reid Avital Schurr Michael T. Tseng Harvey L. Edmonds Jr. 《Brain research》1984,302(2):387-391
Unilateral microinjection of GABA agonists into the pedunculopontine nucleus (PPN) of the rat resulted in contraversive postural asymmetry and circling behavior; GABA antagonists caused ipsiversive asymmetry and circling when applied to the PPN. A hemitransection was placed immediately caudal to substantia nigra (SN) and rostral to PPN in order to interrupt all connections between the PPN and ipsilateral forebrain nuclei. After hemitransection, microinjection of GABAergic drugs into the PPN on the hemitransected side produced postural asymmetry and circling identical to that observed in intact rats. The hemitransection resulted in a loss of glutamic acid decarboxylase activity in PPN (25%) not substantially greater than that observed in animals with unilateral destruction of SN, indicating that a major proportion of GABA terminals in PPN are derived from hindbrain sources. It appears that forebrain (that is, nigrotegmental) GABAergic projections are not essential for the GABA-mediated asymmetry elicited from PPN. 相似文献
10.
The effects of interleukin (IL)-1beta and IL-1 receptor antagonist (IL-1ra) on neurons and microglial cells were investigated in organotypic hippocampal slice cultures (OHSCs). OHSCs obtained from rats were excitotoxically lesioned after 6 days in vitro by application of N-methyl-D-aspartate (NMDA) and treated with IL-1beta (6 ng/mL) or IL-1ra (40, 100 or 500 ng/mL) for up to 10 days. OHSCs were then analysed by bright field microscopy after hematoxylin staining and confocal laser scanning microscopy after labeling of damaged neurons with propidium iodide (PI) and fluorescent staining of microglial cells. The specificity of PI labeling of damaged neurons was validated by triple staining with neuronal and glial markers and it was observed that PI accumulated in damaged neurons only but not in microglial cells or astrocytes. Treatment of unlesioned OHSCs with IL-1beta did not induce neuronal damage but caused an increase in the number of microglial cells. NMDA lesioning alone resulted in a massive increase in the number of microglial cells and degenerating neurons. Treatment of NMDA-lesioned OHSCs with IL-1beta exacerbated neuronal cell death and further enhanced microglial cell numbers. Treatment of NMDA-lesioned cultures with IL-1ra significantly attenuated NMDA-induced neuronal damage and reduced the number of microglial cells, whereas application of IL-1ra in unlesioned OHSCs did not induce significant changes in either cell population. Our findings indicate that: (i) IL-1beta directly affects the central nervous system and acts independently of infiltrating hematogenous cells; (ii) IL-1beta induces microglial activation but is not neurotoxic per se; (iii) IL-1beta enhances excitotoxic neuronal damage and microglial activation and (iv) IL-1ra, even when applied for only 4 h, reduces neuronal cell death and the number of microglial cells after excitotoxic damage. 相似文献
11.
12.
D-beta-hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures
Hypoxia decreased survival of cultured rat primary hippocampal neurons in a time dependent manner. Addition of 4 mM Na D-beta-hydroxybutyrate (bHB), a ketone body, protected the cells for 2 hr and maintained the increase in survival compared to that of controls for up to 6 hr. Trypan blue exclusion indicated that acute cell death was reduced markedly after 2-hr exposure to hypoxia in the bHB-treated group. The presence of bHB also decreased the number of neurons exhibiting condensed nuclei visualized by propidium iodide, indicative of apoptosis. The mitochondrial transmembrane potential (Em/c) was maintained for up to 2 hr exposure to hypoxia in the bHB-treated group, whereas the potential in the control group was decreased. Furthermore, cytochrome C release, caspase-3 activation, and poly (ADP-ribose) polymerase (PARP) cleavage were decreased in the bHB-treated group for the first 2 hr of exposure. These findings indicate that ketone bodies may be a candidate for widening the therapeutic window before thrombolytic therapy and at the same time decreasing apoptotic damage in the ischemic penumbra. 相似文献
13.
During the initial minutes of cerebral ischemia, lactic acid accumulates and acidifies brain pH to 6.0-6.7. Glutamate is also released during ischemia that activates glutamate receptors and induces excitotoxicity. While glutamate excitotoxicity is well established to induce ischemic injury, a role of lactic acidosis in ischemic brain damage is poorly understood. This study analyzes acidosis neurotoxicity in hippocampal slice cultures in the presence or absence of lactate. At pH 6.7, neuronal loss was similar whether or not lactate was present. At pH 6.4, neuronal loss was significantly greater in the presence of lactate suggesting that lactate potentiates the acidosis toxicity. At pH 6.4 in the presence of lactate, NMDA or non-NMDA receptor antagonists reduced neuronal loss, while in the absence of lactate, NMDA or non-NMDA receptor antagonists had little effect. [3H]-Glutamate uptake was inhibited by acidic pH, and the amount of inhibition was significantly greater in the presence of lactate. These findings suggest that lactate plays a role in acidosis neurotoxicity by inducing excitotoxicity. Lactic acidosis and excitotoxicity have been previously thought to be independent events during ischemia. This study suggests that during ischemia, lactic acidosis contributes to excitotoxic neuronal loss. 相似文献
14.
In vitro studies of glucose and lactate utilization have been performed in acute hippocampal slices or dissociated neurons and glia. While some studies concluded that lactate and glucose are equivalent substrates to support evoked synaptic activity, others showed decreased synaptic activity in the presence of lactate as compared to glucose. We found diminished neural activity in the presence of lactate in hippocampal slice cultures. We developed a method to examine the oxidation rates of 14C-labeled substrates by hippocampal slice cultures. The rate of 14CO2 production from either 14C-glucose or 14C-lactate remained unchanged for 6 h suggesting that slice cultures are metabolically stable. While the glucose oxidation rate saturated between 2.8 and 10 mM, lactate oxidation rate had not saturated at 10 mM. These data suggest that organotypic slice cultures provide a method to examine elements of cerebral metabolism in vitro. 相似文献
15.
Glucose is well accepted as the major fuel for neuronal activity, while it remains controversial whether lactate also supports neural activity. In hippocampal slice cultures, synaptic transmission supported by glucose was reversibly suppressed by lactate. To test whether lactate had a similar inhibitory effect in vivo, lactate was perfused into the hippocampi of unanesthetized rats while recording the firing of nearby pyramidal cells. Lactate perfusion suppressed pyramidal cell firing by 87.5+/-8.3% (n=6). Firing suppression was slow in onset and fully reversible and was associated with increased lactate concentration at the site of the recording electrode. In vivo suppression of neural activity by lactate occurred in the presence of glucose; therefore we tested whether suppression of neural firing was due to lactate interference with glucose metabolism. Competition between glucose and lactate was measured in hippocampal slice cultures. Lactate had no effect on glucose uptake. Lactate suppressed glucose oxidation when applied at an elevated, pathological concentration (10 mM), but not at its physiological concentration (1 mM). Pyruvate (10 mM) also inhibited glucose oxidation but was significantly less effective than lactate. The greater suppressive effect of lactate as compared to pyruvate suggests that alteration of the NAD(+)/NADH ratio underlies the suppression of glucose oxidation by lactate. ATP in slice culture was unchanged in glucose (1 mM), but significantly reduced in lactate (1 mM). ATP in slice culture was significantly increased by combination of glucose (1 mM) and lactate (1 mM). These data suggest that alteration of redox ratio underlies the suppression of neural discharge and glucose metabolism by lactate. 相似文献
16.
Using organotypic cultures of rat hippocampal slices, we investigated the possible involvement of arachidonate cascades in neuronal death following ischemic insult. Oxygen/glucose deprivation-induced neuronal damage was efficiently attenuated by various inhibitors of lipoxygenase, whereas cyclooxygenase inhibitors were less effective. Interestingly, 5- and 12-lipoxygenases are likely to separately mediate ischemic injury in the hippocampus. The present study will provide novel therapeutic targets for the development of neuroprotective agents. 相似文献
17.
The GABAA receptor agonist THIP is neuroprotective in organotypic hippocampal slice cultures 总被引:1,自引:0,他引:1
The potential neuroprotective effects of the GABA(A) receptor agonists THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) and muscimol, and the selective GluR5 kainate receptor agonist ATPA ((RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid), which activates GABAergic interneurons, were examined in hippocampal slice cultures exposed to N-methyl-D-aspartate (NMDA). The NMDA-induced excitotoxicity was quantified by densitometric measurements of propidium iodide (PI) uptake. THIP (100-1000 microM) was neuroprotective in slice cultures co-exposed to NMDA (10 microM) for 48 h, while muscimol (100-1000 microM) and ATPA (1-3 microM) were without effect. The results demonstrate that direct GABA(A) agonism can mediate neuroprotection in the hippocampus in vitro as previously suggested in vivo. 相似文献
18.
John E. Parsons Roi Ann Wallis Kimberly L. Panizzon Claude G. Wasterlain 《Brain research》1992,595(1):141-144
Perfusion of hippocampal slices with normoxic medium containing no added sodium resulted in a rapid loss of the CA1 population spike, with only 35 +/- 10% (S.E.M.) (P < 0.001) recovery after a 15 min exposure. This injury was prevented by the non-competitive N-methyl-D-aspartate (NMDA) antagonist MK-801 (93 +/- 4% recovery, P < 0.001), suggesting that low sodium injury may be mediated by opening of the NMDA receptor-associated ionic channels, possibly secondary to the well known sodium dependency of transmitter uptake systems. By contrast, slice perfusion with a medium moderately low in sodium (26 mM) produced only slight injury to the CA1 population spike under normoxic conditions (76 +/- 8% recovery) and provided no protection against hypoxic injury. Low chloride medium also provided no protection against hypoxic injury. 相似文献
19.
Quantitative effects produced by modifications of neuronal activity on the size of GABAA receptor clusters in hippocampal slice cultures 总被引:1,自引:0,他引:1
The number and strength of GABAergic synapses needs to be precisely adjusted for adequate control of excitatory activity. We investigated to what extent the size of GABA(A) receptor clusters at inhibitory synapses is under the regulation of neuronal activity. Slices from P7 rat hippocampus were cultured for 13 days in the presence of bicuculline or 4-aminopyridine (4-AP) to increase neuronal activity, or DNQX to decrease activity. The changes provoked by these treatments on clusters immunoreactive for the alpha1 and alpha2 subunits of the GABA(A) receptor or gephyrin were quantitatively evaluated. While an increase in activity augmented the density of these clusters, a decrease in activity provoked, in contrast, a decrease in their density. An inverse regulation was observed for the size of individual clusters. Bicuculline and 4-AP decreased whilst DNQX increased the mean size of the clusters. When the pharmacological treatments were applied for 2 days instead of 2 weeks, no effects on the size of the clusters were observed. The variations in the mean size of individual clusters were mainly due to changes in the number of small clusters. Finally, a regulation of the size of GABA(A) receptor clusters occurred during development in vivo, with a decrease of the mean size of the clusters between P7 and P21. This physiological change was also the result of an increase in the number of small clusters. These results indicate that neuronal activity regulates the mean size of GABA(A) receptor- and gephyrin-immunoreactive clusters by modifying specifically the number of synapses with small clusters of receptors. 相似文献