首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experiment used functional magnetic resonance imaging (fMRI) to compare functional neuroanatomy associated with executed and imagined hand movements in novel and skilled learning phases. We hypothesized that 1 week of intensive physical practice would strengthen the motor representation of a hand motor sequence and increase the similarity of functional neuroanatomy associated with executed and imagined hand movements. During fMRI scanning, a right-hand self-paced button press sequence was executed and imagined before (NOVEL) and after (SKILLED) 1 week of intensive physical practice (n = 54; right-hand dominant). The mean execution rate was significantly faster in the SKILLED (3.8 Hz) than the NOVEL condition (2.5 Hz) (P < 0.001), but there was no difference in execution errors. Activation foci associated with execution and imagery was congruent in both the NOVEL and SKILLED conditions, though activation features were more similar in the SKILLED versus NOVEL phase. In the NOVEL phase, activations were more extensive during execution than imagery in primary and secondary cortical motor volumes and the cerebellum, while during imagery activations were greater in the striatum. In the SKILLED phase, activation features within these same volumes became increasingly similar for execution and imagery, though imagery more heavily activated premotor areas, inferior parietal lobe, and medial temporal lobe, while execution more heavily activated the precentral/postcentral gyri, striatum, and cerebellum. This experiment demonstrated congruent activation of the cortical and subcortical motor system during both novel and skilled learning phases, supporting the effectiveness of motor imagery-based mental practice techniques for both the acquisition of new skills and the rehearsal of skilled movements.  相似文献   

2.
The aim of the present positron emission tomography study was to measure the dynamic changes in cerebral activity before and after practice of an explicitly known sequence of foot movements when executed physically and to compare them to those elicited during motor imagery of the same movements. Nine healthy volunteers were scanned while performing both types of movement at an early phase of learning and after a 1-h training period of a sequence of dorsiflexions and plantarflexions with the left foot. These experimental conditions were compared directly, as well as to a perceptual control condition. Changes in regional cerebral blood flow associated with physical execution of the sequence early in the learning process were observed bilaterally in the dorsal premotor cortex and cerebellum, as well as in the left inferior parietal lobule. After training, however, most of these brain regions were no longer significantly activated, suggesting that they are critical for establishing the cognitive strategies and motor routines involved in executing sequential foot movements. By contrast, after practice, an increased level of activity was seen bilaterally in the medial orbitofrontal cortex and striatum, as well as in the left rostral portion of the anterior cingulate and a different region of the inferior parietal lobule, suggesting that these structures play an important role in the development of a long lasting representation of the sequence. Finally, as predicted, a similar pattern of dynamic changes was observed in both phases of learning during the motor imagery conditions. This last finding suggests that the cerebral plasticity occurring during the incremental acquisition of a motor sequence executed physically is reflected by the covert production of this skilled behavior using motor imagery.  相似文献   

3.
The goal of the present study was to examine, via positron emission tomography, the functional changes associated with the learning of a sequence of foot movements through mental practice with motor imagery (MI). Following intensive MI training over several days, which led to a modest but significant improvement in performance, healthy subjects showed an increase in activity restricted to the medial aspect of the orbitofrontal cortex (OFC), and a decrease in the cerebellum. These main results are largely consistent with those found in a previous study of sequence learning performed in our laboratory after physical practice of the same task [NeuroImage 16 (2002) 142]. Further analyses showed a positive correlation between the blood flow increase in the OFC and the percentage of improvement on the foot sequence task. Moreover, the increased involvement of the medial OFC revealed a modality specific anatomo-functional organization, as imagination of the sequential task after MI practice activated a more posterior region than its execution. These results demonstrate that learning a sequential motor task through motor imagery practice produces cerebral functional changes similar to those observed after physical practice of the same task. Moreover, the findings are in accord with the hypothesis that mental practice with MI, at least initially, improves performance by acting on the preparation and anticipation of movements rather than on execution per se.  相似文献   

4.
Szameitat AJ  Shen S  Sterr A 《NeuroImage》2007,34(2):702-713
The present study aimed to investigate the functional neuroanatomical correlates of motor imagery (MI) of complex everyday movements (also called everyday tasks or functional tasks). 15 participants imagined two different types of everyday movements, movements confined to the upper extremities (UE; e.g., eating a meal) and movements involving the whole body (WB; e.g., swimming), during fMRI scanning. Results showed that both movement types activated the lateral and medial premotor cortices bilaterally, the left parietal cortex, and the right basal ganglia. Direct comparison of WB and UE movements further revealed a homuncular organization in the primary sensorimotor cortices (SMC), with UE movements represented in inferior parts of the SMC and WB movements in superior and medial parts. These results demonstrate that MI of everyday movements drives a cortical network comparable to the one described for more simple movements such as finger opposition. The findings further are in accordance with the suggestion that motor imagery-based mental practice is effective because it activates a comparable cortical network as overt training. Since most people are familiar with everyday movements and therefore a practice of the movement prior to scanning is not necessarily required, the current paradigm seems particularly appealing for clinical research and application focusing on patients with low or no residual motor abilities.  相似文献   

5.
Gobel EW  Parrish TB  Reber PJ 《NeuroImage》2011,58(4):1150-1157
Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time.  相似文献   

6.
Cerebral correlates of motor imagery of normal and precision gait   总被引:2,自引:0,他引:2  
We have examined the cerebral structures involved in motor imagery of normal and precision gait (i.e., gait requiring precise foot placement and increased postural control). We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined walking along paths of two different widths (broad, narrow) that required either normal gait, or exact foot placement and increased postural control. We used a matched visual imagery (VI) task to assess the motor specificity of the effects, and monitored task performance by recording imagery times, eye movements, and electromyography during scanning. In addition, we assessed the effector specificity of MI of gait by comparing our results with those of a previous study on MI of hand movements. We found that imagery times were longer for the narrow path during MI, but not during VI, suggesting that MI was sensitive to the constraints imposed by a narrow walking path. Moreover, MI of precision gait resulted in increased cerebral activity and effective connectivity within a network involving the superior parietal lobules, the dorsal precentral gyri, and the right middle occipital gyrus. Finally, the cerebral responses to MI of gait were contiguous to but spatially distinct from regions involved in MI of hand movements. These results emphasize the role of cortical structures outside primary motor regions in imagining locomotion movements when accurate foot positioning and increased postural control is required.  相似文献   

7.
目的 探讨完全性脊髓损伤患者脑运动控制功能的变化情况。方法 2017年1月至2019年1月,病程3~6个月完全性脊髓损伤患者11例与健康人12例,在试图/实际运动、意象运动(MI)任务下行功能磁共振成像(fMRI)扫描,观察不同运动任务引发激活效应的空间分布和信号强度。结果 患者试图运动时的脑激活区域显著多于健康人实际运动时的激活区域,包括双侧初级感觉/运动皮质(S1/M1)、辅助运动区(SMA)、外侧苍白球(PA)、小脑、左侧丘脑和壳核等。健康人意象运动的比较,患者激活簇主要存在于右M1、SMA、背侧运动前区(PMd)、左SMA、岛叶和基底核。患者试图运动比意象运动在左M1、双SMA、扣带回运动区和右小脑诱发更多的兴奋。结论 亚急性期完全性脊髓损伤患者执行运动任务时,M1、SMA的兴奋模式基本正常,顶叶和小脑等感觉运动整合区域激活增加,提示发生适应性重组。  相似文献   

8.
Motor imagery is a state of mental rehearsal of single movements or movement patterns and has been shown to recruit motor networks overlapping with those activated during movement execution. We wished to examine whether the brain areas subserving control of sequential processes could be delineated by pure mental imagery, their activation levels reflecting the processing demands of a sequential task. We studied six right-handed volunteers (39.0 +/- 14 years) with H(2)(15)O positron emission tomography (PET) while they continuously mentally pursued with their right hand one of five sequences differing in complexity (i.e., increases in sequence length, single-finger repetitions, and reversals). Conditions were repeated twice, alternating with two rest scans. Each imagined single motor element was paced at a frequency of 1 Hz. Significant activation increases (P < 0.05, corrected) associated with imagination of right finger movement sequences (conditions I to V combined)--compared to the rest condition--were observed in left sensorimotor cortex (M1/S1) and the adjacent inferior parietal cortex. Further activation increases (P < 0.001, uncorrected) occurred in bilateral dorsal premotor (PMd) cortex, left caudal supplementary motor area, bilateral ventral premotor cortex, right M1, left superior parietal cortex, left putamen, and right cerebellum. Activation decreases occurred in bilateral prefrontal and right temporo-occipital cortex. Activation increases that correlated with sequence complexity were observed only in specific areas of the activated network, notably in left PMd, right superior parietal cortex, and right cerebellar vermis (P < 0.05, corrected). In conclusion, our study, by varying the sequence structure of imagined finger movements, identified task-related activity changes in parietopremotor-cerebellar structures, reflecting their role in mediating sequence control.  相似文献   

9.
Fronto-striatal circuitry interacts with the midbrain dopaminergic system to mediate the learning of stimulus–response associations, and these associations often guide everyday actions, but the precise role of these circuits in forming and consolidating rules remains uncertain. A means to examine basal ganglia circuit contributions to associative motor learning is to examine these process in a lesion model system, such as Parkinson's disease (PD), a basal ganglia disorder characterized by the loss of dopamine neurons. We used functional magnetic resonance imaging (MRI) to compare brain activation of PD patients with a group of healthy aged-match participants during a visual–motor associative learning task that entailed discovering and learning arbitrary associations between a set of six visual stimuli and corresponding spatial locations by moving a joystick-controlled cursor. We tested the hypothesis that PD would recruit more areas than age-matched controls during learning and also show increased activation in commonly activated regions, probably in the parietal and premotor cortices, and the cerebellum, perhaps as compensatory mechanisms for their disrupted fronto-striatal networks. PD had no effect in acquiring the associative relationships and learning-related activation in several key frontal cortical and subcortical structures. However, we found that PD modified activation in other areas, including those in the cerebellum and frontal, and parietal cortex, particularly during initial learning. These results may suggest that the basal ganglia circuits become active more so during the initial formation of rule-based behavior.  相似文献   

10.
Boecker H  Jankowski J  Ditter P  Scheef L 《NeuroImage》2008,39(3):1356-1369
The mesial premotor cortex is crucial for planning sequential procedures and movement initiation. With event-related (ER) functional magnetic resonance imaging (fMRI) it has been possible to separate mesial premotor activation before, during, and after self-initiated movements and, thereby, to distinguish advance planning from execution. The mesial premotor cortex is part of distributed cortico-basal ganglia-thalamo-cortical networks but, to date, the subcortical contributions to self-initiated movements are far less well understood. Using ER fMRI at 3T in 12 right-handed male volunteers, we studied the subcortical activation preceding an automated four-digit finger sequence that was either self-initiated or triggered externally by a visual cue. Beyond typical cortical activation increases in fronto-parietal regions, both initiation modes induced consistent subcortical activation in basal ganglia, midbrain (substantia nigra), and ipsilateral cerebellum. The planning phase of the internally initiated condition, when contrasted with the externally triggered condition, was associated with enhanced activity in frontal regions (mesial premotor cortex/rostral cingulate zone, dorsolateral prefrontal cortex), parietal regions (precuneus, inferior parietal cortex, encroaching onto V5/MT), insula, contralateral anterior putamen and midbrain (bilateral red nucleus/subthalamic nucleus). These data demonstrate the impact of initiation mode on planning-related activity in the ventral basal ganglia and interconnected midbrain nuclei, thereby stressing the crucial role of distributed cortico-basal ganglia-thalamo-cortical networks for self-initiated automated motor repertoires. Involvement of the substantia nigra during planning, as shown here, indicates dopaminergic gating of motor sequences.  相似文献   

11.
fMRI评价正常老年人腕关节被动运动下脑激活区   总被引:2,自引:1,他引:2       下载免费PDF全文
目的 用功能磁共振技术观察正常老年人双侧腕关节被动运动时脑区激活情况.方法 对30例正常的右利手老年受试者分别进行双侧腕关节被动运动的功能MR扫描,采用SPM2软件进行数据分析和脑功能区定位.结果 利手(右手)运动主要激活对侧感觉运动皮质、运动前区,双侧辅助运动区、后顶叶及同侧小脑;非利手运动时除激活上述脑区外,还激活了同侧运动感觉区和对侧小脑,且对侧运动前区、双侧辅助运动区和同侧小脑的激活体积明显大于利手腕关节运动.结论 被动运动依赖于大脑皮质和小脑等许多与运动相关的脑功能区的参与;与利手腕关节运动相比,非利手腕关节运动更依赖于对侧PMC、双侧SMA和同侧小脑等运动区.  相似文献   

12.
It is well established that the premotor cortex has a central role in the selection of movements. The role of parts of the parietal cortex in movement control has proved more difficult to describe but appears to be related to the preparation and the redirection of movements and movement intentions. We have referred to some of these processes as motor attention. It has been known since the time of William James that covert motor attention can be directed to an upcoming movement just as visuospatial attention can be directed to a location in space. While some parietal regions, particularly in the right hemisphere, are concerned with covert orienting and the redirecting of covert orienting it may be useful to consider other parietal regions, in the anterior inferior parietal lobule and in the posterior superior parietal lobule, particularly in the left hemisphere, as contributing to motor attention. Such parts of the parietal lobe are activated in neuroimaging experiments when subjects covertly prepare movements or switch intended movements. Lesions or transcranial magnetic stimulation (TMS) affect the redirecting of motor attention. The difficulties apraxic patients experience when sequencing movements may partly be due to an inability to redirect motor attention from one movement to another. The role of the premotor cortex in selecting movements is also lateralized to the left hemisphere. Damage to left hemisphere movement selection mechanisms may also contribute to apraxia. If, however, it remains intact after a stroke then the premotor cortex may contribute to the recovery of arm movements. A group of patients with unilateral left hemisphere lesions and impaired movements in the contralateral right hand was studied. Functional magnetic resonance imaging showed that in some cases the premotor cortex in the intact hemisphere was more active when the stroke-affected hand was used. TMS in the same area in the same patients had the most disruptive effect on movements. In summary, patterns of motor impairment and recovery seen after strokes can partly be explained with reference to the roles of the parietal and premotor cortices in motor attention and selection.  相似文献   

13.
Engagement of the primary motor cortex (MI) during the observation of actions has been debated for a long time. In the present study, we used the quantitative 14C-deoxyglucose method in monkeys that either grasped 3-D objects or observed the same movements executed by humans. We found that the forelimb regions of the MI and the primary somatosensory (SI) cortex were significantly activated in both cases. Our study resolves a debate in the literature, providing strong evidence for use of MI representations during the observation of actions. It demonstrates that the observation of an action is represented in the primary motor and somatosensory cortices as is its execution. It indicates that in terms of neural correlates, recognizing a motor behavior is like executing the same behavior, requiring the involvement of a distributed system encompassing not only the premotor but also the primary motor cortex. We suggest that movements and their proprioceptive components are stored as motor and somatosensory representations in motor and somatosensory cortices, respectively, and that these representations are recalled during observation of an action.  相似文献   

14.
A visuo-motor sequence can be learned as a series of visuo-spatial cues or as a sequence of effector movements. Earlier imaging studies have revealed that a network of brain areas is activated in the course of motor sequence learning. However, these studies do not address the question of the type of representation being established at various stages of visuo-motor sequence learning. In an earlier behavioral study, we demonstrated that acquisition of visuo-spatial sequence representation enables rapid learning in the early stage and progressive establishment of somato-motor representation helps speedier execution by the late stage. We conducted functional magnetic resonance imaging (fMRI) experiments wherein subjects learned and practiced the same sequence alternately in normal and rotated settings. In one rotated setting (visual), subjects learned a new motor sequence in response to an identical sequence of visual cues as in normal. In another rotated setting (motor), the display sequence was altered as compared to normal, but the same sequence of effector movements was used to perform the sequence. Comparison of different rotated settings revealed analogous transitions both in the cortical and subcortical sites during visuo-motor sequence learning-a transition of activity from parietal to parietal-premotor and then to premotor cortex and a concomitant shift was observed from anterior putamen to a combined activity in both anterior and posterior putamen and finally to posterior putamen. These results suggest a putative role for engagement of different cortical and subcortical networks at various stages of learning in supporting distinct sequence representations.  相似文献   

15.
Motor learning is the means by which we acquire skilled movements and consign them to permanent memory. Multiple brain areas are involved, and patients with neurological damage often experience difficulty when attempting to relearn previously learned skills. For these patients, the location of the lesion may be critical in influencing their motor skill relearning. The cerebellum has been described as an "on-line" comparator and corrector of movement, but recent research suggests that the cerebellum may also have a role in the later stages of motor learning, including the automation of movement patterns, although conflicting research in this area means that there is as yet no consensus. This knowledge may have implications for the way physiotherapists treat patients with cerebellar lesions. Some treatments in regular use by physiotherapists are discussed, and possible implications for practice are considered.  相似文献   

16.
Motor learning is the means by which we acquire skilled movements and consign them to permanent memory. Multiple brain areas are involved, and patients with neurological damage often experience difficulty when attempting to relearn previously learned skills. For these patients, the location of the lesion may be critical in influencing their motor skill relearning. The cerebellum has been described as an “on-line” comparator and corrector of movement, but recent research suggests that the cerebellum may also have a role in the later stages of motor learning, including the automation of movement patterns, although conflicting research in this area means that there is as yet no consensus. This knowledge may have implications for the way physiotherapists treat patients with cerebellar lesions. Some treatments in regular use by physiotherapists are discussed, and possible implications for practice are considered.  相似文献   

17.
Rhythm is an essential element of human culture, particularly in language and music. To acquire language or music, we have to perceive the sensory inputs, organize them into structured sequences as rhythms, actively hold the rhythm information in mind, and use the information when we reproduce or mimic the same rhythm. Previous brain imaging studies have elucidated brain regions related to the perception and production of rhythms. However, the neural substrates involved in the working memory of rhythm remain unclear. In addition, little is known about the processing of rhythm information from non-auditory inputs (visual or tactile). Therefore, we measured brain activity by functional magnetic resonance imaging while healthy subjects memorized and reproduced auditory and visual rhythmic information. The inferior parietal lobule, inferior frontal gyrus, supplementary motor area, and cerebellum exhibited significant activations during both encoding and retrieving rhythm information. In addition, most of these areas exhibited significant activation also during the maintenance of rhythm information. All of these regions functioned in the processing of auditory and visual rhythms. The bilateral inferior parietal lobule, inferior frontal gyrus, supplementary motor area, and cerebellum are thought to be essential for motor control. When we listen to a certain rhythm, we are often stimulated to move our body, which suggests the existence of a strong interaction between rhythm processing and the motor system. Here, we propose that rhythm information may be represented and retained as information about bodily movements in the supra-modal motor brain system.  相似文献   

18.
Execution and imagination of movement activate distinct neural circuits, partially overlapping in premotor and parietal areas, basal ganglia and cerebellum. Can long-term deafferented/deefferented patients still differentiate attempted from imagined movements? The attempted execution and motor imagery network of foot movements have been investigated in nine chronic complete spinal cord-injured (SCI) patients using fMRI. Thorough behavioral assessment showed that these patients were able to differentiate between attempted execution and motor imagery. Supporting the outcome of the behavioral assessment, fMRI disclosed specific patterns of activation for movement attempt and for motor imagery. Compared with motor execution data of healthy controls, movement attempt in SCI patients revealed reduced primary motor cortex activation at the group level, although activation was found in all single subjects with a high variability. Further comparisons with healthy subjects revealed that during attempt and motor imagery, SCI patients show enhanced activation and recruitment of additional regions in the parietal lobe and cerebellum that are important in sensorimotor integration. These findings reflect central plastic changes due to altered input and output and suggest that SCI patients may require additional cognitive resources to perform these tasks that may be one and the same phenomenon, or two versions of the same phenomenon, with quantitative differences between the two. Nevertheless, the retained integrity of movement attempt and motor imagery networks in SCI patients demonstrates that chronic paraplegics can still dispose of the full motor programs for foot movements and that therefore, attempted and imagined movements should be integrated in rehabilitative strategies.  相似文献   

19.
Reactivation of motor brain areas during explicit memory for actions   总被引:2,自引:0,他引:2  
Recent functional brain imaging studies have shown that sensory-specific brain regions that are activated during perception/encoding of sensory-specific information are reactivated during memory retrieval of the same information. Here we used PET to examine whether verbal retrieval of action phrases is associated with reactivation of motor brain regions if the actions were overtly or covertly performed during encoding. Compared to a verbal condition, encoding by means of overt as well as covert activity was associated with differential activity in regions in contralateral somatosensory and motor cortex. Several of these regions were reactivated during retrieval. Common to both the overt and covert conditions was reactivation of regions in left ventral motor cortex and left inferior parietal cortex. A direct comparison of the overt and covert activity conditions showed that activation and reactivation of left dorsal parietal cortex and right cerebellum was specific to the overt condition. These results support the reactivation hypothesis by showing that verbal-explicit memory of actions involves areas that are engaged during overt and covert motor activity.  相似文献   

20.
正常人三种模式手指运动时脑激活区域的功能磁共振研究   总被引:6,自引:0,他引:6  
目的 研究简单动作 (反复连续的手指对指动作 )、随意动作 (抓物体 )和假想动作三种运动模式时 ,脑功能区域的活动机制。方法 利用功能磁共振 (fMRI)影像技术分别摄取 1 0例正常人的利手和非利手在不同运动模式下的双侧脑激活区域 ,再进行机制分析。结果 随意动作时 ,脑同侧激活区的数目多于简单动作 (P <0 .0 5) ,而对侧无明显差异。在简单动作和随意动作中 ,无论利手或非利手 ,主要的激活区为对侧的初级感觉运动皮质 (SM1 ) ,但非利手也可激活同侧少量的SM1。另外 ,脑双侧辅助运动区 (SMA)、前运动区 (PMA) ,对侧顶上小叶 ,同侧小脑也有明显激活 ;偶见基底节激活。假想动作时主要激活额上回、额中回、顶上小叶 ,另见少量扣带回、小脑、脑干、中央旁小叶、基底节处激活。结论 利手的简单动作支配主要在对侧脑SM1 ,而双侧的SM1参与了非利手的简单动作。随意动作属于复杂动作 ,参与动作的区域多于简单动作 ,且双侧SMA均参与 ,可能与双手协调、记忆动作模式的选择、动作顺序的执行有关。假想动作时主要由SMA、PMA支配。该机制对脑卒中的运动训练具有指导意义  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号