首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of expression of the extracellular matrix molecule thrombospondin (TSP) were examined during peripheral nerve regeneration following sciatic nerve crush or transection. In noninjured nerve, was present in the axoplasm, Schwann cells, endoneurium, and perineurium of the adult mouse sciatic nerve. Following nerve crush or nerve transection, levels of TSP rapidly increased distal to the trauma site. Elevated levels of TSP were present distal to regenerating axons, while expression gradually returned to normal proximal to the regenerating axons. When reinnervation was blocked, TSP levels remained high in the endoneurium in excess of 30 days, but TSP was absent by 60 days. Following reanastomosis of the proximal and distal segments after 60 days of denervation, TSP was re-expressed in the distal nerve stump. These results indicate that TSP, which is involved in neuronal migrations in the embryo and neurite outgrowth in vitro, appears to play a role in axonal regeneration in the adult peripheral nervous system.  相似文献   

2.
The effect of proximal nerve crush on regeneration after unrepaired nerve transection was studied in feline cutaneous nerves. Delays between the initial transection and the subsequent nerve crush varied between 0 (immediate crush) and 13 months. A survival time of 6 to 12 months after the crush was allowed for regeneration to complete. Data from these animals was compared with data from animals in which the nerve was simply transected. Four measures of regeneration success were used to assess the degree of functional recovery: (i) the number of fibers crossing the neuroma and regenerating down the distal stump; (ii) the conduction velocity and diameter of individual fibers in the distal stump relative to their conduction velocity and diameter in the proximal stump; (iii) the number of fibers reinnervating cutaneous mechanoreceptors; and (iv) the number of cutaneous type I mechanoreceptors present after regeneration. As a whole, the data showed a statistically significant increase in the number of fibers entering the distal stump and in the number of fibers reinnervating the skin when the nerve was crushed 6 months after transection compared with nerves that were only transected. There was also an increase in the size and conduction velocity of fibers in the distal stump of nerves that had been crushed 4 to 6 months after transection.  相似文献   

3.
This study is concerned with numerical parameters of axonal regeneration in peripheral nerves. Our first finding is that the number of axons that regenerate into the distal stump of a somatic nerve at a particular time after transection is partially dependent on the type of lesion used to interrupt the axons. The second question concerns the proportion of axons that regenerate into the distal stump of a parent nerve compared to the proportions that regenerate into tributary nerves that arise from the parent. The proportions of regenerated myelinated axons in the nerve to the medial gastrocnemius muscle and myelinated and unmyelinated axons in the sural nerve are the same as the proportions of myelinated and unmyelinated axons that regenerate into the distal stump of the sciatic nerve for the crush, 0 and 4 mm gap transections. Proportionally fewer axons regenerate into the tributary nerves following the 8 mm gap transection, however. This implies that the length of the gap has an influence on whether or not axons in tributary nerves regenerate in concert with axons in the distal stump of the parent nerve. The unmyelinated fibers in the nerve to the medial gastrocnemius muscle are different because they do not regenerate in proportion to those in the distal stump of the sciatic nerve. We also provide evidence to indicate that myelinated axons branch whereas unmyelinated fibers end blindly when they enter the distal stump after crossing a sciatic nerve transection. Finally the normal arrangement of perineurial cells seems to be disrupted after the sciatic nerve regenerates across a gap.  相似文献   

4.
Injured peripheral nerves regenerate their lost axons but functional recovery in humans is frequently disappointing. This is so particularly when injuries require regeneration over long distances and/or over long time periods. Fat replacement of chronically denervated muscles, a commonly accepted explanation, does not account for poor functional recovery. Rather, the basis for the poor nerve regeneration is the transient expression of growth-associated genes that accounts for declining regenerative capacity of neurons and the regenerative support of Schwann cells over time. Brief low-frequency electrical stimulation accelerates motor and sensory axon outgrowth across injury sites that, even after delayed surgical repair of injured nerves in animal models and patients, enhances nerve regeneration and target reinnervation. The stimulation elevates neuronal cyclic adenosine monophosphate and, in turn, the expression of neurotrophic factors and other growth-associated genes, including cytoskeletal proteins. Electrical stimulation of denervated muscles immediately after nerve transection and surgical repair also accelerates muscle reinnervation but, at this time, how the daily requirement of long-duration electrical pulses can be delivered to muscles remains a practical issue prior to translation to patients. Finally, the technique of inserting autologous nerve grafts that bridge between a donor nerve and an adjacent recipient denervated nerve stump significantly improves nerve regeneration after delayed nerve repair, the donor nerves sustaining the capacity of the denervated Schwann cells to support nerve regeneration. These reviewed methods to promote nerve regeneration and, in turn, to enhance functional recovery after nerve injury and surgical repair are sufficiently promising for early translation to the clinic.  相似文献   

5.
Reactions of unmyelinated nerve fibers to injury. An ultrastructural study   总被引:2,自引:0,他引:2  
Reactions of unmyelinated nerves to injury were studied in the distal stumps of rabbit anterior mesenteric nerves following transection. These nerves, chosen because they are almost exclusively unmyelinated, were examined by phase contrast and electron microscopy at intervals from 12 h to 2 weeks after transection. Swollen axons containing mitochondria and other organelles were prominent in the proximal few mm of the distal stump of anterior mesenteric nerve trunks during the first 4 days after transection. As early as 6 days after injury, regenerative changes consisting of numerous small axons with an increased axon-Schwann cell ratio were observed; there was little trace of degenerating axons, or their debris. Thus the capacity of unmyelinated nerve fibers for rapid regeneration has been demonstrated. It is anticipated that this delineation of reactions in unmyelinated nerves will contribute to a greater understanding of functional and morphologic abnormalities in disorders of peripheral nerves.  相似文献   

6.
Insulin as an in vivo growth factor   总被引:3,自引:0,他引:3  
Insulin peptide has been identified to promote regeneration of axons in culture and in some in vivo model systems. Such actions have been linked to direct actions of insulin, or to cross occupation of closely linked IGF-1 receptors. In this work, we examined insulin support of peripheral nerve regenerative events in mice. Systemic insulin administration accelerated the reinnervation of foot interosseous endplates by motor axons after sciatic nerve transection and enhanced recovery of functional mouse hindpaw function. Similarly, insulin accelerated the regeneration-related maturation of myelinated fibers regrowing beyond a sciatic nerve crush injury. That such benefits might occur through direct signaling on axons was supported by immunohistochemical studies of expression with an antibody directed to the beta insulin receptor (IR) subunit. The proportion of sensory neurons expressing IRbeta increased ipsilateral to a similar sciatic crush injury in the L4 and L5 dorsal root ganglia. Insulin receptors, although widely expressed in axons, were also preferentially and intensely expressed on axons regrowing just beyond a peripheral nerve crush injury zone. The findings indicate that insulin imparts a substantial impact on regenerating peripheral nerve axons through upregulation of its expression following injury. Although the findings do not exclude insulin coactivating IGF-1 receptors during regeneration, its own receptors are present and available for action on injured nerves.  相似文献   

7.
Regenerating axons in crushed peripheral nerves grow through their distal nerve segments even in the absence of Schwann cell support, but their elongation rate is reduced by 30%. We examined whether prior exposure of sensory neurons to trophic factors achieved either by collateral sprouting or regeneration after conditioning lesion could enhance subsequent regeneration of their axons after crush, and compensate for loss of cell support. Collateral sprouting of the peroneal cutaneous sensory axons in the rat was evoked by transection of adjacent peripheral nerves in the hind leg. The segment of the peroneal nerve distal to the crush was made acellular by repeated freezing. Sensory axon elongation rate during regeneration was measured by the nerve pinch test. Prior axonal sprouting for two weeks increased the elongation rate of sensory axons through the acellular distal nerve segment back to normal value observed in control crushed nerves. The number of axons in the acellular distal segment at a fixed distance from the crush site was about 50% greater in sprouting than in control non-sprouting nerves. However, prior sprouting caused no further increase of axon elongation rate in control crushed nerves. Prior collateral sprouting, therefore, could in some respect compensate for loss of cell support in the distal nerve segment after crush lesion. This suggests that loss of cell-produced trophic factors is probably responsible for slower elongation rate through the acellular distal nerve segment. Surprisingly, prior conditioning lesion caused no enhancement of elongation rate of the sensory axons regenerating in the absence of cell support.  相似文献   

8.
The depolarizing action of gamma-aminobutyric acid (GABA), or the GABAA receptor agonist muscimol, on rat dorsal root (L4 and L5) fibers is attenuated following transection, but not crush, of the sciatic nerve. Following discrete nerve crush, axons actively regenerate and contact both the distal nerve segment and the peripheral target tissues. The aim of the present study was to distinguish between these two regions as possible sources of trophic support for retrograde maintenance of dorsal root GABA receptor sensitivity. A surgical procedure was employed to permit a delimited segment of axonal regeneration while prohibiting reestablishment of end organ innervation; the sciatic nerve was crushed and a ligature was placed 3 cm distal to the crush site. Under these conditions, the injury-induced decrement in the dorsal root GABA response, observed between 12 and 21 postoperative days, was significantly attenuated relative to that of ligated nerves, in which regeneration into the distal stump does not occur. The data suggest that nerve transection by ligation restricts trophic support for maintenance of GABA receptor expression in dorsal root ganglion (DRG) neurons. Furthermore, during regeneration the denervated distal nerve segment assumes a neurotrophic role in the maintenance of dorsal root GABA sensitivity, consistent with the hypothesis that growth factors derived from reactive Schwann cells may positively regulate the expression of receptors on axotomized sensory neurons.  相似文献   

9.
Our past work indicates that growth-inhibiting chondroitin sulfate proteoglycan (CSPG) is abundant in the peripheral nerve sheaths and interstitium. In this study we tested if degradation of CSPG by chondroitinase enhances axonal regeneration through the site of injury after (a) nerve crush and (b) nerve transection and coaptation. Adult rats received the same injury bilaterally to the sciatic nerves and then chondroitinase ABC was injected near the injury site on one side, and the contralateral nerve was injected with vehicle alone. Nerves were examined 2 days after injury in the nerve crush model and 4 days after injury in the nerve transection model. Chondroitinase-dependent neoepitope immunolabeling showed that CSPG was thoroughly degraded around the injury site in the chondroitinase-treated nerves. Axonal regeneration through the injury site and into the distal nerve was assessed by GAP-43 immunolabeling. Axonal regeneration after crush injury was similar in chondroitinase-treated and control nerves. In contrast, axonal regrowth through the coaptation of transected nerves was markedly accelerated and the ingress of axons into the distal segment was increased severalfold in nerves injected with chondroitinase. On the basis of these results we concluded that growth inhibition by CSPG contributes critically to the poor regenerative growth of axons in nerve transection repair. In addition, degradation of CSPG by injection of chondroitinase ABC at the site of nerve repair increased the ingress of axonal sprouts into basal laminae of the distal nerve segment, presumably by enabling more latitude in growth at the interface of coapted nerve. This suggests that chondroitinase application may be used clinically to improve the outcome of primary peripheral nerve repair.  相似文献   

10.
Regeneration was measured after the infliction of a crush lesion on rat sciatic nerves which 4 days earlier had been subjected to a distal conditioning transection. Such nerves exhibited an increased outgrowth of nerve fibers as compared to nerves subjected to a single crush lesion. This increased outgrowth could be prevented, if the nerve was locally perfused around the site of the transection during the 4 days conditioning interval, with cycloheximide, actinomycin D and vinblastine, inhibitors of protein-, RNA-synthesis and retrograde axonal transport, respectively. The inhibitory effect of cycloheximide could be overcome by simultaneous perfusion with insulin-like growth factor I (IGF-1). The results suggest that proteins including IGF-1 which are synthesised locally around a nerve lesion and then transported retrogradely could trigger regenerative events in the neuronal cell body.  相似文献   

11.
Clinical and experimental observations have demonstrated that peripheral nerve transection generally results in lasting disturbed sensory discrimination whereas nerve crush is followed by more or less complete functional restoration. This has been explained by an increased misdirection of regenerating fibers after transection as compared to crush injury. In the present study, sequential double-labeling was used to investigate the relative proportions of peripherally misdirected sensory fibers in the sural and tibial nerve branches after crush or transection of the parent sciatic nerve in the rat. Control experiments showed that 0.21% ± 0.12 (mean ± S.D.) of all labeled tibial and sural neurons normally send axons to both nerves. After sciatic nerve crush or transection, 1.31% ± 0.78 and 3.79% ± 3.01, respectively, of all labeled tibial and sural axons were double-labeled indicating previously sural axons now having an axon in the tibial. Statistically significant differences in the percentages of bidirectional sciatic sensory neurons were found between the normal controls and after crush injury (P < 0.01) or transection injury (P < 0.001), respectively, but not between transection and crush (P > 0.05). The results indicate that the number of sensory neurons having an axon in two peripheral nerves is normally very small, that a substantial number of sensory axons become misdirected after both crush and transection with resuture, and that the number of misdirected fibers in the major sciatic branches after these types of injury is similar.  相似文献   

12.
The axonal transport and distribution of the fast phase of [3H]leucine-labeled proteins were used to monitor the outgrowth delay and regeneration rate in rabbit hypoglossal nerves 5–21 days after crush or transection. The transected nerves were repaired with mesothelial chambers or epineurial sutures. Radiolabeled proteins were transported into regenerating axons in the distal nerve segment after an initial delay of 2.5 days for crushed nerves and after a delay (initial and scar delays) of 4.8 and 5.7 days for sutured and mesothelial chamber-reconnected nerves, respectively. Regeneration rate was 3.5 mm/day after a crush and 2 mm/day after a transection with either type of repair. Total radioactivity was greateer in both crushed and repaired nerves than in their contralateral controls. Transported radioactivity accumulated at the site of the lesions. This accumulation was greater and persisted longer in repaired nerves than in crushed ones. The difference in regenerative response after different types of trauma with respect to changes in axonal transport is emphasized.  相似文献   

13.
After the sciatic nerve had been crushed at the level of the mid-thigh, the rate of outgrowth of the regenerating axons was measured by using the pinch test to locate the leading sensory axons. This standard crush lesion ("testing" lesion) elicited axonal outgrowth at a rate of 4.3 +/- 0.1 mm/day, with an initial delay (before the axons entered the degenerating distal stump) of 1.6 days. A "conditioning" lesion (transection of the tibial nerve at the ankle), made two weeks before the testing lesion, caused an increase of 23% in the outgrowth rat (P less than 0.02), with no appreciable change in the initial delay. Dibutyryl cyclic AMP (dbcAMP) was found to have no effect on the rate of axonal outgrowth measured by the pinch test. Histological examination of the pinch-tested nerves showed that the drug also had no effect on the numbers of regenerating silver-stained axons or fluorescent noradrenergic axons seen at various levels distal to the testing lesion.  相似文献   

14.
The depolarizing action of γ-aminobutyric acid (GABA), or the GABAA receptor agonist muscimol, on rat dorsal root (L4 and L5) fibers is attenuated following transection, but not crush, of the sciatic nerve (15). Following discrete nerve crush, axons actively regenerate and contact both the distal nerve segment and the peripheral target tissues. The aim of the present study was to distinguish between these two regions as possible sources of trophic support for retrograde maintenance of dorsal root GABA receptor sensitivity. A surgical procedure was employed to permit a delimited segment of axonal regeneration while prohibiting reestablishment of end organ innervation; the sciatic nerve was crushed and a ligature was placed 3 cm distal to the crush site. Under these conditions, the injury-induced decrement in the dorsal root GABA response, observed between 12 and 21 postoperative days, was significantly attenuated relative to that of ligated nerves, in which regeneration into the distal stump does not occur. The data suggest that nerve transection by ligation restricts trophic support for maintenance of GABA receptor expression in dorsal root ganglion (DRG) neurons. Furthermore, during regeneration the denervated distal nerve segment assumes a neurotrophic role in the maintenance of dorsal root GABA sensitivity, consistent with the hypothesis that growth factors derived from reactive Schwann cells may positively regulate the expression of receptors on axotomized sensory neurons.  相似文献   

15.
Peripheral benzodiazepine receptor (PBR) expression increases in small dorsal root ganglion (DRG) sensory neurons after peripheral nerve injury. To determine the functional significance of this induction, we evaluated the effects of PBR ligands on rodent sensory axon outgrowth. In vitro, Ro5-4864, a PBR agonist, enhanced outgrowth only of small peripherin-positive DRG neurons. When DRG cells were preconditioned into an active growth state by a prior peripheral nerve injury Ro5-4864 augmented and PK 11195, a PBR antagonist, blocked the injury-induced increased outgrowth. In vivo, Ro5-4864 increased the initiation of regeneration after a sciatic nerve crush injury and the number of GAP-43-positive axons in the distal nerve while PK 11195 inhibited the enhanced growth produced by a preconditioning lesion. These results show that PBR has a role in the early regenerative response of small caliber sensory axons, the preconditioning effect, and that PBR agonists enhance sensory axon regeneration.  相似文献   

16.
Motor axonal regeneration is compromised by chronic distal nerve stump denervation, induced by delayed repair or prolonged regeneration distance, suggesting that the pathway for regeneration is progressively impaired with time and/or distance. In the present experiments, we tested the impacts of (i) chronic distal sensory nerve stump denervation on axonal regeneration and (ii) sensory or motor innervation of a nerve graft on the ability of motoneurons to regenerate their axons from the opposite end of the graft. Using the motor and sensory branches of rat femoral nerve and application of neuroanatomical tracers, we evaluated the numbers of regenerated femoral motoneurons and nerve fibers when motoneurons regenerated (i) into freshly cut and 2-month chronically denervated distal sensory nerve stump, (ii) alone into a 4-cm-long distally ligated sensory autograft (MGL) and, (iii) concurrently as sensory (MGS) or motor (MGM) nerves regenerated into the same autograft from the opposite end. We found that all (315 +/- 24: mean +/- SE) the femoral motoneurons regenerated into a freshly cut distal sensory nerve stump as compared to 254 +/- 20 after 2 months of chronic denervation. Under the MGL condition, 151 +/- 5 motoneurons regenerated, which was not significantly different from the MGM group (134 +/- 13) but was significantly reduced to 99 +/- 2 in the MGS group (P < 0.05). The number of regenerated nerve fibers was 1522 +/- 81 in the MGL group, 888 +/- 18 in the MGM group, and 516 +/- 44 in the MGS group, although the high number of nerve fibers in the MGL group was due partly to the elaboration of multiple sprouts. Nerve fiber number and myelination were reduced in the MGS group and increased in the MGM group. These results demonstrate that both chronic denervation and the presence of sensory nerve axons reduced desired motor axonal regeneration into sensory pathways. A common mechanism may involve reduced responsiveness of sensory Schwann cells within the nerve graft or chronically denervated distal nerve stump to regenerating motor axons. The findings confirm that motor regeneration is optimized by avoiding even short-term denervation. They also imply that repairing pure motor nerves (without their cutaneous sensory components) to distal nerve stumps should be considered clinically when motor recovery is the main desired outcome.  相似文献   

17.
The axons of both peripheral and central neurons in C57BL/Wld s (C57BL/Ola) mice are unique among mammals in degenerating extremely slowly after axotomy. Motor and sensory axons attempting to regenerate are thus confronted with an intact distal nerve stump rather than axon-and myelin-free Schwann cell-filled endoneurial tubes. Surprisingly, however, motor axons in the sciatic nerve innervating the soleus muscle regenerate rapidly, and there is evidence that they may use Schwann cells associated with unmyelinated fibres as a pathway. If this is so, motor axon regeneration might be impaired in C57BL/Wld s mice in the phrenic nerve, which has very few unmyelinated fibres. We found that as long as the myelinated axons in the distal stump of the phrenic nerve remained intact (up to 10 days), regeneration of motor axons did not occur, in spite of vigorous production of sprouts at the crush site. In contrast to motor axons, myelinated sensory axons regenerate very poorly in C57BL/Wld s mice, even in the presence of unmyelinated axons. We showed that this was also due to adverse local conditions confronting nerve sprouts, for the dorsal root ganglion cell bodies responded normally to injury with a rapid induction of Jun protein-like immunoreactivity and when the saphenous nerve was forced to degenerate more rapidly by multiple crush lesions sensory axons regrew much more successfully. The findings show that motor and sensory axons in C57BL/Wld s mice, although very atypical in the way that they degenerate, are able to regenerate normally but only in an appropriate environment. The results also give support to the view that intact peripheral nerves either fail to encourage or actively inhibit axon growth, and that an unsuitable local environment can prevent regeneration even if the cell body is reacting normally to injury.  相似文献   

18.
Previous cross-reinnervation studies in situ by other investigators have demonstrated that cutaneous sensory and motor axons are incapable of trophically supporting mammalian taste buds. The present experiments examined the gustatory trophic potency of chemosensory and barosensory axons of the carotid sinus nerve. We report here that morphologically normal taste buds appeared on cat circumvallate papillae at 2 to 19 months after cross-anastomosis of the carotid sinus and lingual nerves, branches of the IXth cranial (glossopharyngeal) nerve. However, neurophysiologic and histologic data also indicated that, despite microsurgical procedures designed to direct regenerating lingual nerve fibers toward the carotid body and carotid sinus, some lingual axons escaped the anastomosis and subsequently grew within their native distal stump. The principal objective of this study was thus to determine whether foreign innervation of taste buds did indeed occur, or regenerated lingual nerve fibers were instead responsible for the newly formed buds. Our results showed that stray lingual fibers were not responsible for the reappearance of taste buds because transection of the original proximal lingual nerve stump (cross-anastomosed to the distal carotid sinus nerve stump) did not reduce the incidence of taste buds or the accumulation of radiolabeled material axoplasmically transported from the petrosal (sensory) ganglion. Autoradiography of labeled tissue samples showed that more than 90% of the taste buds were labeled at 8 and 9 days after lingual nerve transection. These data support the hypothesis that sensory axons in the carotid sinus nerve share an important trophic chemistry with gustatory neurons.  相似文献   

19.
In order to test the regenerative capacity of atrophic axons, a constricting ligature was placed around the proximal tibial nerve of the rabbit, and the nerve crushed at the ankle one week later. Axonal atrophy with altered g ratios was subsequently confirmed in fibres distal to the site of ligature and proximal to the site of crush. In nerves with tight proximal ligatures the reinnervation of plantar muscles and the subsequent recovery of distal motor latency were delayed, indicating impaired regeneration. This result may be relevant to the "double-crush" theory of nerve damage.  相似文献   

20.
Peripheral nerves and spinal cords of axolotls were maintained in organ culture for periods of up to 2 weeks. Sensory axons in peripheral nerves and the dorsal funiculus of the spinal cord showed regeneration through the crush site within about 2 days. Axonal regeneration also occurred in peripheral nerves after cutting but was dependent on close contact between proximal and distal stumps of nerve. When cells in the distal stump of nerve were killed by freezing, axonal regeneration was inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号